
392168-2356/21©2021 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMay/June 2021

Editor’s notes:
This article revisits the literature around the use of hardware performance
counters for malware detection, highlighting discrepancies, and providing
a retrospection of challenges for future research.

—Rosario Cammarota, Intel Labs
—Francesco Regazzoni, University of Amsterdam and

Università della Svizzera Italiana

 Distinguishing between malicious and
benign software has remained one of the biggest
challenges facing computer security over recent
decades. As signature-based antivirus (AV) scan-
ners are easily thwarted by polymorphic malware,
most commercial and academic antimalware solu-
tions rely on behavioral analysis. Behavioral anal-
ysis monitors programs as they execute, collects
information on the process, and, upon a violation
of a behavioral profile, classifies the program as
malware. To this end, software-based behavioral
analysis can draw from a wealth of semantically
rich information sources, such as file names, regis-
try keys, or network endpoints, which characterize

A Cautionary Tale About
Detecting Malware
Using Hardware
Performance Counters
and Machine Learning
Boyou Zhou, Anmol Gupta, Rasoul Jahanshahi,
Manuel Egele, and Ajay Joshi
Electrical and Computer Engineering Department,
Boston University, Boston, MA 02215 USA

the program’s behavior.
As software-level behav-
ioral analysis performs
malware detection at the
cost of performance over-
head, recent research
proposes to reduce this
performance overhead
by leveraging hardware

performance counters (HPCs) to classify programs
as benignware or malware.

HPCs are hardware units that count the occur-
rences of micro-architectural events such as instruc-
tion counts, hits/misses in various cache levels and
branch (mis)predictions during runtime. Modern
processors can capture more than 100 micro-architec-
tural events, but a design-imposed strict limit of 4 (on
Intel [1]) and 6 (on advanced micro devices (AMD)
[2]) counter registers dictates that HPCs can monitor
only a small subset of these events at one time.

Under these constraints, previous works [3]–[6]
leverage the measured HPC values to classify an
unknown program as either benign or malicious.
Previous works record data of labeled programs
in time-series with a fixed frequency, use the HPC
values in time-series to train various supervised
machine learning models, and yield classifiers to

Digital Object Identifier 10.1109/MDAT.2021.3063338
Date of publication: 19 March 2021; date of current version:
20 May 2021.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on June 18,2021 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

40 IEEE Design&Test

Top Picks in Hardware and Embedded Security

distinguish unknown programs as either benign or
malicious.

The underlying assumption for previous HPC-
based malware detectors is that malicious behavior
affects measured HPC values differently from benign
behavior. However, it is questionable, and in fact
counter-intuitive, why the semantically high-level
distinction between benign and malicious behavior
would manifest itself in the micro-architectural events
that are measured by HPCs. For example, both ransom-
ware and benignware use cryptographic application
programming interfaces (APIs), but the ransomware
maliciously encrypt user files, while the benignware
safeguards user information. One cannot distinguish
between benignware and ransomware based on the
measured HPC values, because no HPC event can indi-
cate the ownership of the API keys.

Given the substantial semantic difference between
the high-level malicious behavior and the low-level
micro-architectural events, it is expected from previ-
ous works that assert the utility of HPCs for malware
detection to provide a rigorous analysis, interpreta-
tion, and justification of why the extracted features
from measured HPC values identify the maliciousness
of programs. Unfortunately, existing works elide any
such discussions, and instead commit the logical fal-
lacy of “cum hoc ergo propter hoc”1—or concluding
causation from correlation. Moreover, the correla-
tions and resulting detection capabilities reported by
previous works frequently result from small sample
sets and experimental setups that put the detection
mechanism at an unrealistic advantage.

We survey the existing literature in this field, and
identify common traits that exhibit impractical setups
and mis-interpretation of data analysis. Subsequently,
we design, implement, and evaluate an experimental
setup that allows us to reproduce previous works in this
area, and compare these previous results with results
obtained under more realistic scenarios.

In this work, we build an experimental setup close
to the user environment, and evaluate the fidelity of
machine learning models. We run all experiments in
a bare-metal environment instead of relying on virtu-
alization techniques, since the sampling of virtualized
HPC values is different from the sampling HPCs on a
bare-metal system of a regular user. Previous works [3],
[5], [6] test their machine learning models using meas-
ured HPC values from the same programs used during

1 “With this, therefore because of this.”

training (in the “Machine learning models” section, we
refer to this approach as TTA1). This scenario would
reflect all programs (benign and malicious) are known
and labeled for training, which is absolutely unlikely,
as millions of new malware samples are reported to
AV every day. Thus, we test our models with meas-
ured HPC values from programs that have not been
observed during training, which reflects a scenario that
programs in the same category are available for train-
ing, but not the same program sample.

We perform 1000 iterations of tenfold cross-valida-
tions on six classifiers and consistently observe false
discovery rate2 of larger than 20%. Such high false
discovery rates would disqualify HPC-based malware
detectors from real-world deployments, as it would flag
264 programs in a default Windows 7 installation as
malicious. Finally, we illustrate how fragile the resulting
classifiers are by simply composing a benign program
(Notepad++) with malicious functionality (ransom-
ware). This straightforward composition evades all our
classifiers, even when they are trained with the benign
and malicious components individually.

In summary, this work makes the following
contributions:

•	 We identify the prevalent unrealistic assump-
tions and the insufficient analysis used in prior
works that leverage HPCs for malware detection
(“Related work and motivation” section).

•	 We perform thorough experiments with a pro-
gram count that exceeds prior works [3], [5]–[8]
by a factor of 2× ~ 3×, and the number of experi-
ments in cross-validations that is three orders of
magnitude more than previous works.

