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Editor’s notes:
This article revisits the literature around the use of hardware performance 
counters for malware detection, highlighting discrepancies, and providing 
a retrospection of challenges for future research.

—Rosario Cammarota, Intel Labs
—Francesco Regazzoni, University of Amsterdam and 

Università della Svizzera Italiana

 Distinguishing between malicious and 
benign software has remained one of the biggest 
challenges facing computer security over recent 
decades.  As signature-based antivirus (AV) scan-
ners are easily thwarted by polymorphic malware, 
most commercial and academic antimalware solu-
tions rely on behavioral analysis. Behavioral anal-
ysis monitors programs as they execute, collects 
information on the process, and, upon a violation 
of a behavioral profile, classifies the program as 
malware. To this end, software-based behavioral 
analysis can draw from a wealth of semantically 
rich information sources, such as file names, regis-
try keys, or network endpoints, which characterize 
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the program’s behavior. 
As software-level behav-
ioral analysis performs 
malware detection at the 
cost of performance over-
head, recent research 
proposes to reduce this 
performance overhead 
by leveraging hardware 

performance counters (HPCs) to classify programs 
as benignware or malware.

HPCs are hardware units that count the occur-
rences of micro-architectural events such as instruc-
tion counts, hits/misses in various cache levels and 
branch (mis)predictions during runtime. Modern 
processors can capture more than 100 micro-architec-
tural events, but a design-imposed strict limit of 4 (on 
Intel [1]) and 6 (on advanced micro devices (AMD) 
[2]) counter registers dictates that HPCs can monitor 
only a small subset of these events at one time.

Under these constraints, previous works [3]–[6] 
leverage the measured HPC values to classify an 
unknown program as either benign or malicious. 
Previous works record data of labeled programs 
in time-series with a fixed frequency, use the HPC 
values in time-series to train various supervised 
machine learning models, and yield classifiers to 

Digital Object Identifier 10.1109/MDAT.2021.3063338
Date of publication: 19 March 2021; date of current version:  
20 May 2021.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on June 18,2021 at 02:24:14 UTC from IEEE Xplore.  Restrictions apply. 



40 IEEE Design&Test

Top Picks in Hardware and Embedded Security

distinguish unknown programs as either benign or 
malicious.

The underlying assumption for previous HPC-
based malware detectors is that malicious behavior 
affects measured HPC values differently from benign 
behavior. However, it is questionable, and in fact 
counter-intuitive, why the semantically high-level 
distinction between benign and malicious behavior 
would manifest itself in the micro-architectural events 
that are measured by HPCs. For example, both ransom-
ware and benignware use cryptographic application 
programming interfaces (APIs), but the ransomware 
maliciously encrypt user files, while the benignware 
safeguards user information. One cannot distinguish 
between benignware and ransomware based on the 
measured HPC values, because no HPC event can indi-
cate the ownership of the API keys.

Given the substantial semantic difference between 
the high-level malicious behavior and the low-level 
micro-architectural events, it is expected from previ-
ous works that assert the utility of HPCs for malware 
detection to provide a rigorous analysis, interpreta-
tion, and justification of why the extracted features 
from measured HPC values identify the maliciousness 
of programs. Unfortunately, existing works elide any 
such discussions, and instead commit the logical fal-
lacy of “cum hoc ergo propter hoc”1—or concluding 
causation from correlation. Moreover, the correla-
tions and resulting detection capabilities reported by 
previous works frequently result from small sample 
sets and experimental setups that put the detection 
mechanism at an unrealistic advantage.

We survey the existing literature in this field, and 
identify common traits that exhibit impractical setups 
and mis-interpretation of data analysis. Subsequently, 
we design, implement, and evaluate an experimental 
setup that allows us to reproduce previous works in this 
area, and compare these previous results with results 
obtained under more realistic scenarios.

In this work, we build an experimental setup close 
to the user environment, and evaluate the fidelity of 
machine learning models. We run all experiments in 
a bare-metal environment instead of relying on virtu-
alization techniques, since the sampling of virtualized 
HPC values is different from the sampling HPCs on a 
bare-metal system of a regular user. Previous works [3], 
[5], [6] test their machine learning models using meas-
ured HPC values from the same programs used during 

1 “With this, therefore because of this.”

training (in the “Machine learning models” section, we 
refer to this approach as TTA1). This scenario would 
reflect all programs (benign and malicious) are known 
and labeled for training, which is absolutely unlikely, 
as millions of new malware samples are reported to 
AV every day. Thus, we test our models with meas-
ured HPC values from programs that have not been 
observed during training, which reflects a scenario that 
programs in the same category are available for train-
ing, but not the same program sample.

