
AnimateDead: Debloating Web Applications Using Concolic Execution

Babak Amin Azad
Stony Brook University

baminazad@cs.stonybrook.edu

Rasoul Jahanshahi
Boston University
rasoulj@bu.edu

Chris Tsoukaladelis
Stony Brook University

ctsoukaladel@cs.stonybrook.edu

Manuel Egele
Boston University
megele@bu.edu

Nick Nikiforakis
Stony Brook University

nick@cs.stonybrook.edu

Abstract

Year over year, modern web applications evolve to cater
to the needs of many users and support various runtime
environments. The ever-growing need to appeal to as many
users as possible and the reliance on third-party dependencies
comes at the price of code-bloat. Previous research has
highlighted the benefits of debloating mechanisms which
produce smaller applications, customized to the real needs of
their users with significant security improvements.

Recognizing the limitations of dynamic and static debloat-
ing schemes (including high runtime overhead and lack of
accuracy), we propose a hybrid approach based on concolic
execution. We developed AnimateDead, a PHP emulator
capable of concolic execution and designed a distributed
analysis framework around it.

By using the readily available web server logs as application
entry points, we perform concolic reachability analysis and ex-
tract the code-coverage of target web applications in an abstract
environment, which allows our results to generalize for all user
inputs and database states. We demonstrate that debloating via
concolic execution improves the security of web applications
by shrinking the size of their code by an average of 47% and
reducing critical API calls by 55%, while removing 35-65% of
vulnerabilities for historic CVEs. We show that via concolic
execution, we can debloat web applications with comparable
security improvements of dynamic debloating schemes
without suffering from the runtime overhead, and the need for
a training phase. Moreover, AnimateDead-debloated web ap-
plications reduce the likelihood of breakage by allowing users
to perform all actions reachable from the analyzed entry points.

1 Introduction

Web applications and web APIs are the main interface of
users with online services. WordPress, the blogging platform
written in PHP, single-handedly accounts for over 60 million
deployments [5] and 43% of all websites [43]. Therefore, pro-
tecting these online platforms against harm by proactively iden-

tifying security vulnerabilities and integrating attack surface
reduction mechanisms offers protection to a large user base.

Modern software aims to be flexible by offering support
for various features such as authentication APIs (e.g., built-in
authentication and oauth), as well as database adapters (e.g.,
MySQL vs MongoDB). This added flexibility through first
party modules and third party dependencies comes at the
price of code bloat. Code bloat refers to parts of the source
code in an application that serve no purpose for their users.
In the realm of binary applications, researchers focused on
identification and removal of unnecessary modules which are
often used in code-reuse attacks [14, 37, 39].

Conversely, code-reuse attacks in web applications only
account for a subset of niche vulnerabilities (i.e., object
injection attacks). In reality, common web application vul-
nerabilities such as XSS and SQL injection, and those rooted
in misconfigurations, reside in reachable parts of the code.
At the same time, vulnerable functions in web applications
often reside in features that are unnecessary for the majority
of the users of the applications [4]. Therefore, web application
debloating mechanisms have historically focused on removing
live code that is deemed unused under specific workloads.

For instance, Amin Azad et al. designed Less is More (LIM),
a dynamic debloating system for web applications [4]. By run-
ning a set of user-mimicking automated tests during the train-
ing phase, LIM collects dynamic code-coverage information
and removes unused files and functions from web applications.

Due to the prevalence of dynamic code constructs in web
development languages (e.g., PHP, Node.js and Python),
end-to-end static analysis is so challenging such that even the
state-of-the-art static analysis tools reach an unsupported code
structure after analyzing 20 lines of code on average [2]. While
this limitation is alleviated by localized and context-specific
analysis in the realm of vulnerability discovery, debloating
requires sound resolution for dynamic code structures (e.g.,
dynamic file inclusion, functions calls, etc.). Failure to resolve
dynamic code structures results in removal of necessary
features, and therefore, can lead to breakage when interacting
with the debloated web applications.

Recognizing this gap between the scalability of dynamic
debloating due to runtime instrumentation overhead and
accuracy of static analysis due to over-generalizations, we
devised a hybrid approach using concolic execution to perform
a reachability analysis on target web applications, which we
later use to debloat them. In this approach, we mark specific
sources of information as symbolic (e.g., user controlled
values) and the analysis generalizes for all possible values of
these parameters. The concolic aspect of this analysis consists
of transitions of the execution from parameters with symbolic
values to concrete values when required.

We developed AnimateDead, a distributed analysis system
which contains a PHP emulator capable of concolic execution.
The main contribution of our concolic execution system is its
ability to perform end-to-end program analysis. Our generic
concolic execution engine can be employed for vulnerability
assessment, code analysis, and as we discuss in this paper, for
software debloating.

In this paper, we focused on using AnimateDead to perform
a module reachability analysis for target web applications
given their entry points, and use this information to debloat
unused modules. This approach benefits from the abstractions
of user-provided parameters and an abstract database and net-
work, which results in debloated web applications that retain
all the code responsible for the exercised entry points from the
logs. This is in contrast with dynamic debloating schemes that
suffer from lack of generalizability, since they only retain the
exact code paths that were exercised during training, which is
biased towards successful actions and overlooks less common
yet critical features (e.g., error handlers).

We show that AnimateDead is capable of analyzing
popular PHP applications (i.e., phpMyAdmin, WordPress,
HotCRP, and FluxBB). We use the resulting code-coverage
of our analysis to debloat web applications and show that
by using concolic execution, we can produce debloated
web applications that are 25-69% smaller than their original
versions, contain 55% fewer calls to critical PHP APIs on
average, and are exposed to 35-65% fewer historic CVEs in
our dataset, all while maintaining their required functionality.
In this paper, we make the following contributions:

• We develop and test a feature-complete concolic PHP
emulator that supports PHP 5.x and PHP 7.x instructions
and is capable of analyzing web applications with abstract
inputs and environments.

• We use the existing web server log files to extract web
application entry points with virtually zero extra overhead,
and incorporate them in AnimateDead to perform a
reachability analysis.

• We debloat popular PHP applications and demonstrate the
performance of AnimateDead in improving crucial security
metrics such as reducing the size of target web applications
and removing historic CVEs. We show that the performance
of concolic execution is comparable to dynamic debloating

with the added benefits such as offline analysis (no runtime
instrumentation overhead) and generalizable debloating
(retaining all accessible functions from each entry point).

Finally, to motivate further research in concolic execution
and debloating of web applications, we will be releasing our
software artifacts at https://debloating.com.

2 Background
Program analysis historically incorporates static analysis,

dynamic analysis, as well as a hybrid of both. While static
analysis systems are easier to run at scale, building static
analysis tools that support all features within a language is
difficult, and even unnecessary in many use cases. As a result,
it is a common practice to build context-specific static analysis
tools by limiting the scope of analysis (e.g., intra-procedural
dataflow analysis).

One of the main limitations of static analysis when it comes
to debloating is its inability to perform end-to-end program
analysis due to the presence of dynamic code structures. An
analysis of popular PHP static analysis tools showed that
even the state-of-the-art tools fail to analyze more than 20
consecutive instructions before encountering an unsupported
code structure [2]. The failure to resolve the dynamic code
structures (e.g., file inclusions, dynamic function calls, etc.)
results in misjudging the reachability of the required modules.
Removing such modules causes false positives. In other words,
the debloated web application will miss files and functions
that are required by the users resulting in breakage.

On the other hand, dynamic debloating schemes such
as Less is More (LIM) rely on an extensive training phase
during which all the desired features need to be exercised.
The slightest oversight in the exercised features will result in
removal of features that are necessary. The authors of LIM
build synthetic test cases to model the user behavior. An
alternative is to perform the training phase on real users by
instrumenting live web servers to collect the information
about used modules. The downside of this approach is the
high performance overhead of existing code instrumentation
tools such as XDebug, which reportedly, can increase the page
load time of web applications by up to 500% [4].