•	 We train and test data set similar to what prior
works have done, as well as, in a realistic setting
where testing programs are not in the training
programs. We compare the effects of this choice
on the quality of the machine learning models
(“Experimental results” section).

•	 Finally, to facilitate reproducibility, and enable
future researchers to easily compare their exper-
iments with ours, we make all code, data, and
results of our project publicly available under an
open-source license: https://bit.ly/2SwYwPN

Since our original publication [9], many of the
researchers have avoided the shortcomings that we

2 F+  /(F+ + T+), where F+ is number of benignware classified as malware and T+ is
number of malware classified as malware.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on June 18,2021 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

41May/June 2021

have identified and made improvements in using
HPCs for malware detection. We hope that our work
can guide future research in HPCs and machine
learning for malware detection in the right direction.

Related work and motivation
Many previous works commonly utilize subsemantic

features in malware detection [3], [5]–[8], [10]–[12].
Ozsoy et al. [10] defined the term subsemantic features
as “micro-architectural information about an executing
program that does not require modeling or detecting
program semantics.” All these previous works have
several drawbacks to a great extent. We categorize the
drawbacks that we observed into the following classes.

•	 Dynamic binary instrumentation (DBI).

•	 Virtual machines (VMs).

•	 Division of data by traces (TTA1 in the “Machine
learning models” section).

•	 No cross-validations or insufficient validations.

•	 Few data samples.

DBI tools, such as Intel’s Pin [4], [13], Quick EMU-
lator (QEMU) [14], or Valgrind [15], can also extract
subsemantic features. Khasawneh et al. [11] and [12]
use pin to monitor the instructions executed on VMs in
their experimental setup [10]. Although DBI can extract
subsemantic features that are not available from HPCs,
it introduces a substantial amount of performance
overhead and is thus not suited to run in an always-on,
online protection setting, which is the default use-case
for current antimalware suites. We denote the draw-
backs of DBI as Drawback I in Table 1.

While DBI is infeasible in an online detection sys-
tem, other methods in sampling HPCs can also lead
to inaccurate measurements. A plethora of previous
works run the evaluated programs on VMs [3], [8],
[10]–[12]. We chose to use bare-metal machine
based on two observations. First, virtualizing HPCs
is a challenge [16], as the measured virtualized HPC
values are different from measured bare-metal HPC
values [9]. Second, a regular user uses the bare-
metal machines instead of the virtualized machines.
These observations motivate our experimental setup
(“Experimental setup” section) to run all experiments
on bare-metal systems. We label the use of VM in the
experimental setups as Drawback II in Table 1.

Due to inaccurate HPC measurements [17],
previous works [3], [5]–[7] choose to maximize
the measuring granularity by using HPCs without

time-multiplexing. Previous works [3], [5], [10]–
[12] have used empirical study to select 4 (Intel)
or 6 (AMD) events for monitor, without providing
a numerical analysis on how micro-architectural
events are selected. In our experiments, we per-
form a principal component analysis (PCA)-based
approach to select six micro-architectural events.
After the selection of events, we use HPCs to track
these six events, and transform the measured HPC
values to examples in machine learning models, i.e.,
feature extraction. We then divide examples into
training and testing data sets for machine learning
models (training-and-testing split). Previous works
[3], [5], [6], [8] have training-and-testing split based
on the examples (TTA1 in the “Machine learning
models” section) that the testing data set can have

 
Table 1. Comparison between various previous works: rows are
various works in HPC-based malware detection and columns are
design choices. The alternative shaded and white background
represents different categories of tool/setup/model in malware
detection using HPCs. Red texts highlight drawbacks, and black
texts express the suggested tool/setup/model from this work.
Solid dots (•) indicate the use of that tool/setup/model (column)
by the reference (row), and hollow diamonds (⋄) indicate the
nonuse of that tool/setup/model by the reference. Star (★) is our
work. Our work avoids the drawbacks discussed in the table,
and quantitatively analyzes how these drawbacks lead to the
conclusion that HPCs can reliably detect hardware.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on June 18,2021 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

42 IEEE Design&Test

Top Picks in Hardware and Embedded Security

the same examples produced by programs in train-
ing data set. In real-life, it is unlikely that the offline
training data set can include all the malware that a
user might encounter. We mark the use of data divi-
sion based on examples as Drawback III in Table 1.

In this work, we evaluate our model with 1000
repetitions of ten-fold cross-validations. The cross-val-
idation examines the machine learning models with
different input training-and-testing examples, which
prevents machine learning models from overfitting.3
We observe that there is no cross-validation in some
of the previous works [3], [6], [7], while other works
[8], [10]–[12] present insufficient cross-validation,
i.e., not every example in the data set is validated,
and none of these works reported the variations of the
cross-validation results. We refer to no cross-validation
or insufficient validations as Drawback IV in Table 1.

The prevalence of the above-mentioned draw-
backs motivates us to perform rigorous, quantitative,
and reproducible analytics for HPC-based malware
detection in Table 1. To perform a fair comparison
with works in Table 1, we use the following machine
learning models all used in previous works and com-
pare against the results from previous works: decision
tree (DT), random forest (RF), K nearest neighbors
(KNN), neural nets (NN), Naive Bayes, and AdaBoost.

A double decimal precision result, reported previ-
ously [3], should require at least 10,000 experiments,
which is equivalent to more than 1000 programs in
the tenfold cross-validations. As a result, we con-
sider the works with fewer than 1000 programs as
over-generalization (training and testing with insuf-
ficient cross-validation), or over-interpretation of the
results (comparisons beyond rounding errors) [3],
[5]–[8]. This insufficient number of programs in the
experiments is Drawback V in Table 1.