We perform 1000 iterations of tenfold cross-valida-
tions on six classifiers and consistently observe false 
discovery rate2 of larger than 20%. Such high false 
discovery rates would disqualify HPC-based malware 
detectors from real-world deployments, as it would flag 
264 programs in a default Windows 7 installation as 
malicious. Finally, we illustrate how fragile the resulting 
classifiers are by simply composing a benign program 
(Notepad++) with malicious functionality (ransom-
ware). This straightforward composition evades all our 
classifiers, even when they are trained with the benign 
and malicious components individually.

In summary, this work makes the following 
contributions:

•	 We identify the prevalent unrealistic assump-
tions and the insufficient analysis used in prior 
works that leverage HPCs for malware detection 
(“Related work and motivation” section).

•	 We perform thorough experiments with a pro-
gram count that exceeds prior works [3], [5]–[8] 
by a factor of 2× ~ 3×, and the number of experi-
ments in cross-validations that is three orders of 
magnitude more than previous works.

•	 We train and test data set similar to what prior 
works have done, as well as, in a realistic setting 
where testing programs are not in the training 
programs. We compare the effects of this choice 
on the quality of the machine learning models 
(“Experimental results” section).

•	 Finally, to facilitate reproducibility, and enable 
future researchers to easily compare their exper-
iments with ours, we make all code, data, and 
results of our project publicly available under an 
open-source license: https://bit.ly/2SwYwPN

Since our original publication [9], many of the 
researchers have avoided the shortcomings that we 

2 F+  /(F+ + T+), where F+ is number of benignware classified as malware and T+ is 
number of malware classified as malware.
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have identified and made improvements in using 
HPCs for malware detection. We hope that our work 
can guide future research in HPCs and machine 
learning for malware detection in the right direction.

Related work and motivation
Many previous works commonly utilize subsemantic 

features in malware detection [3], [5]–[8], [10]–[12]. 
Ozsoy et al. [10] defined the term subsemantic features 
as “micro-architectural information about an executing 
program that does not require modeling or detecting 
program semantics.” All these previous works have 
several drawbacks to a great extent. We categorize the 
drawbacks that we observed into the following classes.

•	 Dynamic binary instrumentation (DBI). 

•	 Virtual machines (VMs).

•	 Division of data by traces (TTA1 in the “Machine 
learning models” section).

•	 No cross-validations or insufficient validations.

•	 Few data samples.

DBI tools, such as Intel’s Pin [4], [13], Quick EMU-
lator (QEMU) [14], or Valgrind [15], can also extract 
subsemantic features. Khasawneh et al. [11] and [12] 
use pin to monitor the instructions executed on VMs in 
their experimental setup [10]. Although DBI can extract 
subsemantic features that are not available from HPCs, 
it introduces a substantial amount of performance 
overhead and is thus not suited to run in an always-on, 
online protection setting, which is the default use-case 
for current antimalware suites. We denote the draw-
backs of DBI as Drawback I in Table 1.

While DBI is infeasible in an online detection sys-
tem, other methods in sampling HPCs can also lead 
to inaccurate measurements. A plethora of previous 
works run the evaluated programs on VMs [3], [8], 
[10]–[12]. We chose to use bare-metal machine 
based on two observations. First, virtualizing HPCs 
is a challenge [16], as the measured virtualized HPC 
values are different from measured bare-metal HPC 
values [9]. Second, a regular user uses the bare-
metal machines instead of the virtualized machines. 
These observations motivate our experimental setup 
(“Experimental setup” section) to run all experiments 
on bare-metal systems. We label the use of VM in the 
experimental setups as Drawback II in Table 1.