2.1 Symbolic Execution
Symbolic execution is an offline program analysis technique

that explores the reachability of different code branches
by propagating symbolic values. For instance, for web
applications, we mark user-provided values as symbolic. The
symbolic placeholders for the user controlled variables encom-
pass all the possible values for these parameters. Throughout
the analysis, we collect a set of constraints based on conditional
operations and limit the set of feasible values for each symbolic
variable. Upon encountering a branch with symbolic condition,
we fork the execution and explore all feasible branches.

https://debloating.com

1 $user_name = $_POST['user'];
2 if (!isset($username)) {
3 $redirect_to = login_url('Username not provided.');
4 }
5 else {
6 $user = get_user_by_login($user_name);
7 if (!$user && strpos($user_name, '@')) {
8 $user = get_user_by_email($user_name);
9 }

10 if ($user) {
11 $redirect_to = get_dashboard_url($user->ID);
12 }
13 else {
14 $redirect_to = login_url('Invalid username.');
15 }
16 }
17 wp_safe_redirect($redirect_to);
18 exit();

Listing 1: WordPress login routine. Successful login attempt requires
a valid username or email address (line 6 and 8). Conversely, not
providing the username or providing a non-existing username results
in failed login (line 3 and 14).

Listing 1 shows a consice version of the login page of
WordPress. By running the Selenium scripts from the Less is
More dataset, which automate the interactions with common
functions of WordPress, we would trigger the successful
login via username (first column in Figure 1). In contrast,
symbolic execution explores other paths within the same code
leading to the inclusion of functions that handle failed login
attempts (line 3, and 14) and login with email address (line
8) as depicted in Figure 1.

Concolic execution: Concolic execution combines concrete
and symbolic execution. In this scheme, we replace symbolic
variables with concrete counterparts depending on the use
case. For instance, the transition from symbolic values can
be used to generate concrete test cases that explore specific
parts of an application [41].

3 System Design

AnimateDead incorporates a PHP emulator which is
capable of emulating the execution of PHP code in an
environment with abstract entities (e.g., user-provided values,
database, network, etc.). Figure 2 shows an overview of our
system. We start by discussing the process to collect the
web application entry points. Next, we review the design of
our emulator and its distributed analysis scheme. Then we
go over the challenges of PHP symbolic execution such as
state space explosion and discuss our approach to addressing
them. Finally, we use the code-coverage produced by concolic
execution of target web applications to perform a module
reachability analysis and debloat unused files and functions.

1
2
6
7

10
11
17
18

Dynamic Concolic Execution

1
2
3

17
18

1
2
6
7
8

10
11
17
18

Failed
Login

By
Email

By
Username

1
2
6
7

10
11
17
18

Failed
Login

1
2
6
7
8

10
14
17
18

By Username

Symbolic Parameter Symbolic Condition

Figure 1: Dynamic code-coverage of a successful login attempt vs.
symbolic execution of the same entry point. In this sample, user-
provided parameters (e.g.,$_POST['user']) and database opera-
tions (e.g.,get_user_by()) are symbolic. Arrows mark the explo-
ration of new feasible branches as determined by the symbolic engine.

3.1 Application Entry Points

The first step of our analysis consists of collection and
processing of web application entry points. By using the
existing logging mechanism of web servers, AnimateDead
is able to analyze web applications with no extra runtime
performance overhead. At the end of this stage (Step 1 in
Figure 2), we provide the list of PHP scripts and their concrete
(e.g., GET parameters) and symbolic parameters (e.g., POST
parameters, file uploads, cookies, etc.) to AnimateDead’s PHP
emulators for concolic execution.

Analyzing Web Server Log Files

After collecting the web server logs for the target web
application, AnimateDead merges and de-duplicates the
entries. The level of information provided for each entry point
(i.e., concrete inputs) has a direct effect on the time of analysis.
By shrinking the state space of the analysis via providing more
detailed logs, we can reduce the total number of paths and
reduce the overall analysis time.

To that end, we experimented with the default fields of
information in web server logs and extended logs. To generate
extended logs, we use the web server’s configuration options
to include high level information such as the name (but not
the value) of cookies, POST parameters and the file uploads.
The extra information included in the extended logs limits
the concolic execution to only explore paths that rely on the
parameters that we have seen previously in the logs. Extended
logs are particularly helpful for larger web applications such
as WordPress and phpMyAdmin where a single entry point
is responsible for a diverse list of features depending on the
provided parameters. For instance, phpMyAdmin uses the
same index.php entry point combined with the target GET
parameter to generate the content of the requested pages.
Providing this parameter to AnimateDead allows it to only
explore code-paths for the desired feature.

Orchestrator(s) Worker(s)

Web Server
Logs

Code-coverage

Runtime State
Instrumented
Web Server

Resolved Entry Points

Debloating
Engine

Web
Application

Debloated
Web App

Code
coverage

Code-coverage
Queue stats

New Paths

Reanimation Logs

Emulator

Process
Web Server Logs

Orchestrate the
Path Exploration

Distributed
Queue of Tasks

PHP
Emulators

Debloating
Engine

Figure 2: Overview of Distributed AnimateDead. In Stage 1, AnimateDead analyzes the web server log files to generate unique web application
entry points. Orchestrator nodes and workers (Stage 2 and 4) interact over message queues (Stage 3) to identify which paths should be explored
by the emulators, AnimateDead provides a realtime reporting panel that plots the size of the queue and newly identified code-coverage over
time. Finally, in Stage 5, the overall code-coverage from concolic execution is incorporated for reachability analysis and unreachable modules
from the entry points are debloated. Orchestrators and worker nodes run in container environments and can be scaled up on demand.

Analyzing Log Files With URL Rewriting
PHP applications commonly incorporate URL rewriting to

provide a user-friendly experience to their visitors and improve
the search engine optimization of their website. Through this
step, the original requested URIs are translated to one of the
web application entry points either by the web server (e.g.,
Apache rewrite module and .htaccess files) or an internal
module within the web application (i.e., custom routing
modules). In the latter case, our PHP emulator resolves this
mapping automatically without requiring any further action.

For web applications using the web server’s rewriting
feature, the web server transforms the URIs before passing
them to the web application. For such web applications,
AnimateDead dynamically replays the requests towards its
integrated instrumented web server hosting a copy of target
web applications and returns the translated entry points.

AnimateDead includes an instrumented Apache web server
in its docker environment that hooks into every request and
returns the translated URIs. By intercepting the incoming
requests, AnimateDead takes control of the execution and
returns the resolved entry point after the web server applies
the rewriting rules.

3.2 PHP Emulator
Concolic execution requires a modified PHP execution

environment that can operate based on symbolic parameters.
We developed a PHP emulator for AnimateDead that closely
represents the PHP engine itself and operates based on the
source code of PHP scripts. The analysis for each PHP
application starts by parsing each entry point (e.g., index.php)
into it’s respective Abstract Syntax Tree (AST) and traversing
it. Through this traversal, certain PHP instructions will expand
the AST during emulation. File inclusions, class instantiations,
function calls and dynamic code generation routines (e.g.,
eval) can add new nodes to the AST.

AnimateDead’s emulator executes the PHP instructions of
the program under analysis and resolves the dynamic code
structures to generate a complete AST. In practice, resolution
of dynamic code structures requires the precise implementa-
tion of every language construct and modeling its effects on the
state of the emulator (i.e., active namespaces, current object
pointers, variable scopes, function calls and return values, etc.).

In AnimateDead, beyond modeling the 188 standard PHP
opcodes [35], we model the built-in PHP functions that
affect the state of the emulator (e.g., loading new classes and
defining new constants). For the majority of the self-contained
PHP built-in functions that do not change the state of the
emulator or manipulate the flow of execution such as date,
print, explode, file_exists, etc. we first resolve their
arguments and then, invoke the original implementation
in the PHP engine. For functions that rely on the state of
the emulator (e.g., class_exists, define (defines a new
constant), reflection APIs (rely on autoloader and loaded
classes and can invoke new code), eval, etc.), we provide our
own implementation in the emulator. After a careful review
of PHP documents and the list of built-in functions used in
popular PHP applications, we identified 92 functions that
required a custom implementation in our emulator.

AnimateDead’s PHP emulator is written in PHP 7.4 and is
capable of emulating PHP 5.x and 7.x. The emulator imports all
the environment variables and predefined constants (e.g., PHP
version, default include path, etc.) from an existing web server
environment. Moreover, analysts using AnimateDead can over-
ride any desired API through the provided configuration file.

We built our PHP emulator by extending the emulator
developed by Naderi et al. called MalMax, which the authors
combined with counterfactual execution to uncover the hidden
behavior of obfuscated PHP malware [31]. MalMax was
originally built for PHP 5, and did not support symbolic
execution. We spent over 13 person/months developing and

testing our PHP emulator that supports the PHP language
features used by popular PHP applications.