In addition to the drawbacks of the previous works,
we found that there is no public access to their data
or codes. To ease the reproducibility and advance the
community’s efforts to assess the utility of HPC-based
malware detection, we release all the code and data
produced for this work under open-source license.

We present all the tools/setups/models in various
previous works in Table 1. In the table, rows repre-
sent various works on HPC-based malware detec-
tion and columns are design choices of the tools/
setups/models. The alternative shaded and white
background represents different categories of tool/

3 The model corresponds closely or exactly to a particular data and fails to predict
other data reliably.

setup/model in malware detection using HPCs. Red
text highlights drawbacks, and black text expresses
the suggested tool/setup/model from this work.
Solid dots (•) indicate the use of that tool/setup/
model (column) by the reference (row), and hol-
low diamonds (⋄) indicate the nonuse of that tool/
setup/-model by the reference. Star (★) is our work.
The last column counts the drawbacks of the corre-
sponding work. Table 1 shows that there are at least
two drawbacks in each work.

Experimental setup
In this section, we explain how we set up the

experiments to gather values of HPCs from benign-
ware and malware. We ran our experiments on a
cluster with 15 machines as worker nodes, and a
master node to distribute jobs to measure and to col-
lect data from worker nodes. We dispatched our jobs
to the worker nodes using the Rabbitmq message
system [18]. We collected the data back from the
worker nodes using a Samba [19] server on the mas-
ter node. We used Bindfs [20] to fuse the permission
bits of Samba server storage folder to be writable,
not modifiable, not readable, and not executable.
Note that the Portable Operating System Interface
(POSIX) permission structure cannot provide the
above-mentioned permission bits. These permission
bits allowed the worker nodes to record the meas-
ured HPC values, while these permission settings
prevented malware from overwriting or deleting the
measured HPC values. On the worker nodes, we ran
our experiments in Windows 7 32-bit operating sys-
tem to be compatible with malware experiments in
other works [10]–[12]. We applied fixed-frequency
time-based HPC sampling as the previous works [3].

Malware and benignware
For forming the set of malware, we downloaded

1000 malware from Virustotal [21], and performed a
test run of those 1000 malware on worker nodes. After
the test run, we identified 962 malware which could
run for more than 1 min and used them in our mal-
ware experiments. According to AVClass tool [22],
our data set consisted of 35 distinct malware families.

To collect benignware programs, we first installed
all the packages and software from Futuremark [23],
python performance module [24], ninite.com [25],
and Npackd [26] on the worker nodes. After installa-
tion, we traversed all the files in “Startup Menu” and
“C:\Program Files” folder to include all the unique

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on June 18,2021 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

43May/June 2021

executable programs in our benignware data set. We
avoided the complication of reinstallation by excluding
all the executable program files with “uninstall” in their
names. We performed a test run of all these programs,
and selected 1382 benignware that could run for 1 min.

To avoid the classification bias, we matched the
number of malware and benignware used in our
experiments. Classification bias exists in classifica-
tion problems if the number of items in each class
is different. For example, in a classification problem
with two classes, A and B, if class A makes up 80%
of the data set and class B makes up 20% of the data
set, the baseline of precision in classifying A is 80%.
Any designed machine learning models whose pre-
cision is lower than 80% are worse than the precision
estimated with prior probability. In our work, we
matched the number of benignware and malware;
at the same time, we reported precision, recall, and
F1-score to eliminate any bias.

Method for running experiments
We ran our benignware and malware experiments

on identical hardware and operating system. However,
there are a few differences between malware and
benignware experiments. We explain the workflow of
malware and benignware experiments using one dis-
patched job in Figure 1. The boxes are the steps that
we follow, and the solid arrow means that the next
step always happens. The dotted arrow means that the
action happens under the conditions of the labels.

Malware experiment
We follow the steps in Figure 1 to run the experi-

ments. Before any malware experiments, we dropped
all the requests to any network outside the master
node, to ensure that malware does not affect other
machines. At the beginning of each experiment, the
worker node runs a clean copy of Windows and waits
for a new job. Once the worker node receives the job
from the master node, the sampling process runs the
malware and records the measured HPC values. After
running each malware experiment, we provide an
identical, malware-free environment for the next mal-
ware experiment by reloading the Windows partition.
To reload Windows image, we installed Debian 8 in
the other partition of the hard drive on each worker
node. Whenever a worker node boots into the Debian
partition, the worker node copies a clean Windows
image to the other partition. We modified the GNU
GRand Unified Bootloader (GRUB) to make the
machine boot into an alternate partition every time it
reboots. After reloading the image, the system reboots
into Windows again and runs the next job dispatched
from the master node.

Benignware experiment
 Similar to the malware experiments, benignware

experiments also follow the workflow in Figure 1. We
connected the worker nodes to the outside network
to ensure the benignware receives network responses.
Programs, such as browsers, require network responses

Figure 1. Our workflow of benignware/malware experiments: the worker
node receives the dispatched jobs of experiments from the master node.
The worker node spawns a sampling process, and then the sampling
process runs the target process (benignware/malware). The dotted arrow
(→) means that the action does not always happen. If the application
has a window for interaction, we attach a monkey tester to the window.
The solid arrow (→) shows that actions always happen. We reset the
environment after each experiment. The worker node kills any other
processes spawned by the target process after each benignware
experiment. At the end of each malware experiment, we reboot the machine
into the Debian partition to reload a clean Windows image.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on June 18,2021 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

44 IEEE Design&Test

Top Picks in Hardware and Embedded Security

to perform similarly as in a user environment. When
the worker node receives a job from the master node,
the sampling process starts the target process (benign-
ware program), and a monkey tester is attached to the
target process if the target process has an interactive
window. The monkey tester works similar to Android’s
monkey tester [27], as it interacts with the target pro-
cess by periodically sending random keystroke, mouse
clicks, and scrolling operations to the window of the
target process. The behavior of the monkey tester
simulates the interaction between a user and the pro-
grams. After the sampling process finishes recording
the measured HPC values, the system resets by killing
any processes spawned during the experiments. Given
that the benignware does not try to infect the Windows
partition and perform malicious operations, we do not
reload the Windows partition. After killing the spawned
processes, the worker node receives the next job from
the master node and starts the next experiment.