Due to inaccurate HPC measurements [17], 
previous works [3], [5]–[7] choose to maximize 
the measuring granularity by using HPCs without 

time-multiplexing. Previous works [3], [5], [10]–
[12] have used empirical study to select 4 (Intel) 
or 6 (AMD) events for monitor, without providing 
a numerical analysis on how micro-architectural 
events are selected. In our experiments, we per-
form a principal component analysis (PCA)-based 
approach to select six micro-architectural events. 
After the selection of events, we use HPCs to track 
these six events, and transform the measured HPC 
values to examples in machine learning models, i.e., 
feature extraction. We then divide examples into 
training and testing data sets for machine learning 
models (training-and-testing split). Previous works 
[3], [5], [6], [8] have training-and-testing split based 
on the examples (TTA1 in the “Machine learning 
models” section) that the testing data set can have 

 
Table 1. Comparison between various previous works: rows are 
various works in HPC-based malware detection and columns are 
design choices. The alternative shaded and white background 
represents different categories of tool/setup/model in malware 
detection using HPCs. Red texts highlight drawbacks, and black 
texts express the suggested tool/setup/model from this work. 
Solid dots (•) indicate the use of that tool/setup/model (column) 
by the reference (row), and hollow diamonds (⋄) indicate the 
nonuse of that tool/setup/model by the reference. Star (★) is our 
work. Our work avoids the drawbacks discussed in the table, 
and quantitatively analyzes how these drawbacks lead to the 
conclusion that HPCs can reliably  detect hardware.
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the same examples produced by programs in train-
ing data set. In real-life, it is unlikely that the offline 
training data set can include all the malware that a 
user might encounter. We mark the use of data divi-
sion based on examples as Drawback III in Table 1.

In this work, we evaluate our model with 1000 
repetitions of ten-fold cross-validations. The cross-val-
idation examines the machine learning models with 
different input training-and-testing examples, which 
prevents machine learning models from overfitting.3 
We observe that there is no cross-validation in some 
of the previous works [3], [6], [7], while other works 
[8], [10]–[12] present insufficient cross-validation, 
i.e., not every example in the data set is validated, 
and none of these works reported the variations of the 
cross-validation results. We refer to no cross-validation 
or insufficient validations as Drawback IV in Table 1.

The prevalence of the above-mentioned draw-
backs motivates us to perform rigorous, quantitative, 
and reproducible analytics for HPC-based malware 
detection in Table 1. To perform a fair comparison 
with works in Table 1, we use the following machine 
learning models all used in previous works and com-
pare against the results from previous works: decision 
tree (DT), random forest (RF), K nearest neighbors 
(KNN), neural nets (NN), Naive Bayes, and AdaBoost.

A double decimal precision result, reported previ-
ously [3], should require at least 10,000 experiments, 
which is equivalent to more than 1000 programs in 
the tenfold cross-validations. As a result, we con-
sider the works with fewer than 1000 programs as 
over-generalization (training and testing with insuf-
ficient cross-validation), or over-interpretation of the 
results (comparisons beyond rounding errors) [3], 
[5]–[8]. This insufficient number of programs in the 
experiments is Drawback V in Table 1.

In addition to the drawbacks of the previous works, 
we found that there is no public access to their data 
or codes. To ease the reproducibility and advance the 
community’s efforts to assess the utility of HPC-based 
malware detection, we release all the code and data 
produced for this work under open-source license.

We present all the tools/setups/models in various 
previous works in Table 1. In the table, rows repre-
sent various works on HPC-based malware detec-
tion and columns are design choices of the tools/
setups/models. The alternative shaded and white 
background represents different categories of tool/

3 The model corresponds closely or exactly to a particular data and fails to predict 
other data reliably.

setup/model in malware detection using HPCs. Red 
text highlights drawbacks, and black text expresses 
the suggested tool/setup/model from this work. 
Solid dots (•) indicate the use of that tool/setup/
model (column) by the reference (row), and hol-
low diamonds (⋄) indicate the nonuse of that tool/
setup/-model by the reference. Star (★) is our work. 
The last column counts the drawbacks of the corre-
sponding work. Table 1 shows that there are at least 
two drawbacks in each work.