One of our main contributions to MalMax’s emulator is
the distributed symbolic execution engine. Moreover, we
added support for integral features of the PHP language
to our emulator including the new PHP 7 instructions,
object orientation features (e.g., inheritance, interfaces, etc.),
closures, anonymous functions, namespaces, and reflection.
Through this effort, we have doubled the code size of the
original PHP emulator of MalMax, and the final AnimateDead
(i.e., emulator plus distributed execution environment) is more
than five times the size of the initial emulator.

3.3 Handling Symbolic Operations and Logic
AnimateDead uses a configurable list of symbolic inputs

(i.e., user-provided variables and system APIs). In this
section, we explain the design details of our concolic emulator,
including the type tracking, value set analysis, and the
transition from symbolic to concrete values.

3.3.1 Concolic Execution

One of the main requirements of a symbolic execution
engine is to continue the program’s execution with an abstract
state of variables. At a high level, when dealing with symbolic
program variables, PHP instructions such as conditionals
would need to explore all the feasible branches when provided
with a symbolic condition. Similarly, assignment instructions
propagate the symbolic values upon their execution.

Our emulator incorporates type tracking to extract the type of
symbolic variables even when the actual value is unknown. The
variable type information is then used to skip the exploration
of unsatisfiable branches. We model built-in functions that rely
on variable types (e.g., is_int) in the emulator for an accurate
execution. Similarly, we include our own implementation for
instructions that dynamically add new nodes to the AST (i.e.,
dynamic file inclusion, dynamic function calls, and dynamic
object instantiation). More specifically, AnimateDead uses the
information available through the execution environment to
transform the symbolic variables to their concolic equivalents.
We will discuss this in more detail later in this section.

An example of this transition is reflected in file export
format selection in phpMyAdmin which includes options
such as SQL, CSV, Zip, etc. Given a symbolic export type
in the form of user-controlled variable, AnimateDead cannot
statically determine which of the underlying export plugins
should be loaded. The Plugin_loader module within
phpMyAdmin performs a series of string operations to sanitize
the user input and to transform the selected export format
to one of the available plugins on the file-system under
the libraries/plugins/export/ directory. As a result,
by following the conditions enforced on the export format
variable through execution (e.g., fixed prefix, file extension,
and allow-list membership checks), AnimateDead’s emulator

can accurately identify the list of available export plugins in ph-
pMyAdmin. Then, the emulator will explore the execution of
the underlying entry point using each individual export plugin.

Type tracking and value set analysis: We have augmented
our PHP emulator to track the type of symbolic variables
based on known return type of PHP instructions and APIs.
For instance, casting a symbolic variable to a specific type
or invoking built-in functions with known return types (e.g.,
substr→ string, or isset→ boolean) will determine the
resulting type of that variable. Unfortunately the information
about the type of return values from PHP built-in functions
is not available through the PHP reflection API. Instead, we
extracted this information from the PHP documentation and
incorporated it in AnimateDead.

Moreover, we model regex and string operations (e.g.,
strncmp('pma', $cookie_name, 3) = 0) as part of our
emulator. By doing so, for path conditions that rely on these
operations, we track the constraints applied to the underlying
variables. This way, AnimateDead can determine non-feasible
conditions and refrain from exploring them.

Lastly, we perform a scope-specific value set analy-
sis. Web applications commonly perform allow-list and
block-list checks to sanitize user-provided parameters
and database sourced values. For instance, phpMyAd-
min performs the following allow-list check to sanitize
and validate the user-provided viewing mode in the re-
porting tabs: in_array($_REQUEST['viewing_mode'],
array('server', 'db', 'table'). When exploring
paths that satisfy this symbolic condition, AnimateDead
limits the possible values of the symbolic 'viewing_mode'
parameter to the values in the corresponding array (i.e.,
'server', 'db', or 'table'). This feature helps reduce the
total number of explored branches and also aids the concolic
engine when transitioning from symbolic values to their
concrete counterparts.

Resolving regular expressions: AnimateDead resolves
regular expressions by generating a concrete list of candidates
and looking for elements from the list that match the regex
pattern. This concrete list is produced via variable values in the
code, local filesystem, and the list of defined classes and func-
tions. In all these cases, AnimateDead relies on PHP’s regex
API (preg_match) to find the matching candidate values.

Whenever a symbolic value is used to include a PHP file
(e.g., include statement, or via the autoloader), AnimateDead
uses the underlying constraints in the form of regular expres-
sions and looks for matching candidates on the file system. In
this example, the regex matching results in a list of concrete file
names to be included. Lastly, for symbolic class instantiations
and function calls, AnimateDead performs regex matching
on the list of defined classes and functions inside the emulator.

Transition from symbolic to concrete values: The main
benefit of symbolic execution is that each symbolic value
represents all the possible values for that variable. As a result,
it is beneficial to continue the execution with symbolic values.
However, there exists scenarios in which AnimateDead cannot
continue executing the target application symbolically.

Whenever our emulator reaches a PHP instruction that
can change the structure of the AST by adding new files
or calling new functions, AnimateDead must replace the
symbolic inputs of that API with its concrete counterparts.
Examples of the APIs that add new nodes to the AST are
file inclusion APIs (e.g., include $var), class instantiations
and static function calls that trigger the PHP autoloader
(e.g., new $var or $var::static_function()), reflection
APIs, variable function calls ($var()), APIs accepting
a callback (e.g., call_user_func($callback, $args)
and preg_replace_callback(/regex/, $callback,
$subject)).

In any of the aforementioned cases, AnimateDead will rely
on the information available from the execution environment to
transition to concrete values. Most commonly, this step would
consist of using the type information to determine the class type
(for object instantiation), mapping the string operations to the
file system or using the information from the value set analysis
to determine the candidate values for each symbolic variable.

Whenever the emulator faces more than one concrete option
for a symbolic variable, it will create a new task including the
code-coverage of the current execution and information about
the concrete values for the target variable and add this task to
the queue for future concolic execution (bottom queue in Step
3 in Figure 2). Orchestrators process the code-coverage of each
execution. Discovery of new code-coverage increases the prior-
ity of descendant paths of the current execution. AnimateDead
provides a configuration option to limit the total number of
concrete values added from each point in the web application.

Unbound symbolic variables: AnimateDead’s symbolic
engine focuses on generating the correct code coverage used
for debloating. As a result, we prefer over-approximation in un-
certain situations. Concretely, for unbound symbolic variables
for which AnimateDead cannot evaluate the outcome of a con-
ditional operation, we explore all branches and as a result, in-
clude the code coverage of all of them in the final report. Large
numbers of unbound symbolic variables can lead to a longer
analysis time since it increases the total number of branches
that need to be explored. Unbound variables used in dynamic
file inclusions or function calls, in the extreme cases where
AnimateDead has no information about the constraints or the
structure of the symbolic variable, we cannot rely on over ap-
proximation as we would have to explore the inclusion of every
PHP file and invocation of every PHP function in the code-base
which defeats the purpose of debloating. While in theory such
code structures exist, in practice, we did not observe any of
them. An unbound symbolic file inclusion or function call may

be rooted in non-sanitized user controlled variables or param-
eters coming from the database. In both scenarios, this could
signal the presence of a first or second order injection style
vulnerability and requires further attention. We incorporated
safety checks within AnimateDead to prevent the inclusion of
an uncontrollably large number files or functions when the sym-
bolic parameter is unbound and instead, we alert the analysts.

3.3.2 Emulation Replay

Throughout the analysis of PHP scripts, for every branch
with symbolic condition, AnimateDead explores all feasible
paths. Similarly, when transitioning from symbolic to concrete
values, multiple execution states are added to the queue. Upon
facing more than one path to explore, the emulator produces
a log called “reanimation log” which marks the currently
explored branches and lists the next symbolic branch that
should be explored. Using the reanimation logs, AnimateDead
instructs the emulator in worker nodes to replay the same
execution and explore new branches within the code (top
queue in Step 3 of Figure 2).

3.3.3 Sources of Symbolic Information

In our analysis, we marked HTTP requests and their
parameters, database APIs, and network APIs as symbolic.
Therefore, the result of the analysis is a generalization over all
the possible values for the parameters present in the web server
logs for the application under analysis. In our study we opted
to run our analyses with an abstract application database. This
way, our analysis generalizes for all deployments of the web
applications with any state of the database (i.e., successful and
failed connections, empty and non-empty tables, etc.). Lastly,
we mark network request responses as symbolic to account
for successful and failed requests (e.g., checking for updates).