Machine learning models
In this section, we present how we apply machine

learning models on measured HPC values. To avoid
curse of dimensionality [28], we applied PCA to reduce
the feature vector in our system. We ran each of the
seven programs from Futuremark Benchmarks on 130
micro-architectural events 32 times (130 × 32 × 7). From
the results of these seven programs, we selected six
events with two eigenvectors that represent the binned
results as our selected features (events listed in Table 2),
and generated the eigenvector matrix, denoted as
𝑣192 × 12, from the PCA. Four of the selected events in
our experiments align with other works that do not pro-
vide any analysis of their selection of events [3], [5],
[10]–[12]. We monitored the six events from Table 2
for our 962 benignware and 962 malware program
samples. Due to page limit here, we do not provide
our quantitative analysis to extract features from the
measured HPC values of our selected micro-architec-
tural events. One can find the detailed analysis in our
extended conference paper [9].

To have the same number of measurements on
the same program samples, we run each benignware
program and each malware program 32 times, and
collect 61,568 (2 × 962 × 32)4 measured HPC values
(1026 CPU hours). We sum the measured HPC values
into 32 histogram bins for each of six events. Each
example of histogram binned HPC values has 192
(6 events × 32 bins) features. By multiplying each
example with the 𝑣 eigenvector matrix, we reduce
the dimensions from 192 (6 events × 32 bins) to 12
(6 events × 2 components). To this end, we convert
the measured HPC values into histogram bins, and
then transform them into traces.

Using the reduction of dimensions, the input
matrix A30,784 × 192 (30,784 examples and 192 features)
of benignware or malware is transformed to lower-di-
mensional space as Á 30,784 × 12 (30,784 examples and
12 features). For training and testing of the machine
learning models, we are going to separate the exam-
ples in matrix Á into training and testing data sets
(training-and-testing split). In our experiments, we
consider two training-and-testing approaches (TTA)
to divide our data set into training set and testing set.
The two approaches for both benignware and mal-
ware experiments are as follows:

TTA1: � Divide 30,784 traces with a split of 90:10 ratio,
resulting in 27,704 traces (90% of 30,784
traces) as training data set and 3078 traces
(10% of 30,784 traces) as testing data set.

TTA2: � Divide 962 programs with a split of 90:10 ratio,
resulting in traces of 866 programs (90% of
programs) as training data set and traces of 96
programs (10% of programs) as testing data set.

In TTA1, the traces resulting from the same pro-
gram sample can appear in both training and testing
data sets. As a result, such an approach corresponds
to a highly optimistic and unrealistic scenario where
the testing programs (benignware or malware) are
available during training. Given that thousands of
new malware appearing every day, it is impossible
to include all the malware that user may encoun-
ter. Hence, TTA1 should not be applied in training
machine learning models for malware detection.

The TTA2 corresponds to a realistic case where
during training model, we do not have access
to the exact programs, benign or malicious, that
users run in the real life. To validate across our

4 30,784 for benignware and 30,784 for malware.

 
Table 2. Description of the selected events [2].

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on June 18,2021 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

45May/June 2021

models, we perform tenfold cross-validations 1000
times. For each tenfold cross-validation, we ran-
domly shuffle the data set to ensure difference
across 1000 rounds. In each tenfold cross-valida-
tion, each example in the data set is used in train-
ing nine times and testing once. This ensures the
identical times of training and testing for every sin-
gle example, compared to randomly shuffling the
data and validating the machine learning models.
With 1000 tenfold cross-validations, we can ensure
that the standard deviations of detection rates
increase no more with more rounds of validations.

In our experiments, we perform training and test-
ing with both TTA1 and TTA2. We compare the detec-
tion results in terms of precision, recall, F1-score, and
area under curve (AUC) in both approaches. We use
the implementations of machine learning models: DT,
RF, NN, KNN, AdaBoost, and Naive Bayes. The seed

for randomness in machine learning initialization
and division of data comes from the random num-
ber generator “/dev/urandom.” During training, we
set the parameters of the machine learning models
as described below to prevent the machine learning
models from underfitting due to default limitations
in computational resources set by scikit-learn. The
details related to the model configurations can be
found in our extended conference paper [9].

Experimental results
In this section, we show the results of our experi-

ments to detect malware using HPCs and contrast them
with the ones obtained in previous works. We report
malware detection rates in terms of precision, recall,
F1-score, and AUC in receiver operating characteristic
(ROC) plots. We use the positive label to denote mal-
ware and the negative label to denote benignware.

Figure 2. ROC curve of five models. (a) AUC of DT, NN, AdaBoost, RF, and KNN using
(TTA1) is 89.65%, 84.41%, 80.57%, 91.84%, and 89.26%, respectively. (b) AUC of DT, NN,
AdaBoost, RF, and KNN using (TTA2) is 87.36%, 66.43%, 77.96%, 89.94%, and 86.98%,
respectively.