Experimental setup
In this section, we explain how we set up the 

experiments to gather values of HPCs from benign-
ware and malware. We ran our experiments on a 
cluster with 15 machines as worker nodes, and a 
master node to distribute jobs to measure and to col-
lect data from worker nodes. We dispatched our jobs 
to the worker nodes using the Rabbitmq message 
system [18]. We collected the data back from the 
worker nodes using a Samba [19] server on the mas-
ter node. We used Bindfs [20] to fuse the permission 
bits of Samba server storage folder to be writable, 
not modifiable, not readable, and not executable. 
Note that the Portable Operating System Interface 
(POSIX) permission structure cannot provide the 
above-mentioned permission bits. These permission 
bits allowed the worker nodes to record the meas-
ured HPC values, while these permission settings 
prevented malware from overwriting or deleting the 
measured HPC values. On the worker nodes, we ran 
our experiments in Windows 7 32-bit operating sys-
tem to be compatible with malware experiments in 
other works [10]–[12]. We applied fixed-frequency 
time-based HPC sampling as the previous works [3].

Malware and benignware
For forming the set of malware, we downloaded 

1000 malware from Virustotal [21], and performed a 
test run of those 1000 malware on worker nodes. After 
the test run, we identified 962 malware which could 
run for more than 1 min and used them in our mal-
ware experiments. According to AVClass tool [22], 
our data set consisted of 35 distinct malware families.

To collect benignware programs, we first installed 
all the packages and software from Futuremark [23], 
python performance module [24], ninite.com [25], 
and Npackd [26] on the worker nodes. After installa-
tion, we traversed all the files in “Startup Menu” and 
“C:\Program Files” folder to include all the unique 
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executable programs in our benignware data set. We 
avoided the complication of reinstallation by excluding 
all the executable program files with “uninstall” in their 
names. We performed a test run of all these programs, 
and selected 1382 benignware that could run for 1 min.

To avoid the classification bias, we matched the 
number of malware and benignware used in our 
experiments. Classification bias exists in classifica-
tion problems if the number of items in each class 
is different. For example, in a classification problem 
with two classes, A and B, if class A makes up 80% 
of the data set and class B makes up 20% of the data 
set, the baseline of precision in classifying A is 80%. 
Any designed machine learning models whose pre-
cision is lower than 80% are worse than the precision 
estimated with prior probability. In our work, we 
matched the number of benignware and malware; 
at the same time, we reported precision, recall, and 
F1-score to eliminate any bias.

Method for running experiments
We ran our benignware and malware experiments 

on identical hardware and operating system. However, 
there are a few differences between malware and 
benignware experiments. We explain the workflow of 
malware and benignware experiments using one dis-
patched job in Figure 1. The boxes are the steps that 
we follow, and the solid arrow means that the next 
step always happens. The dotted arrow means that the 
action happens under the conditions of the labels.

Malware experiment
We follow the steps in Figure 1 to run the experi-

ments. Before any malware experiments, we dropped 
all the requests to any network outside the master 
node, to ensure that malware does not affect other 
machines. At the beginning of each experiment, the 
worker node runs a clean copy of Windows and waits 
for a new job. Once the worker node receives the job 
from the master node, the sampling process runs the 
malware and records the measured HPC values. After 
running each malware experiment, we provide an 
identical, malware-free environment for the next mal-
ware experiment by reloading the Windows partition. 
To reload Windows image, we installed Debian 8 in 
the other partition of the hard drive on each worker 
node. Whenever a worker node boots into the Debian 
partition, the worker node copies a clean Windows 
image to the other partition. We modified the GNU 
GRand Unified Bootloader (GRUB) to make the 
machine boot into an alternate partition every time it 
reboots. After reloading the image, the system reboots 
into Windows again and runs the next job dispatched 
from the master node.

Benignware experiment
 Similar to the malware experiments, benignware 

experiments also follow the workflow in Figure 1. We 
connected the worker nodes to the outside network 
to ensure the benignware receives network responses. 
Programs, such as browsers, require network responses 