For HTTP requests, we instruct AnimateDead that HTTP
Cookies, Session variables, and File upload and POST
parameters (For POST requests) are symbolic. This is based
on the intuition that web servers will log HTTP GET request
parameters and their values by default (i.e., URL query
strings) but the value of cookies, session variables, and POST
parameters are not included in neither default nor extended
logs as they can include sensitive information. For database
abstraction, we referred to the PHP language documents
to extract the list of database APIs for popular database
backends [34] and marked them as sources of symbolic
information. Lastly, we marked PHP cURL APIs as symbolic
to abstract the effect of network requests.

Handling file uploads and file modifications/deletions:
PHP engine stores information about the uploaded files in
the $_FILES super global variable. Each entry in this array
corresponds to one of the user-uploaded files and contains in-
formation such as name, mime-type, temporary name (i.e., tem-

porary file storage under /tmp/php/ directory by default), error
(error code or 0 if successful), and size (upload size in bytes).

For entry points with file uploads, AnimateDead populates
this super global variable with symbolic entries including
successful and failed file uploads. Moreover, file operation
APIs (e.g., fopen, file_get_contents, etc.) are modeled
inside our emulator to handle symbolic file uploads. That is,
opening a symbolic file will return a file with symbolic content.
All web applications in our dataset perform file upload
operations and our tests invoke the underlying entry points.

When running multiple concolic execution workers in
parallel, we isolate the changes they make to the file system
to prevent side effects on other executions. AnimateDead in-
tercepts the APIs used to modify (e.g., file_put_contents)
or remove files (e.g., unlink) and changes made through
these APIs are only visible to the currently running execution.
Therefore, file system modifications from one worker do not
affect future executions and other workers.

3.4 Distributed Concolic Execution
Throughout the analysis of target applications, Animat-

eDead will explore millions of different paths. To scale up the
analysis, we designed a distributed environment with various
worker processes running our PHP emulator. In this setup,
we designate a group of orchestrator nodes responsible for
the code-coverage analysis of the workers and prioritization
of next paths to explore (Step 2 in Figure 2). Orchestrators
compare the code-coverage of current execution with the
previously explored code and prioritize the analysis of unex-
plored branches, specifically the descendants of executions
that resulted in the exploration of new parts of the code-base.

3.4.1 Path Prioritization

We try to address the problem of state space explosion from
two directions:

• Eliminating unsatisfiable paths and limiting the total
number of explored paths.

• Prioritizing paths based on their likelihood to explore
unique parts of the codebase.

Reducing the total number of feasible paths: Through
close inspection of the structure of popular web applications,
we identified that the majority of symbolic conditions check for
presence or absence of user-provided parameters. These param-
eters usually dictate the main control flow of the entry points
(e.g., providing username and password in a login request).

Given the list of user controlled parameters (i.e., Post,
Cookie, and Session variables) in phpMyAdmin, we analyzed
the constraints for symbolic conditions. Overall, we identified
that on average, 72% of symbolic conditions only check for
presence or absence of such parameters through the isset
and empty built-in functions.

Based on this observation, we decided to include the
name (and not the value) of these parameters in the extended
web server logs. This way, we will have the list of provided
parameters by the users for POST requests and file uploads,
thereby, significantly reducing the number of symbolic paths
to be explored by AnimateDead.

Efficient path selection: The exponential growth in the total
number of paths in the application under analysis requires an
effective path selection strategy. Symbolic execution engines
employ problem-specific heuristics to analyze paths that are
more likely to yield the desired results first. In the current setup,
we opted to optimize paths to maximize code-coverage that
is reachable from each entry point. AnimateDead implements
two path prioritization algorithms:

• DFS: Using the depth-first-search algorithm, emulator
worker processes will choose the last symbolic branch and
flip its last symbolic condition to explore the new paths.
This is the most straightforward approach that lacks any
optimization for maximizing the explored code-coverage.
This method would result in the assignment of the same
priority to all paths.

• Branch-coverage guided prioritization: In this setup,
orchestrator nodes keep track of the branch coverage across
all workers and prioritize paths that will explore the unseen
branches. For branches that have never been explored
before, we set the priority to the maximum of 100. After
covering all the unique branches at least once, we calculate
the priority by adding the total number of new lines
discovered by each execution to 20% of the priority of the
parent branch for a maximum of 100. This way, we focus
on expanding the coverage in the vicinity of the recently
discovered code, while gradually reducing the effect of the
priority inherited from the parent execution to prevent the
analysis from getting stuck in repetitive code structures.

We store the reanimation logs on a priority queue, and as
a result, workers will explore branches with a higher score
first. We will compare and contrast the performance of DFS vs.
Branch coverage path prioritization methods in Section 4.2.1.

3.5 Debloating the Web Applications
AnimateDead produces the code-coverage information by

merging the individual code-coverage from each execution
of its workers. These results are analogous to the dynamic
code-coverage used for debloating by the prior work. After
generating the code-coverage for each web application, An-
imateDead’s debloating engine (Step 5 in Figure 2) performs
a reachability analysis and removes unused modules (i.e.,
files and functions) from the source code of web applications.
We report the size reduction and security gains of debloating
web applications via concolic execution and contrast the
performance of this debloating scheme with the dynamic
debloating of Less is More in Section 4.

Table 1: Number of automated daily requests towards web
applications compared to the number of unique entry points.

Web Application Requests/Day Unique Endpoints
WordPress 558,576 152 (99.97% ▼)
phpMyAdmin 491,400 107 (99.98% ▼)
HotCRP 175,848 32 (99.98% ▼)
FluxBB 63,624 17 (99.97% ▼)

3.6 Correctness Tests During Development
During the initial stages of the development of our emulator,

we started extracting the list of all PHP instructions from the
PHP parser and provided an implementation of their logic in
our emulator. Next, we analyzed the source code of popular
PHP applications such as WordPress and phpMyAdmin to
extract samples of interactions with symbolic variables (i.e.,
database queries, code handling HTTP requests, etc.).

Unit Tests: Based on the code snippets extracted from these
applications, we created a total of 199 unit tests. We also in-
cluded 19 unit tests provided by MalMax in our test suite [31].

Functional Tests: To complement the unit tests, we ran
the Selenium scripts published as part of “Less is More” [4]
on debloated web applications. For the web applications in
our dataset that are not part of LIM’s dataset, we assembled
a list of tasks exercising the main functionality of these web
applications. For HotCRP, our scripts automate the setup of
a conference and its deadline, user creation, submission of
papers, and submitting reviews. For FluxBB, we automate user
creation, posting new topics and changing user preferences.
The extensive list of tasks that we automated with Selenium
scripts is available in the Appendix.

We then compared the list of invoked files and functions
in response to requests towards debloated web applications
and through iterative debugging we identified and addressed
the implementation bugs that would prevent AnimateDead
from invoking the same modules as listed in the dynamic
code-coverage traces.

4 Evaluation and Results
In this section, we employ AnimateDead to debloat web

applications. We start by collecting the list of entry points
exercised while using popular web applications. We then
configure AnimateDead to explore feasible paths from those
entry points. The result of this step is a list of exercised modules
in target web applications. These modules are reachable from
the list of entry points. Then, by removing the unused modules,
we produce debloated web applications. In the remainder
of this section, unless mentioned otherwise, we discuss the
results of function debloating (i.e., removing functions with
no callers) as it strictly outperforms file debloating.

Debloating based on concolic execution in AnimateDead
has multiple benefits over the previously explored dynamic

debloating schemes that rely on runtime tracing to collect
code-coverage information from users:

• By relying on existing logging mechanism of web servers,
we can collect usage traces for long periods of time for web
applications with a large user base with small overhead.

• By analyzing each entry point in an abstract state (i.e.,
abstract request parameters, database, and network
requests), the resulting code-coverage incorporates the
functionality for all actions that are possible through each
entry point and all possible database and network responses
(i.e., including successful and failure cases), resulting in
robust debloated applications (Section 4.4.1).

4.1 Experimental Setup
In our evaluation, we focus on four popular web applications

with different size and functionality. Our dataset includes ph-
pMyAdmin 4.7 (database administration), WordPress 4.6.22
(content management system), HotCRP 3.0 (submission
management), and FluxBB 1.5.11 (online forum platform).