 
Table 3. Detection rates with TTA1 and TTA2: red means the value is less than 50% and bold means that the value is
more than 90%.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on June 18,2021 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

46 IEEE Design&Test

Top Picks in Hardware and Embedded Security

Malware detection
In this section, we report the detection rates (pre-

cision, recall, and F1-score) with two different data
divisions, TTA1 and TTA2. TTA1 is the division of
data according to the traces; while TTA2 is the divi-
sion of data according to the programs, as defined in
the “Machine learning models” section. We train and
test various machine learning models and determine
the detection rates (precision, recall, and F1-score)
with TTA1 and TTA2. Then we plot the ROC curves
and compute the AUCs. Table 3 shows the precision,
recall, F1-score, and the AUCs of ROC curves. Any
results with a value larger than 90% and smaller than
50% are set in bold and red, respectively. Figure 2
shows the ROC curves and the AUCs of ROC for differ-
ent machine learning models.

The F1-scores of DT, RF, KNN, Naive Bayes, AdaBoost,
and NN models are 80.22%, 81.29%, 80.22%, 9.903%,
70.32%, and 35.66% using TTA2, compared to 83.39%,
84.84%, 83.59%, 14.32%, 75.01%, and 78.75% using TTA1
in Table 3. The detection rates are lower when using
TTA1 as compared to the scenario using TTA1.

Figure 2b shows the ROC curves and the AUCs
of ROC for different machine learning models.
The AUCs of ROC of DT, RF, KNN, Naive Bayes, Ada-
Boost, and NN models are 87.36%, 89.94%, 86.98%,
58.38% 77.96%, and 66.43% using TTA2 in Figure 2b,
compared to 89.65%, 91.84%, 89.26%, 58.11%, 80.57%,
and 84.41% using TTA1 in Figure 2a.

Demme et al. showed precision varying from
25% ~ 100% [3] among different families of malware,
without any recall values reported using TTA1. The

median precision among all the families of malware

is around 80%, with TTA1. Precision value of 80%

corresponds to the False Discovery Rate5 of 20%. Con-

sider that a default Windows 7 installation has 1,323

executable files, an AV system with a 20% false dis-

covery rate would flag 264 of these files incorrectly as

malware—clearly such a detection system would not

be practical. In real-life cases, the malware detection

rates of HPC-based malware detection would be those

in columns of TTA2 of Table 3 and Figure 2b. These

results show that high detection rates and robustness

in detection are over-estimated by some prior works

due to division of data during training. In the next

subsection, we show that the results presented in this

subsection are not an exception.

Cross-validation
Cross-validation is a common practice in machine

learning for avoiding the overfitting of machine

learning models. Cross-validation is used to vali-

date whether the detection rates are consistent with

repeated, different training and testing splits [28]. If

the detection rates fluctuate during cross-validation,

we can infer that the machine learning models are

not trained properly. We observe that previous works

either have no cross-validation or report no results

from cross-validations. The lack of proper cross-vali-

dation motivates us to further evaluate the machine

learning models using cross-validation.

5 False Discovery Rate (F+ /(F+ + T+).

Figure 3. Box plots of distributions of tenfold cross-validation experiments using (a)
TTA1 and (b) TTA2. Red diamonds are means, and blue box corresponds to cross-
validation experiment results that lie between 25 and 75 percentiles. The whiskers
(the short, horizontal lines outside the blue box) represent confidence interval
equivalent to μ± 3 σ of a Gaussian distribution. The blue dots are outliers that are
outside the μ± 3 σ regime. On the X-axis, Prec is precision, Rec is recall, and F1 is F1
score. AUC is AUC in ROC. These tenfold cross-validation experiments show that we
cannot achieve 100% malware detection accuracy.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on June 18,2021 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

47May/June 2021

In DT, RF, KNN, NN, AdaBoost, Naive Bayes
models, the mean of distributions of F1-scores using
TTA2 are 82.13%, 83.61%, 82.2%, 73.69%, 73.43%,
and 12.21%, compared to 82.17%, 83.75%, 82.28%,
74%, 72.27%, and 12.15% using TTA1, respectively.
In DT, RF, KNN, NN, Ad aBoost, and Naive Bayes
models, the mean of distributions of F1-scores using
TTA2 are 2.145%, 2.336%, 2.248%, 14.88%, 3.29%,
and 2.611%, compared to 1.416%, 1.326%, 1.388%,
13.2%, 2.365%, and 2.392% using TTA1, respectively.
Comparing the results using TTA1 and TTA2, the
standard deviations of DT, RF, KNN, NN, AdaBoost,
and Naive Bayes models increased by 1.515×, 1.762×,
1.62×, 1.127×, 1.391×, and 1.092×, respectively. The
overall detection rates using TTA2 have much
higher variations compared to ones using TTA1.

As previous works did not report standard devi-
ations of their cross-validations, we cannot com-
pare these results. The difference between standard
deviations in Figure 3a and b is due to the unrealis-
tic assumption that the programs in the training set
appear in the testing data set. Figure 3b presents the
results where the malicious program is not included
in the training data set. In conclusion, the mean of
the distribution using TTA2 is lower than that using
TTA1, while the standard deviation of distribution
using TTA2 is higher than that using TTA1. To have
a full evaluation on the machine learning models,
it is imperative to use TTA2 and exhibit a distribu-
tion of precision, recall, F1-score, and AUC of ROC
curves. The HPC measurements can be helpful for
other security applications, such as the detection of
low-level hardware attack, but the results from TTA2
clearly show that using the results from TTA1 can
be misleading and prematurely draw the conclusion
using HPC measurements and machine learning to
differentiate between benignware and malware.