Figure 1. Our workflow of benignware/malware experiments: the worker 
node receives the dispatched jobs of experiments from the master node. 
The worker node spawns a sampling process, and then the sampling 
process runs the target process (benignware/malware). The dotted arrow  
(  →) means that the action does not always happen. If the application 
has a window for interaction, we attach a monkey tester to the window. 
The solid arrow (→) shows that actions always happen. We reset the 
environment after each experiment. The worker node kills any other 
processes spawned by the target process after each benignware 
experiment. At the end of each malware experiment, we reboot the machine 
into the Debian partition to reload a clean Windows image.
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to perform similarly as in a user environment. When 
the worker node receives a job from the master node, 
the sampling process starts the target process (benign-
ware program), and a monkey tester is attached to the 
target process if the target process has an interactive 
window. The monkey tester works similar to Android’s 
monkey tester [27], as it interacts with the target pro-
cess by periodically sending random keystroke, mouse 
clicks, and scrolling operations to the window of the 
target process. The behavior of the monkey tester 
simulates the interaction between a user and the pro-
grams. After  the sampling process finishes recording 
the measured HPC values, the system resets by killing 
any processes spawned during the experiments. Given 
that the benignware does not try to infect the Windows 
partition and perform malicious operations, we do not 
reload the Windows partition. After killing the spawned 
processes, the worker node receives the next job from 
the master node and starts the next experiment.

Machine learning models
In this section, we present how we apply machine 

learning models on measured HPC values. To avoid 
curse of dimensionality [28], we applied PCA to reduce 
the feature vector in our system. We ran each of the 
seven programs from Futuremark Benchmarks on 130 
micro-architectural events 32 times (130 × 32 × 7). From 
the results of these seven programs, we selected six 
events with two eigenvectors that represent the binned 
results as our selected features (events listed in Table 2), 
and generated the eigenvector matrix, denoted as 
𝑣192 × 12, from the PCA. Four of the selected events in 
our experiments align with other works that do not pro-
vide any analysis of their selection of events [3], [5], 
[10]–[12]. We monitored the six events from Table 2 
for our 962 benignware and 962 malware program 
samples. Due to page limit here, we do not provide 
our quantitative analysis to extract features from the 
measured HPC values of our selected micro-architec-
tural events. One can find the detailed analysis in our 
extended conference paper [9].

To have the same number of measurements on 
the same program samples, we run each benignware 
program and each malware program 32 times, and 
collect 61,568 (2 × 962 × 32)4 measured HPC values 
(1026 CPU hours). We sum the measured HPC values 
into 32 histogram bins for each of six events. Each 
example of histogram binned HPC values has 192 
(6 events  × 32 bins) features. By multiplying each 
example with the 𝑣 eigenvector matrix, we reduce 
the dimensions from 192 (6 events × 32 bins) to 12  
(6 events × 2 components). To this end, we convert 
the measured HPC values into histogram bins, and 
then transform them into traces.

Using the reduction of dimensions, the input 
matrix A30,784 × 192 (30,784 examples and 192 features) 
of benignware or malware is transformed to lower-di-
mensional space as Á 30,784 × 12 (30,784 examples and 
12 features). For training and testing of the machine 
learning models, we are going to separate the exam-
ples in matrix Á  into training and testing data sets 
(training-and-testing split). In our experiments, we 
consider two training-and-testing approaches (TTA) 
to divide our data set into training set and testing set. 
The two approaches for both benignware and mal-
ware experiments are as follows:

TTA1: � Divide 30,784 traces with a split of 90:10 ratio, 
resulting in 27,704 traces (90% of 30,784 
traces) as training data set and 3078 traces 
(10% of 30,784 traces) as testing data set.

TTA2: � Divide 962 programs with a split of 90:10 ratio, 
resulting in traces of 866 programs (90% of 
programs) as training data set and traces of 96 
programs (10% of programs) as testing data set.

In TTA1, the traces resulting from the same pro-
gram sample can appear in both training and testing 
data sets. As a result, such an approach corresponds 
to a highly optimistic and unrealistic scenario where 
the testing programs (benignware or malware) are 
available during training. Given that thousands of 
new malware appearing every day, it is impossible 
to include all the malware that user may encoun-
ter. Hence, TTA1 should not be applied in training 
machine learning models for malware detection.

The TTA2 corresponds to a realistic case where 
during training model, we do not have access 
to the exact programs, benign or malicious, that 
users run in the real life. To validate across our 

4 30,784 for benignware and 30,784 for malware.

 
Table 2. Description of the selected events [2].
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models, we perform tenfold cross-validations 1000 
times. For each tenfold cross-validation, we ran-
domly shuffle the data set to ensure difference 
across 1000 rounds. In each tenfold cross-valida-
tion, each example in the data set is used in train-
ing nine times and testing once. This ensures the 
identical times of training and testing for every sin-
gle example, compared to randomly shuffling the 
data and validating the machine learning models. 
With 1000 tenfold cross-validations, we can ensure 
that the standard deviations of detection rates 
increase no more with more rounds of validations.