We run our analysis using 20 worker nodes (running
AnimateDead’s PHP emulator), and 5 orchestrators running
inside Docker on an Ubuntu 22.04 LTS host with 20 CPU cores
and 32GB of memory. For each web application, we follow
their installation steps to generate the configuration files. This
step is necessary as all web applications in our dataset verify
the presence of configuration files (e.g., wp-config.php for
WordPress) and redirect user requests to the installation page
if the post-installation files are absent from the file system.

We configured concolic execution campaigns with the
threshold of 24 hours, though in practice, the majority of
entry points converge to their maximum code-coverage in
less than one hour. Analysts can observe the progress made
by AnimateDead through the reporting panel and decide to
terminate the analysis when AnimateDead stops identifying
new code-coverage or the queue becomes empty (i.e., all paths
for an entry point are explored).

Data Collection
To compare the debloating performance of AnimateDead

with prior work and to generate baseline code-coverage
information for each entry point, we rely on the automated
tests provided by the “Less is More” [4].

We run the Selenium scripts from Less is More and the ones
we built for HotCRP and FluxBB and collect the web server
logs along with the dynamic code-coverage information from
the Less is More framework. The code-coverage information
for our web applications serves as the baseline code-coverage
(i.e., dynamic code-coverage) for the remainder of our
evaluation.

We expect the resulting code-coverage of AnimateDead to
be a superset of the dynamic code-coverage information. Any
file or function covered in the dynamic code-coverage that is

Figure 3: Unique files discovered over time using DFS and Branch coverage guided path prioritization. Branch coverage approach results
in a higher number of discovered files while DFS gets stuck in the same parts of the code.

missed by AnimateDead would signify a false positive (i.e.,
removal of a feature that is required by users).

Data Cleaning and Summarization

In the initial stage of the analysis, AnimateDead removes
duplicate log entries. Since we analyze the application with an
abstract database, different values for the same parameters will
have a similar effect (e.g., ?page_id=1 or 2). This deduplica-
tion also shrinks the total number of entry points significantly.
Table 1 lists the total number of log entry points produced over
a 24 hour period by running the automated tests (Selenium,
and crawler) repeatedly (simulating different users of a web
application exercising the same functionality), compared to
the final number of unique entries used by AnimateDead for
analysis. Across all web applications in our dataset, we observe
a reduction of over 99.9% in the number of unique entries to be
analyzed. Moreover,web applications with a smaller code-base
(i.e., FluxBB and HotCRP) produce fewer unique entry points.

4.2 Generating the Code-coverage
We take the logs for each entry point in the web applications

in our dataset and run them in AnimateDead until either
all paths are exhausted or a timeout of 24 hours is reached.
AnimateDead produces the code-coverage information for
each execution in a separate log file. After merging the
code-coverage of the explored paths from all entry points, we
perform a module reachability analysis at the file and function
level and debloat unreachable files and functions.

4.2.1 Efficient Path Selection

Concolic execution generates an exponentially growing
number of paths to be explored in target applications. This num-
ber grows based on the number of symbolic conditions in the
target applications, for which AnimateDead would need to ex-
plore the execution of all feasible branches. Concretely, N con-
secutive symbolic branches would produce 2N distinct paths.

The prevalence of symbolic conditions and the total analysis
time of each entry point directly affect the size of the queue
which contains the future paths to be explored. Figure 3 depicts
the unique files covered over time for a subset of entry points in
each web application in our dataset during 24 hours of runtime.

We ranked the time it takes for AnimateDead to converge
to the maximum file coverage for all application entry points.
We then picked one entry point from each quantile for a total
of four entries for each web application and path prioritization
algorithm. For instance for WordPress, we plot “admin-ajax”,
“customize”, “index”, and “login” entry points sorted from
most to least time to converge.

Solid lines in Figure 3 represent the ratio of maximum cov-
ered files for each entry point when configuring AnimateDead
with Branch coverage guided path prioritization and dotted
lines represent the runtime of the same entry points with DFS.

For smaller applications such as FluxBB, the code-coverage
converges in less than 10 minutes. For index.php entry point
of FluxBB, DFS fails to identify all reachable files and is stuck
in a repetitive code structure. For web applications with a
modular architecture in which a larger number of PHP files
are invoked to respond to each request, concolic execution
requires a longer time to converge. This effect is visible for
server_import.php entry point which explores code-paths for
various export formats and takes 17 hours and 23 minutes to
converge to its maximal code-coverage. Similarly, for Word-
Press, while the majority of entry points converge in the first
few hours, certain entry points (e.g., such as admin-ajax.php
and customize.php) take between 6 and 20 hours to converge.

Across all web applications, we observe that branch
coverage guided prioritization outperforms DFS in terms
of the overall code-coverage. In practice, using the DFS
algorithm leads to missing code-coverage (mainly due to
investing the majority of execution time in the same subgraphs
of the AST) which results in false positives after debloating.

4.3 Debloating Metrics
We report the effectiveness of our debloating scheme

through various source code and security metrics. These met-
rics are proxy variables to quantify the security improvements
of debloated web applications.

Logical Lines of Code (LLOC) Reduction

The reduction in the overall size of the code-base of an
application has a direct correlation with the number of bugs
present in it [25]. Based on this intuition, shrinking the size of
an application’s code-base by removing unnecessary features

Table 2: LLOC reduction results of AnimateDead compared to Less
is More. Percentages represent the code reduction ratio.

Web Application Original AnimateDead LIM
phpMyAdmin 112,220 35,162 (69%) 26,094 (77%)
WordPress 73,201 39,529 (46%) 36,738 (50%)
HotCRP 40,898 30,814 (25%) 24,407 (40%)
FluxBB 6,683 3,550 (47%) 3,141 (53%)

reduces its attack surface and potential vulnerabilities. To mea-
sure this, we report the size of applications in our dataset before
and after debloating in terms of logical lines of code (LLOC).

Table 2 lists the size of web applications by AnimateDead
and Less is More (LIM). In this setup, AnimateDead is
performing concolic exploration of the same entry points
as invoked by dynamic tests for LIM. As a result, the
code-coverage produced by AnimateDead is a superset of
LIM. By looking at Table 2, we observe that for most web
applications, debloating via concolic execution provides a size
reduction comparable to the dynamic debloating.

Upon closer inspection of the code that is only covered by
AnimateDead we identified features that were never exercised
by Selenium tests but were reachable from the entry points.
This enhances the usability of debloated web applications by
AnimateDead and reduces the likelihood of users invoking
a removed function, which is a major drawback for dynamic
debloating systems. For instance, we identified that the
“Forgot password” functionality, reachable from the login entry
point of WordPress was never invoked during the dynamic
tests, and therefore, was removed by LIM. We verified that
AnimateDead keeps this functionality in WordPress, and as
a result, allows users to use “forgot password” functionality
even after debloating.

Critical API Call Reduction

The PHP engine interacts with its execution environment
through a set of internal APIs. These APIs enable web
applications to interact with the file system, network or even
the database. Similar to system calls in binary applications,
abuse of Critical PHP APIs (e.g., eval) is closely related to
the amount of damage an attacker can do. Previous work in
the area of exploit prevention and debloating has emphasized
the importance of protecting critical APIs [6, 12, 27, 33].

We use the list of 205 critical APIs used by RIPS to
perform taint analysis on PHP applications for vulnerability
discovery [11]. We report the removal of these APIs after
debloating. For phpMyAdmin, we observe that AnimateDead
removes 75% of code execution API calls, compared to
90% reduction of Less is More. For other applications in our
dataset, this reduction of critical API calls ranges from 10%
to 89% for AnimateDead and 50% to 96% for Less is More.
As demonstrated in Figure 4, debloating based on concolic
execution of entry points results in a considerable reduction in
critical API calls compared to the original applications, across
all categories of critical APIs.

Figure 4: Reduction of Critical API Calls.

CVE Reduction

Orthogonal to size reduction, we measure the performance
of debloating in removing historic vulnerabilities in the source
code of an application. To that end, for web applications
present on public CVE databases (phpMyAdmin and Word-
Press), we reuse the CVE to source code mapping information
available in the prior work [4].

Table 3 lists the removal of CVEs after debloating. For both
web applications, file debloating of AnimateDead and LIM
remove the same number of CVEs. Similarly, for WordPress,
function debloating of AnimateDead and LIM retain seven
CVEs. For phpMyAdmin, function debloating results show
that AnimateDead’s debloating retains three CVEs more than
LIM.