Ransomware
In previous sections, the machine learning mod-

els are trained over the traces of HPCs to discrimi-
nate malware from benignware. Here, we discuss
an example where we build a malware embedded
in benignware and then show that this malware can
evade HPC-based malware detection.

Ransomware is a malware that maliciously
encrypts files and extorts users in exchange for
the decryption keys [29]. We craft the malware by
simply infusing Notepad++ with a ransomware. We
modify the constructor of Notepad++ to iterate over

a hardcoded directory, encrypt each file with a hard-
coded password and a session key, and dump the
content to another file in the same directory, with
5-s delay between each encryption. We measure
the values of HPCs for modified Notepad++ in our
experimental setup (“Experimental setup” section).
We randomly select 90% of the benignware and
malware samples as the training set, and we test on
Notepad++ and modified Notepad++. The precision
of DT, Naive Bayes, NN, AdaBoost, RF and KNN is
0%, 0%, 0%, 50.85%, 0%, and 0%, respectively.

These results are not surprising, as machine
learning models tolerate the noise and jitters during
training on sampled HPCs, to extract the malicious
behavior in the programs. In our malware example,
the changes of HPC values caused by ransomware
are overshadowed in the sampled values of HPCs
when running Notepad++. The variation tolerance
results in classifying the modified Notepad++ as
benignware.

Discussion
For our experiments, we run Windows 7 32-bit oper-

ating system on AMD 15h family Bulldozer micro-ar-
chitecture machine. Weaver et al. [30] performed
extensive studies investigating the determinism of
the measured HPC values in various micro-architec-
tures. By comparing the HPC values across different
micro-architectures, Weaver et al. showed that the
HPCs in various architectures have similar levels of
variations during sampling. Hence, our conclusions
from Bulldozer micro-architecture are applicable to
other micro-architectures. In our benignware and
malware experiments, we chose to allow the access
to the network for benignware and prevent malware
from accessing network. This design choice does not
affect the results of HPC measurements, because both
benignware and malware function properly during
experiments. For the reduction of dimensions, many
other approaches can serve the same purpose as PCA.
We used PCA in our designs as PCA is one of the most
popular methods for reduction of dimensions.

The research regarding the use of HPC measure-
ments for malware detection as well as debugging
and profiling tools has grown rapidly since our orig-
inal publication [9]. Similar to our research, multiple
researchers studied the limits of HPC measurements
[31]–[34] in line with the spirit of our research.
Among these published works, Das et al. [31] evalu-
ated the ways how 41 prior works used HPC values

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on June 18,2021 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

48 IEEE Design&Test

Top Picks in Hardware and Embedded Security

and showed how various challenges can undermine
the effectiveness of security applications. Basu et al.
[32] developed a framework to determine the proba-
bility of malware detection systems while monitoring
HPC values at a predetermined interval. Brasser et al.
[33] discussed multiple hardware-assisted security
solutions and their respective limitations used by third
party developers. Dinakarrao et al. [34] introduced
adversarial attacks on HPC-based malware detection
systems. All these research works essentially reiter-
ate our cautionary tales of using HPC for malware
detection. We also observed that researchers have
acknowledged these shortcomings and have chosen
to improve their respective analysis by adapting their
systems to tackle the limits of HPC measurements.
Researchers overcame the drawbacks we discussed
in the “Related work and motivation” section, by uti-
lizing bare-metal environments [35]–[38], implement-
ing customized hardware [39]–[41] instead of HPCs,
proper cross-validation [38], using ensemble models
[42], and using other than HPC values to detect mali-
cious behavior [43]. Wang et al. [35] and [36] pro-
posed a customized tool to overcome the problem of
contaminating the HPC values from other processes.
Basu et al. [43] developed embedded trace buffer
(ETB)-based malware detector to identify malicious
behaviors. Ramos et al. [44] proposed a post-process-
ing method to mitigate the effect of HPC drawbacks
for modeling parallel applications. All these efforts in
the security community make us believe that our work
has had positive and profound influence on the secu-
rity research in the last couple of years. We hoped that
our work will guide future work in the area of using
HPCs and machine learning for malware detection in
the right direction of research.

HPCs are hardware units that are designed to
count low-level, micro-architectural events. Many works
have investigated malware detection using HPC pro-
files. However, we believe that there is no causation
between low-level micro-architectural events and high-
level software behavior. The strong positive results in the
previous works are due to a series of optimistic assump-
tions and unrealistic experimental setups. In this work,
we rigorously evaluate the idea of malware detection
using HPCs through realistic assumptions and experi-
mental setups. We observe the low fidelity in HPC-based
malware detection when we increase number of pro-
grams by a factor of 2–3 and the experiment numbers
in cross-validation to three orders of magnitude higher

than previous works. Our best result shows an F1-score
of 80.78%. The corresponding false discovery rate (F+ /
(F+ + T+)) is 15%. This means that among 1323 execut-
able files in the Windows operating system files, 198
files will be flagged as malware. We also demonstrate
the infeasibility in HPC-based malware detection with
Notepad++ infused with a ransomware, which can-
not be detected in our HPC-based malware detection
system. By identifying the shortcomings in the prior
approaches of using HPCs and machine learning for
malware detection, we have guided the community
in the right direction. Publications on malware detec-
tion using HPCs and ML after our original paper have
shown that our paper has had positive and profound
influence on security research. We hope that our efforts
will continue to help the research community in the
coming years.� 

 References
	 [1]	 Intel Itanium Architecture Software Developer’s

Manual, Intel Corp., Mountain View, CA, USA, 2010.