In our experiments, we perform training and test-
ing with both TTA1 and TTA2. We compare the detec-
tion results in terms of precision, recall, F1-score, and 
area under curve (AUC) in both approaches. We use 
the implementations of machine learning models: DT, 
RF, NN, KNN, AdaBoost, and Naive Bayes. The seed 

for randomness in machine learning initialization 
and division of data comes from the random num-
ber generator “/dev/urandom.” During training, we 
set the parameters of the machine learning models 
as described below to prevent the machine learning 
models from underfitting due to default limitations 
in computational resources set by scikit-learn. The 
details related to the model configurations can be 
found in our extended conference paper [9].

Experimental results
In this section, we show the results of our experi-

ments to detect malware using HPCs and contrast them 
with the ones obtained in previous works. We report 
malware detection rates in terms of precision, recall, 
F1-score, and AUC in receiver  operating characteristic 
(ROC) plots. We use the positive label to denote mal-
ware and the negative label to denote benignware.

Figure 2. ROC curve of five models. (a) AUC of DT, NN, AdaBoost, RF, and KNN using 
(TTA1) is 89.65%, 84.41%, 80.57%, 91.84%, and 89.26%, respectively. (b) AUC of DT, NN, 
AdaBoost, RF, and KNN using (TTA2) is 87.36%, 66.43%, 77.96%, 89.94%, and 86.98%, 
respectively.

 
Table 3. Detection rates with TTA1 and TTA2: red means the value is less than 50% and bold means that the value is 
more than 90%.
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Malware detection
In this section, we report the detection rates (pre-

cision, recall, and F1-score) with two different data 
divisions, TTA1 and TTA2. TTA1 is the division of 
data according to the traces; while TTA2 is the divi-
sion of data according to the programs, as defined in 
the “Machine learning models” section. We train and 
test various machine learning models and determine 
the detection rates (precision, recall, and F1-score) 
with TTA1 and TTA2. Then we plot the ROC curves 
and compute the AUCs. Table 3 shows the precision, 
recall, F1-score, and the AUCs of ROC curves. Any 
results with a value larger than 90% and smaller than 
50% are set in bold and red, respectively. Figure 2 
shows the ROC curves and the AUCs of ROC for differ-
ent machine learning models.

The F1-scores of DT, RF, KNN, Naive Bayes, AdaBoost, 
and NN models are 80.22%, 81.29%, 80.22%, 9.903%, 
70.32%, and 35.66% using TTA2, compared to 83.39%, 
84.84%, 83.59%, 14.32%, 75.01%, and 78.75% using TTA1 
in Table 3. The detection rates are lower when using 
TTA1 as compared to the scenario using TTA1.

Figure 2b shows the ROC curves and the AUCs 
of ROC for different machine learning models. 
The AUCs of ROC of DT, RF, KNN, Naive Bayes, Ada-
Boost, and NN models are 87.36%, 89.94%, 86.98%, 
58.38% 77.96%, and 66.43% using TTA2 in Figure 2b, 
compared to 89.65%, 91.84%, 89.26%, 58.11%, 80.57%, 
and 84.41% using TTA1 in Figure 2a.

Demme et al. showed precision varying from 
25% ~ 100% [3] among different families of malware, 
without any recall values reported using TTA1. The 

median precision among all the families of malware 

is around 80%, with TTA1. Precision value of 80% 

corresponds to the False Discovery Rate5 of 20%. Con-

sider that a default Windows 7 installation has 1,323 

executable files, an AV system with a 20% false dis-

covery rate would flag 264 of these files incorrectly as 

malware—clearly such a detection system would not 

be practical. In real-life cases, the malware detection 

rates of HPC-based malware detection would be those 

in columns of TTA2 of Table 3 and Figure 2b. These 

results show that high detection rates and robustness 

in detection are over-estimated by some prior works 

due to division of data during training. In the next 

subsection, we show that the results presented in this 

subsection are not an exception.