We analyzed the three extra CVEs. For the first vulnerability
(CVE-2016-5703), LIM retains multiple call sites for the
vulnerable function, none of which were invoked during
the dynamic tests. Since the path conditions for these call
sites rely on database values (i.e., symbolic), AnimateDead
correctly retains the vulnerable function to preserve the
correct functionality. Second vulnerability (CVE-2016-6633)
resides in the “import” page of phpMyAdmin. Selenium
tests only import SQL files while phpMyAdmin supports
seven formats (e.g., zip, CSV, XML). Since the uploaded
file format is selected by the user and is therefore symbolic,
AnimateDead retains other import formats including the one
with the vulnerability. Lastly, we analyzed CVE-2016-6619
which resides in “recent favorite tables” feature, if the users
request the list of recent tables without having selected any
tables before, the vulnerable function would be invoked.

The performance of AnimateDead and LIM in the removal
of CVEs for WordPress is identical. For the three CVEs that
were removed only by LIM, we analyzed the source code of ph-
pMyAdmin and identified that in all cases, there exists at least
one symbolic code path (based on user-controlled parameters
or database values) that can call the vulnerable functions, and

Table 3: Reduction of CVEs for phpMyAdmin and WordPress with
concolic debloating of AnimateDead and dynamic debloating of
Less is More. AnimateDead and LIM columns show the number of
CVEs remaining after debloating with the specified strategy (i.e., File
vs. Function debloating).

Web Application Original AnimateDead LIM
File Function File Function

phpMyAdmin 20 12 7 12 4
WordPress 20 19 13 19 13

therefore, AnimateDead correctly retained the CVEs to pre-
serve the correct functionality in the debloated web application.

4.4 Assessment of Correctness

In this section, we discuss the experiments that we designed
to evaluate the correctness of the debloated web applications
by AnimateDead. We envision several categorical threats to
the correctness of debloated web applications (i.e., removal
of required features):
Implementation bugs: Any flaw in the implementation of
the emulator which leads to a different outcome during the
execution (e.g., taking a different branch) can potentially lead
to missing code-coverage. To address this concern, first, we
created unit tests to check for the core functionality of our
emulator. Next, we extracted code structures that handled
symbolic variables from popular PHP applications in our
dataset and isolated the expected behavior to verify the correct
emulation results in AnimateDead. Lastly, we replayed the dy-
namic execution traces (i.e., Selenium tests) against debloated
web applications to ensure that AnimateDead’s debloating did
not break any of the previously exercised functionality.
State space explosion: Another source of missing code-
coverage is rooted in the state space explosion problem. For
larger PHP applications in our dataset (i.e., phpMyAdmin,
WordPress, and HotCRP), the total number of satisfiable sym-
bolic conditions in the applications leads to the generation of
an exponentially growing number of paths for each entry point.

As a result, exploring every single path is not feasible, nor
desired particularly because the majority of explored paths do
not lead to the discovery of new files and functions. To address
this challenge, as discussed in Section 4.2.1, we proposed an
efficient path prioritization strategy that in practice, addressed
the path explosion issue in the context of producing the correct
code-coverage for applications in our dataset.

One of the key challenges of verifying the correctness of
a debloating scheme is the lack of ground truth code-coverage
information. Dynamic code-coverage traces can be used as
a lower-bound of line-coverage. In the absence of an oracle
that determines all the reachable lines of code from each entry
point given a symbolic environment we rely on automated
random testing.

4.4.1 Automated Random Testing

We use ZAP Proxy’s web crawler [32] and the Gremlins.js
monkey testing framework [26] to automatically interact with
web applications. Through this random testing, we automat-
ically exercise various features from the web applications
in ways that are different from the Selenium scripts used
to collect the baseline code coverage and entry points for
AnimateDead. Namely, our random-test agents exercised
multiple entry points, some of which were not included in
Selenium tests and therefore are not part of the web server logs
used for debloating. By comparing the errors due to invocation
of debloated files and functions, we report the errors due to
invocation of previously unseen entry points under “Errors”
and false positives for AnimateDead and LIM in Table 4.

We execute ZAP Proxy in spider and scan mode for up
to 1 hour with the authenticated session cookies and login
credentials of the web applications. Likewise, we augment
Gremlins.js with login functionality and error-page detection
and run it for 6 hours for each web application. Overall,
ZAP sent 86,649 requests towards the four debloated web
applications in our dataset and Gremlins.js sent 5,658 requests.

Errors Dynamic debloating schemes such as AnimateDead
and LIM remove modules deemed unnecessary based on the
web server or code-coverage logs. Invoking the removed mod-
ules triggers the custom error handler added during debloating.
An error triggered by random testing does not necessarily
indicate a fault in debloating if the removed module is reached
from an entry point intended to be debloated (i.e., entry point
not included in the web server logs used for debloating).

False positives An error during automated testing is a
false positive only if it was triggered from one of the entry
points that we used for debloating. After a close inspection
of the web server logs after running our random-testing
agents, we attributed all errors for AnimateDead debloated
web applications to interactions with correctly debloated the
modules. Conversely, for LIM-debloated applications, we
identified six missing functions in phpMyAdmin related to
authentication cookies, error handling, and logging that were
reachable from a previously seen entry point. Similarly for
WordPress, six functions from themes, cookie and session
management, and failed login module were removed that
triggered an error by our crawler. For FluxBB, we identified
two missing functions from the database adapter and password
verification modules, and finally for HotCRP, we identified
the removal of the failed login handling routine by LIM.

The results of our random tests indicate that given the
same entry points, LIM requires an extensive code-coverage
collection step to retain all the functionality that their users
need. Previous work has reported a high overhead and an
increase in page load time for profilers user in recording of
code-coverage [4] which makes the approach in prior work

Table 4: Automated random testing results including the total number
of requests made by test agents. “Errors” column indicates the
number of unseen entry points that are correctly debloated and
returned an error message. “False Positives” indicate an error
triggered by requests towards previously seen entries.

Web Application Requests Errors False Positives
AnimateDead LIM

Crawler
phpMyAdmin 21,040 6 0 6
WordPress 31,055 8 0 6
HotCRP 16,021 2 0 0
FluxBB 18,533 3 0 2

Monkey Tester (Gremlins.js)
phpMyAdmin 1,736 14 0 0
WordPress 1,262 4 0 0
HotCRP 2,019 2 0 1
FluxBB 641 3 0 0

less than ideal. In contrast, concolic execution in AnimateDead
performs an offline analysis based on abstract inputs (e.g., cor-
rect and incorrect login credentials) that are collected without
extra overhead via web servers logs. As a result, AnimateDead
debloated web applications are less prone to false positives.

5 Discussion and Limitations

In this section, we discuss some design decisions when
building AnimateDead and the limitations of our approach.

Path condition analysis: Concolic execution engines often
incorporate SMT solvers such as Z3 [29] to evaluate the fea-
sibility of symbolic branches based on path constraints and re-
place symbolic variables with concrete samples. SMT solvers
can generate concrete values satisfying a path constraint.

In this work, to reduce the complexity of our operations
and reduce the overhead of incorporating SMT solvers, we
opted to implement our context-specific concolic translator
that explores all branches when it cannot concretely determine
the outcome of symbolic conditions. This routine shrinks the
set of possible values for a symbolic variable by leveraging
the available information from the execution environment
such as constant variables in the code (e.g., path condition
checking whether the variable belongs to a constant array),
local filesystem (e.g., checking whether a file exists and can be
included), and collecting regular expressions when used in path
conditions (e.g., preg_match(concrete_regex_pattern,
$symbolic_variable)).

AnimateDead’s emulator allows it to have an insight into
variable values in each execution context and propagate
the concrete values (e.g., constants or API calls that return
concrete values) across function calls. As discussed in
Section 3.3.1, AnimateDead tracks path constraints for strings,
set operations (i.e., array membership checks and value set
analysis), and variable types.

As a concrete example, each time a symbolic variable is
compared with a concrete array (i.e., using PHP in_array()),
AnimateDead assumes that the value of this variable belongs
to one of the concrete array entries within the conditional
statement. Therefore, AnimateDead can determine to replace
the symbolic value with concrete candidates and branch out to
explore the different outcome of each variable. This is only nec-
essary if this symbolic variable is used in a list of functions and
APIs that can load new code as listed in Section 3.3.1 (e.g., file
inclusion, dynamic function call, etc.). Orthogonally, the list
of concrete candidate values can be used to prune non-feasible
path conditions and skip the exploration of unnecessary
branches. For path conditions where AnimateDead cannot
evaluate the satisfiability of their condition, it explores all the
possible outcomes and analyzes all the symbolic branches
through its distributed analysis. This over-approximation
results in inclusion of extra modules in debloated applications,
but as reported in Section 4, for the same workload, Animat-
eDead only retained 4-15% more lines of code than LIM.