	 [2]	 BIOS and Kernel Developer’s Guide (BKDG) for AMD

Family 15h Models 10h-1Fh Processors, Adv. Micro

Devices, Santa Clara, CA, USA, 2015.

	 [3]	 J. Demme et al., “On the feasibility of online malware

detection with performance counters,” in Proc. 40th

Annu. Int. Symp. Comput. Archit. (ISCA), 2013, p. 559.

	 [4]	 H. Patil et al., “Pinpointing representative portions

of large Intel Itanium programs with dynamic

instrumentation,” in Proc. 37th Int. Symp. Microarchit.

(MICRO), 2004, pp. 81–92.

	 [5]	 M. Kazdagli, V. J. Reddi, and M. Tiwari, “Quantifying

and improving the efficiency of hardware-based

mobile malware detectors,” in Proc. 49th Int. Symp.

Microarchit. (MICRO), 2016, pp. 1–13.

	 [6]	 X. Wang et al., “Hardware performance counter-based

malware identification and detection with adaptive

compressive sensing,” Trans. Archit. Code Optim.,

vol. 13, no. 1, pp. 1–23, 2016.

	 [7]	 A. Tang, S. Sethumadhavan, and S. J. Stolfo,

“Unsupervised anomaly-based malware detection using

hardware features,” in Proc. Int. Workshop Recent Adv.

Intrusion Detection (RAID), 2014, pp. 109–129.

	 [8]	 B. Singh et al., “On the detection of kernel-level

rootkits using hardware performance counters,”

in Proc. 17th Asia Conf. Comput. Commun. Secur.

(AsiaCCS), 2017, pp. 483–493.

	 [9]	 B. Zhou et al., “Hardware performance counters can

detect malware: Myth or fact?” in Proc. Asia Conf.

Comput. Commun. Secur., 2018, pp. 457–468.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on June 18,2021 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

49May/June 2021

	[10]	 M. Ozsoy et al., “Malware-aware processors: A

framework for efficient online malware detection,” in

Proc. 21st Int. Symp. High Perform. Comput. Archit.

(HPCA), 2015, pp. 651–661.

	[11]	 K. N. Khasawneh et al., “Ensemble learning for low-

level hardware-supported malware detection,” in Proc.

Int. Workshop Recent Adv. Intrusion Detection (RAID),

2015, pp. 3–25.

	[12]	 K. N. Khasawneh et al., “RHMD: Evasion-resilient

hardware malware detectors,” in Proc. 50th Annu.

IEEE/ACM Int. Symp. Microarchit. (MICRO), Oct. 2017,

pp. 315–327.

	[13]	 C.-K. Luk et al., “Pin: Building customized program

analysis tools with dynamic instrumentation,” ACM

SIGPLAN Notices, vol. 40, no. 6, pp. 190–200, 2005.

	[14]	 F. Bellard, “QEMU, a fast and portable dynamic

translator,” in Proc. USENIX Annu. Tech. Conf.,

FREENIX Track, 2005, pp. 41–46.

	[15]	 N. Nethercote and J. Seward, “Valgrind: A framework

for heavyweight dynamic binary instrumentation,” ACM

SIGPLAN Notices, vol. 42, no. 6, pp. 89–100, 2007.

	[16]	 B. Serebrin and D. Hecht, “Virtualizing performance

counters,” in Proc. Eur. Conf. Parallel Process.,

Bordeaux, France, Aug. 2011, pp. 223–233.

	[17]	 V. M. Weaver and S. A. McKee, “Can hardware

performance counters be trusted?” in Proc. Int. Symp.

Workload Characterization (IISWC), 2008,

pp. 141–150.

	[18]	 Pivotal Software Inc. (2017). Rabbitmq. Accessed:

Nov. 12, 2017. [Online]. Available: http://www.

rabbitmq.com/

	[19]	 (2017). Samba Opening Windows to a Wider World.

Accessed: Dec. 5, 2017. [Online]. Available:

https://www.samba.org/

	[20]	 (2017). Bindfs. Accessed: Dec. 5, 2017. [Online].

Available: https://bindfs.org/

	[21]	 Virustotal. (2017). Virustotal. Accessed: Jul. 12, 2017.

[Online]. Available: https://www.virustotal.com/

	[22]	 M.Sebastián et al., “AVCLASS: A tool for massive

malware labeling,” in Proc. Int. Symp. Res. Attacks,

Intrusions, Defenses, 2016, pp. 230–253.

	[23]	 (2017). Futuremark. Accessed: Nov. 15, 2017. [Online].

Available: https://www.futuremark.com/

	[24]	 (2017). Performance: Python Package Index.

Accessed: Nov. 30, 2017. [Online]. Available: https://

pypi.python.org/pypi/performance/0.5.1

	[25]	 (2017). Ninite. Accessed: Nov. 15, 2017. [Online].

Available: https://ninite.com/

	[26]	 (2017). Npackd. Accessed: Nov. 15, 2017. [Online].

Available: https://npackd.appspot.com/

	[27]	 (2017). Android Debug Bridge. Accessed: Nov. 12,

2017. [Online]. Available: https://developer.android.com/

studio/command-line/adb.html

	[28]	 I. Goodfellow, Y. Bengio, and A. Courville, Deep

Learning. Cambridge, MA, USA: MIT Press, 2016.

	[29]	 A. Young and M. Yung, “Cryptovirology: Extortion-

based security threats and countermeasures,” in Proc.

Secur. Privacy, 1996, pp. 129–140.