Cross-validation
Cross-validation is a common practice in machine 

learning for avoiding the overfitting of machine 

learning models. Cross-validation is used to vali-

date whether the detection rates are consistent with 

repeated, different training and testing splits [28]. If 

the detection rates fluctuate during cross-validation, 

we can infer that the machine learning models are 

not trained properly. We observe that previous works 

either have no cross-validation or report no results 

from cross-validations. The lack of proper cross-vali-

dation motivates us to further evaluate the machine 

learning models using cross-validation.

5 False Discovery Rate (F+ /(F+ + T+).

Figure 3. Box plots of distributions of tenfold cross-validation experiments using (a) 
TTA1 and (b) TTA2. Red diamonds are means, and blue box corresponds to cross-
validation experiment results that lie between 25 and 75 percentiles. The whiskers 
(the short, horizontal lines outside the blue box) represent confidence interval 
equivalent to μ± 3 σ of a Gaussian distribution. The blue dots are outliers that are 
outside the μ± 3 σ regime. On the X-axis, Prec is precision, Rec is recall, and F1 is F1 
score. AUC is AUC in ROC. These tenfold cross-validation experiments show that we 
cannot achieve 100% malware detection accuracy.
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In DT, RF, KNN, NN, AdaBoost, Naive Bayes 
models, the mean of distributions of F1-scores using 
TTA2 are 82.13%, 83.61%, 82.2%, 73.69%, 73.43%, 
and 12.21%, compared to 82.17%, 83.75%, 82.28%, 
74%, 72.27%, and 12.15% using TTA1, respectively. 
In DT, RF, KNN, NN, Ad aBoost, and Naive Bayes 
models, the mean of distributions of F1-scores using 
TTA2 are 2.145%, 2.336%, 2.248%, 14.88%, 3.29%, 
and 2.611%, compared to 1.416%, 1.326%, 1.388%, 
13.2%, 2.365%, and 2.392% using TTA1, respectively. 
Comparing the results using TTA1 and TTA2, the 
standard deviations of DT, RF, KNN, NN, AdaBoost, 
and Naive Bayes models increased by 1.515×, 1.762×, 
1.62×, 1.127×, 1.391×, and 1.092×, respectively. The 
overall detection rates using TTA2 have much 
higher variations compared to ones using TTA1.

As previous works did not report standard devi-
ations of their cross-validations, we cannot com-
pare these results. The difference between standard 
deviations in Figure 3a and b is due to the unrealis-
tic assumption that the programs in the training set 
appear in the testing data set. Figure 3b presents the 
results where the malicious program is not included 
in the training data set. In conclusion, the mean of 
the distribution using TTA2 is lower than that using 
TTA1, while the standard deviation of distribution 
using TTA2 is higher than that using TTA1. To have 
a full evaluation on the machine learning models, 
it is imperative to use TTA2 and exhibit a distribu-
tion of precision, recall, F1-score, and AUC of ROC 
curves. The HPC measurements can be helpful for 
other security applications, such as the detection of 
low-level hardware attack, but the results from TTA2 
clearly show that using the results from TTA1 can 
be misleading and prematurely draw the conclusion 
using HPC measurements and machine learning to 
differentiate between benignware and malware.

Ransomware
In previous sections, the machine learning mod-

els are trained over the traces of HPCs to discrimi-
nate malware from benignware. Here, we discuss 
an example where we build a malware embedded 
in benignware and then show that this malware can 
evade HPC-based malware detection.

Ransomware is a malware that maliciously 
encrypts files and extorts users in exchange for 
the decryption keys [29]. We craft the malware by 
simply infusing Notepad++ with a ransomware. We 
modify the constructor of Notepad++ to iterate over 

a hardcoded directory, encrypt each file with a hard-
coded password and a session key, and dump the 
content to another file in the same directory, with 
5-s delay between each encryption. We measure 
the values of HPCs for modified Notepad++ in our 
experimental setup (“Experimental setup” section). 
We randomly select 90% of the benignware and 
malware samples as the training set, and we test on 
Notepad++ and modified Notepad++. The precision 
of DT, Naive Bayes, NN, AdaBoost, RF and KNN is 
0%, 0%, 0%, 50.85%, 0%, and 0%, respectively.

These results are not surprising, as machine 
learning models tolerate the noise and jitters during 
training on sampled HPCs, to extract the malicious 
behavior in the programs. In our malware example, 
the changes of HPC values caused by ransomware 
are overshadowed in the sampled values of HPCs 
when running Notepad++. The variation tolerance 
results in classifying the modified Notepad++ as 
benignware.