Runtime threshold and termination condition: The deci-
sion to terminate a concolic execution campaign can determine
the completeness of its results. Premature termination can lead
to missed code-coverage and in turn, false positives in debloat-
ing. For the experiments in this paper, we used the threshold of
24 hours. In practice, only a subset of all entry points in larger
web applications require runtime of more than 1 hour.

Challenging code structures for concolic execution
Concolic execution as used for vulnerability discovery and
exploit generation requires an accurate model of conditions
and constraints to evaluate their satisfiability. For the purposes
of debloating, we sidestepped this limitation in AnimateDead
by over-approximating complex path conditions and exploring
all of their branches for which we cannot determine their
satisfiability. The comparison of the debloating results
of AnimateDead and LIM in Section 4 shows that this
over-approximation does not significantly undermine the
benefits of debloating.

State machines: Modules such as parsers (e.g., SQL query
linter in phpMyAdmin) include complex logic that is hard for
concolic execution to explore without any knowledge about
the underlying purpose of the code. Specifically, schemes
that implement state-machines typically include verification
checks that can terminate the execution if they observe an
undesirable state.

An example of this exists in the SQL file import function-
ality in phpMyAdmin where the imported queries are verified
using a SQL parser before passing them to MySQL. To address
this challenging case and allow AnimateDead to debloat the
SQL query linter, we provided it with a SQL file that includes
various types of queries extracted from MySQL documents.
Using this file which includes various SQL keywords in the

form of valid queries, AnimateDead is able to explore the SQL
parser module successfully.

Database abstraction layer: Orthogonally, we observed
that web applications frequently invoke database APIs that
are commonly wrapped behind an abstraction layer. For every
database API call in web application, there a few successful
paths and many failed query results (e.g., failed database
connection, empty database, etc.) which results in many
unnecessary forks to explore failed query results. To reduce
the overhead of exploring such repetitive paths, we mark the
main database calls as symbolic which prevents AnimateDead
from exploring the internals of the database abstraction layer
in web applications.

Completeness of AnimateDead’s emulator: Our emulator
is a research prototype based on MalMax which was originally
designed to analyze malicious PHP code and supported only
a subset of PHP features. When building AnimateDead, we
performed an iterative development and debugging process
starting from unit tests for PHP instructions and symbolic
operations and gradually added more end-to-end tests by
running web applications and fixing the bugs that we faced
along the way.

From a prototype-building perspective, supporting a new
web applications may require further debugging where we run
our tests and perform manual root-cause analysis to identify
deviations of our emulator from the PHP engine that results
in missing code-coverage.

For our dataset, this process took 0.5-6 person-months
depending on the size and complexity of each web application.
While we capture a diverse list of web applications accounting
for more than 43% of all online websites (i.e., WordPress) and
from vastly different architectures including monolithic design
(FluxBB, and HotCRP) vs. modular design (WordPress),
relying on 3rd party dependencies (phpMyAdmin), and using
the MVC architecture (phpMyAdmin). New web applications
can use different sets of PHP features, some of which may
be unsupported by our current research prototype. This
limitation only applies to the prototype-building aspect of
AnimateDead and does not undermine the methodology of
concolic execution and its application for debloating.

We list a sample of unsupported features and bugs that we
gradually identified and added to AnimateDead, to provide
better context for challenges when onboarding new web
applications:

• (Feature) supporting php://input stream for file
operations.

• (Feature) supporting list assignments that skip positional
variables:
list(, $queryString) = explode(’?’,
$_SERVER[’REQUEST_URI’]);

• (Feature) supporting null coalesce and spaceship operator.

• (Feature) implementing closures used in Composer
autoloader.

• (Feature) supporting PHP builtin interfaces such as
ArrayAccess and IteratorAggregate.

• (Feature) implementing generators and yield.

• (Bug fix) the emulator would load classes from its own
context instead of throwing a class not found error when
the class was undefined in the emulated application.

• (Bug fix) magic methods could not access private and
protected class properties.

6 Related Work
Symbolic and concolic testing are powerful tools that fill
the gap between static and dynamic analysis. Researchers
have designed numerous binary testing and vulnerability
discovery tools based on symbolic testing [7–10, 17, 44].
Running symbolic testing at the scale of large applications
is challenging. This is mainly due to the rapid increase in the
total number of paths to be explored, also known as state space
explosion, as well as the overhead from the SMT solvers.

One helpful technique used in symbolic web application
analysis tools is to isolate the code for their target module
before performing the symbolic analysis. For instance, Huang
et al. built a file upload vulnerability discovery tool named
UChecker [20]. In their tool, they perform an initial phase of
static analysis to identify potentially vulnerable sinks. Then,
through backward slicing, they isolate the code responsible
for file upload functionality from user controlled sources to
sensitive sinks. Similarly, Jensen et al. aid their static analysis
by resolving dynamic file inclusions via dynamic analysis
by incorporating web crawlers [22]. They then perform static
analysis to identify XSS vulnerabilities and finally validate
their findings using symbolic execution. In both papers, the
authors use symbolic execution to verify the reachability of
the vulnerable sinks.

To combat the state space explosion problem, researchers
have introduced various path prioritization algorithms. The
simplest form of path exploration is breadth-first-search and
depth-first-search, used by DART [16]. Next to that, other
heuristics such as “reducing the number of redundant path
explorations”, “maximizing code-coverage”, and “guiding the
execution towards security sensitive APIs” are implemented by
researchers in tools such as KLEE [7], EXE [8], Mayhem [9],
S2E [9], and AEG [3].

In AnimateDead, we designed our path prioritization
heuristic to optimize for maximum code-coverage, inline with
our goal to use the code-coverage for software debloating.
We extended the PHP emulator from MalMax developed
by Naderi et al. [30, 31]. In their work, the authors build a
PHP emulator capable of counterfactual execution to uncover
the original intents of obfuscated PHP malware. While PHP

malware uses specific APIs to remain hidden and perform
its malicious actions, complex PHP applications interact
with a large number of PHP APIs. To be able to perform
an end-to-end analysis of these applications, we extended
MalMax by adding support for symbolic execution, and
implementing the features used in popular PHP applications.

Software debloating Researchers have approached the idea
of debloating from various aspects ranging from the kernel [1],
container environments [13,38] to binaries [15,18,19,24,28,37,
39], web browsers [36, 42], and web applications [4, 6, 21, 23].

In this paper, we use the “Less is More” framework of Amin
Azad et al. [4] to generate a baseline code-coverage to assess
the results of AnimateDead and generate our entry points
based on the Selenium tests developed as part of LIM. While
the goal of AnimateDead debloating is not to outperform
LIM, we demonstrate that despite the generalizations made
by concolic execution, our debloating statistics and security
improvements are on par with the dynamic debloating of LIM.

Unlike LIM, AnimateDead does not rely on an extensive
training phase and can perform its analysis offline with
virtually zero overhead on production execution environments.

Web applications debloated by AnimateDead can benefit
from the protections offered by other orthogonal attack
surface reduction and API specialization schemes such as
Saphire [6] and SQLBLock [21] to protect against SQL
injection vulnerabilities in the remaining SQL API calls
required by users and to confine the web application based
on a generated profile of system-calls to limit the potential
damage from code execution exploits.

7 Availability
To ensure transparency while promoting future work in

the space of PHP concolic execution and debloating web
applications, we will provide public access to all developed
code and artifacts at https://debloating.com.

8 Conclusion
In this paper, we introduced AnimateDead, a PHP emulator

capable of analyzing web applications with abstract inputs.
We presented the design details of its concolic execution
engine and reviewed our approach to building a distributed
analysis framework.

Recognizing the practical limitation of dynamic debloating
systems, namely their need for extensive training data and their
high runtime overhead,we incorporated AnimateDead together
with the readily available web server logs to perform a reacha-
bility analysis from each entry point in the web applications in
the form of code-coverage information. Using this information,
we performed an offline analysis in the form of concolic execu-
tion and a module reachability analysis to remove unreachable
modules. We debloated four popular PHP applications and
demonstrated the security improvements of our method to be

comparable to dynamic debloating schemes. AnimateDead is
capable of producing debloated web applications that are 47%
smaller and include 55% fewer critical API calls.