	[30]	 V. M. Weaver, D. Terpstra, and S. Moore, “Non-

determinism and overcount on modern hardware

performance counter implementations,” in Proc. Int.

Symp. Perform. Anal. Syst. Softw. (ISPASS), 2013,

pp. 215–224.

	[31]	 S. Das et al., “SoK: The challenges, pitfalls, and

perils of using hardware performance counters for

security,” in Proc. 40th Symp. Secur. Privacy (SP),

2019, pp. 20–38.

	[32]	 K. Basu et al., “A theoretical study of hardware

performance counters-based malware detection,” IEEE

Trans. Inf. Forensics Security, vol. 15, no. 15, pp. 512–525,

Jun. 2019.

	[33]	 F. Brasser et al., “Special session: Advances and

throwbacks in hardware-assisted security,” in Proc.

3rd Int. Conf. Compil., Archit. Synth. Embedded Syst.

(CASES), 2018, pp. 1–10.

	[34]	 S. M. P. Dinakarrao et al., “Adversarial attack on

microarchitectural events based malware detectors,” in

Proc. 56th Annu. Design Autom. Conf. (DAC), 2019,

pp. 1–6.

	[35]	 H. Wang et al., “Dreal: Detecting side-channel attacks

at real-time using low-level hardware features,” Univ.

California at Davis, Davis, CA, USA, Tech. Rep.

AD1101633, 2020.

	[36]	 H. Wang et al., “SCARF: Detecting side-channel

attacks at real-time using low-level hardware features,”

in Proc. IEEE 26th Int. Symp. On-Line Test. Robust

Syst. Design (IOLTS), Jul. 2020, pp. 1–6.

	[37]	 H. Wang et al., “Phased-guard: Multi-phase machine

learning framework for detection and identification

of zero-day microarchitectural side-channel attacks,”

in Proc. 38th Int. Conf. Comput. Design (CCD), 2020,

pp. 648–655.

	[38]	 R. Tahir et al., “The browsers strike back: Countering

cryptojacking and parasitic miners on the Web,” in

Proc. IEEE Conf. Comput. Commun. (CCC INFOCOM),

Apr./May 2019, pp. 703–711.

	[39]	 L. Delshadtehrani et al., “PHMon: A programmable

hardware monitor and its security use cases,” in Proc.

29th USENIX Secur. Symp. (USENIX Security), 2020,

pp. 807–824.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on June 18,2021 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

http://www.rabbitmq.com/
http://www.rabbitmq.com/
https://www.samba.org/
https://bindfs.org/
https://www.virustotal.com/
https://www.futuremark.com/
https://pypi.python.org/pypi/performance/0.5.1
https://pypi.python.org/pypi/performance/0.5.1
https://ninite.com/
https://npackd.appspot.com/
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/command-line/adb.html

50 IEEE Design&Test

Top Picks in Hardware and Embedded Security

	[40]	 L. Delshadtehrani et al., “Nile: A programmable

monitoring coprocessor,” IEEE Comput. Archit. Lett.,

vol. 17, no. 1, pp. 92–95, Jan./Jun. 2018.

	[41]	 S. Canakci et al., “Efficient context-sensitive CFI

enforcement through a hardware monitor,” in Proc. 17th

Int. Conf. Detection Intrusions Malware, Vulnerability

Assessment (DIMVA), 2020, pp. 259–279.

	[42]	 Y. Dai et al., “SMASH: A malware detection method

based on multi-feature ensemble learning,” IEEE

Access, vol. 7, pp. 112588–112597, 2019.

	[43]	 K. Basu et al., “PREEMPT: PReempting malware by

examining embedded processor traces,” in Proc. 56th

Design Autom. Conf. (DAC), Jun. 2019, pp. 1–6.

	[44]	 V. Ramos et al., “An accurate tool for modeling,

fingerprinting, comparison, and clustering of parallel

applications based on performance counters,” in Proc.

33rd Int. Parallel Distrib. Process. Symp. Workshops

(IPDPS), 2019, pp. 797–804.

Boyou Zhou is with Amazon.com Inc. His research
interest includes hardware-assisted software security.
Zhou has a BS from Southeast University, Nanjing,
China, and a PhD from the Electrical and Computer
Engineering Department, Boston University, Boston,
MA, USA, in software security.

Anmol Gupta is with Analog Devices Inc. His
research interests include computer architecture,
embedded system, AI/ML on edge, low-power mixed-
signal SoC, DSP, audio processing, cybersecurity,
hardware modulation using system Verilog and
FPGAs. Gupta has an MS in computer engineering
from Boston University, Boston, MA, USA (2017).

Rasoul Jahanshahi is a Graduate Student
Research Assistant and currently pursuing a PhD
with the Electrical and Computer Engineering
Department, Boston University, Boston, MA, USA. His
current research interest includes security aspects of
PHP web applications. He is a member of the Boston
University Security Lab.

Manuel Egele is an Assistant Professor with the
Electrical and Computer Engineering Department,
Boston University, Boston, MA, USA. He is a
Co-Director of the Boston University Security Lab,
where his current research interests include practical
security aspects of commodity and mobile systems.
He is a member of IEEE and ACM.

Ajay Joshi is an Associate Professor with the
Electrical and Computer Engineering Department,
Boston University, Boston, MA, USA. His research
interests include VLSI design and emerging
device technologies including silicon photonics
and memristors. Joshi has a PhD in electrical and
computer engineering from Georgia Institute of
Technology, Atlanta, GA, USA.

 Direct questions and comments about this article
to Boyou Zhou, Electrical and Computer Engineering
Department, Boston University, Boston, MA 02215
USA; bobzhou@bu.edu.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on June 18,2021 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