Discussion
For our experiments, we run Windows 7 32-bit oper-

ating system on AMD 15h family Bulldozer micro-ar-
chitecture machine. Weaver  et al. [30] performed 
extensive studies investigating the determinism of 
the measured HPC values in various micro-architec-
tures. By comparing the HPC values across different 
micro-architectures, Weaver et al. showed that the 
HPCs in various architectures have similar levels of 
variations during sampling. Hence, our conclusions 
from Bulldozer micro-architecture are applicable to 
other micro-architectures. In our benignware and 
malware experiments, we chose to allow the access 
to the network for benignware and prevent malware 
from accessing network. This design choice does not 
affect the results of HPC measurements, because both 
benignware and malware function properly during 
experiments. For the reduction of dimensions, many 
other approaches can serve the same purpose as PCA. 
We used PCA in our designs as PCA is one of the most 
popular methods for reduction of dimensions.

The research regarding the use of HPC measure-
ments for malware detection as well as debugging 
and profiling tools has grown rapidly since our orig-
inal publication [9]. Similar to our research, multiple 
researchers studied the limits of HPC measurements 
[31]–[34] in line with the spirit of our research. 
Among these published works, Das et al. [31] evalu-
ated the ways how 41 prior works used HPC values 
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and showed how various challenges can undermine 
the effectiveness of security applications. Basu et al. 
[32] developed a framework to determine the proba-
bility of malware detection systems while monitoring 
HPC values at a predetermined interval. Brasser et al. 
[33] discussed multiple hardware-assisted security 
solutions and their respective limitations used by third 
party developers. Dinakarrao et al. [34] introduced 
adversarial attacks on HPC-based malware detection 
systems. All these research works essentially reiter-
ate our cautionary tales of using HPC for malware 
detection. We also observed that researchers have 
acknowledged these shortcomings and have chosen 
to improve their respective analysis by adapting their 
systems to tackle the limits of HPC measurements. 
Researchers overcame the drawbacks we discussed 
in the “Related work and motivation” section, by uti-
lizing bare-metal environments [35]–[38], implement-
ing customized hardware [39]–[41] instead of HPCs, 
proper cross-validation [38], using ensemble models 
[42], and using other than HPC values to detect mali-
cious behavior [43]. Wang et al. [35] and [36] pro-
posed a customized tool to overcome the problem of 
contaminating the HPC values from other processes. 
Basu et al. [43] developed embedded trace buffer 
(ETB)-based malware detector to identify malicious 
behaviors. Ramos et al. [44] proposed a post-process-
ing method to mitigate the effect of HPC drawbacks 
for modeling parallel applications. All these efforts in 
the security community make us believe that our work 
has had positive and profound influence on the secu-
rity research in the last couple of years. We hoped that 
our work will guide future work in the area of using 
HPCs and machine learning for malware detection in 
the right direction of research.

HPCs are hardware units that are designed to 
count low-level, micro-architectural events. Many works 
have investigated malware detection using HPC pro-
files. However, we believe that there is no causation 
between low-level micro-architectural events and high-
level software behavior. The strong positive results in the 
previous works are due to a series of optimistic assump-
tions and unrealistic experimental setups. In this work, 
we rigorously evaluate the idea of malware detection 
using HPCs through realistic assumptions and experi-
mental setups. We observe the low fidelity in HPC-based 
malware detection when we increase number of pro-
grams by a factor of 2–3 and the experiment numbers 
in cross-validation to  three orders of magnitude higher 

than previous works. Our best result shows an F1-score 
of 80.78%. The corresponding false discovery rate (F+ /
(F+ + T+)) is 15%. This means that among 1323 execut-
able files in the Windows operating system files, 198 
files will be flagged as malware. We also demonstrate 
the infeasibility in HPC-based malware detection with 
Notepad++ infused with a ransomware, which can-
not be detected in our HPC-based malware detection 
system. By identifying the shortcomings in the prior 
approaches of using HPCs and machine learning for 
malware detection, we have guided the community 
in the right direction. Publications on malware detec-
tion using HPCs and ML after our original paper have 
shown that our paper has had positive and profound 
influence on security research. We hope that our efforts 
will continue to help the research community in the 
coming years.� 
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