Finally, we show that the concolic analysis of entry points
by AnimateDead leads to debloated web applications that
generalize over all inputs to the same entry points where
dynamic debloating schemes would have a breakage. Overall,
our results demonstrate that concolic execution is a practical
method for debloating web applications that addresses core
limitations of prior work.

Acknowledgements: We thank our shepherd and the re-
viewers for their helpful feedback. This work was supported by
the Office of Naval Research (ONR) under grant N00014-21-1-
2159 as well as by the National Science Foundation (NSF) un-
der grants CNS-1941617, CNS-2211575, and CNS-2211576.

References
[1] ABUBAKAR, M., AHMAD, A., FONSECA, P., AND XU, D. shard:

Fine-grained kernel specialization with context-aware hardening. In
Proceedings of the 30th USENIX Security Symposium (2021).

[2] AL KASSAR, F., CLERICI, G., COMPAGNA, L., YAMAGUCHI, F., AND
BALZAROTTI, D. Testability tarpits: the impact of code patterns on the
security testing of web applications.

[3] AVGERINOS, T., CHA, S. K., REBERT, A., SCHWARTZ, E. J., WOO,
M., AND BRUMLEY, D. Automatic exploit generation. Communications
of the ACM 57, 2 (2014), 74–84.

[4] AZAD, B. A., LAPERDRIX, P., AND NIKIFORAKIS, N. Less is more:
Quantifying the security benefits of debloating web applications. In
28th {USENIX} Security Symposium ({USENIX} Security 19) (2019),
pp. 1697–1714.

[5] BUILDWITHSTATS. Wordpress usage statistics. https://trends.
builtwith.com/cms/WordPress, 2022.

[6] BULEKOV, A., JAHANSHAHI, R., AND EGELE, M. Saphire: Sandbox-
ing {PHP} applications with tailored system call allowlists. In 30th
USENIX Security Symposium (USENIX Security 21) (2021), pp. 2881–
2898.

[7] CADAR, C., DUNBAR, D., ENGLER, D. R., ET AL. Klee: unassisted
and automatic generation of high-coverage tests for complex systems
programs. In OSDI (2008), vol. 8, pp. 209–224.

[8] CADAR, C., GANESH, V., PAWLOWSKI, P. M., DILL, D. L., AND
ENGLER, D. R. Exe: Automatically generating inputs of death. ACM
Transactions on Information and System Security (TISSEC) 12, 2 (2008),
1–38.

[9] CHA, S. K., AVGERINOS, T., REBERT, A., AND BRUMLEY, D. Un-
leashing mayhem on binary code. In 2012 IEEE Symposium on Security
and Privacy (2012), IEEE, pp. 380–394.

[10] CHIPOUNOV, V., GEORGESCU, V., ZAMFIR, C., AND CANDEA, G.
Selective symbolic execution. In Proceedings of the 5th Workshop on
Hot Topics in System Dependability (HotDep) (2009), no. CONF.

[11] DAHSE, J., AND SCHWENK, J. Rips-a static source code analyser for
vulnerabilities in php scripts. In Seminar Work (Seminer Çalismasi).
Horst Görtz Institute Ruhr-University Bochum (2010), Citeseer.

[12] FRATRIĆ, I. Ropguard: Runtime prevention of return-oriented program-
ming attacks. Technical report (2012).

[13] GHAVAMNIA, S., PALIT, T., BENAMEUR, A., AND POLYCHRONAKIS,
M. Confine: Automated system call policy generation for container
attack surface reduction. In 23rd International Symposium on Research
in Attacks, Intrusions and Defenses (2020).

https://debloating.com
https://trends.builtwith.com/cms/WordPress
https://trends.builtwith.com/cms/WordPress

[14] GHAVAMNIA, S., PALIT, T., MISHRA, S., AND POLYCHRONAKIS, M.
Temporal system call specialization for attack surface reduction. In
Proceedings of the 29th USENIX Security Symposium (2020).

[15] GHAVAMNIA, S., PALIT, T., MISHRA, S., AND POLYCHRONAKIS, M.
Temporal system call specialization for attack surface reduction. In
Proceedings of the 29th USENIX Security Symposium (2020).

[16] GODEFROID, P., KLARLUND, N., AND SEN, K. Dart: Directed auto-
mated random testing. In Proceedings of the 2005 ACM SIGPLAN con-
ference on Programming language design and implementation (2005),
pp. 213–223.

[17] GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. Sage: whitebox
fuzzing for security testing. Communications of the ACM 55, 3 (2012),
40–44.

[18] HASAN, M. M., GHAVAMNIA, S., AND POLYCHRONAKIS, M. Decap:
Deprivileging programs by reducing their capabilities. In Proceedings
of the 25th International Symposium on Research in Attacks, Intrusions
and Defenses (RAID) (2022).

[19] HEO, K., LEE, W., PASHAKHANLOO, P., AND NAIK, M. Effective
program debloating via reinforcement learning. In Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security
(2018).

[20] HUANG, J., LI, Y., ZHANG, J., AND DAI, R. Uchecker: Automatically
detecting php-based unrestricted file upload vulnerabilities. Proceed-
ings - 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2019 (2019), 581–592.

[21] JAHANSHAHI, R., DOUPÉ, A., AND EGELE, M. You shall not pass: Mit-
igating sql injection attacks on legacy web applications. In Proceedings
of the 15th ACM Asia Conference on Computer and Communications
Security (2020), pp. 445–457.

[22] JENSEN, T., PEDERSEN, H., OLESEN, M. C., AND HANSEN, R. R.
Thaps: automated vulnerability scanning of php applications. In Nordic
conference on secure IT systems (2012), Springer, pp. 31–46.

[23] KOISHYBAYEV, I., AND KAPRAVELOS, A. Mininode: Reducing the at-
tack surface of node.js applications. In Proceedings of the International
Symposium on Research in Attacks, Intrusions and Defenses (RAID)
(Oct. 2020).

[24] KOO, H., GHAVAMNIA, S., AND POLYCHRONAKIS, M. Configuration-
driven software debloating. In Proceedings of the 12th European Work-
shop on Systems Security (2019).

[25] MCCONNELL, S. Code complete. Pearson Education, 2004.

[26] MERMELAB. Gremlins.js monkey testing library. https://marmelab.
com/blog/2020/06/02/gremlins-2.html.

[27] MISHRA, S., AND POLYCHRONAKIS, M. Shredder: Breaking exploits
through api specialization. Annual Computer Security Applications
Conference (ACSAC) (2018), 1–16.

[28] MISHRA, S., AND POLYCHRONAKIS, M. Saffire: Context-sensitive
function specialization and hardening against code reuse attacks. In
IEEE European Symposium on Security & Privacy (2020).

[29] MOURA, L. D., AND BJØRNER, N. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction
and Analysis of Systems (2008), Springer, pp. 337–340.

[30] NADERI-AFOOSHTEH, A., KWON, Y., NGUYEN-TUONG, A.,
BAGHERI-MARZIJARANI, M., AND DAVIDSON, J. W. Cubismo:
decloaking server-side malware via cubist program analysis. In
Proceedings of the 35th Annual Computer Security Applications
Conference (2019), pp. 430–443.

[31] NADERI-AFOOSHTEH, A., KWON, Y., NGUYEN-TUONG, A.,
RAZMJOO-QALAEI, A., ZAMIRI-GOURABI, M.-R., AND DAVIDSON,
J. W. Malmax: Multi-aspect execution for automated dynamic web
server malware analysis. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (2019),
pp. 1849–1866.

[32] OWASP. Owasp zap proxy. https://www.zaproxy.org/.

[33] PAPPAS, V. kbouncer: Efficient and transparent rop mitigation. Apr 1
(2012), 1–2.

[34] PHP. Php database drivers and plugin apis. https://www.php.net/
manual/en/set.mysqlinfo.php.

[35] POPOV, N. Php-parser. https://github.com/nikic/PHP-Parser/
tree/master/lib/PhpParser/Node.

[36] QIAN, C., KOO, H., OH, C., KIM, T., AND LEE, W. Slimium: Debloat-
ing the chromium browser with feature subsetting. In Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security
(2020).

[37] QUACH, A., PRAKASH, A., AND YAN, L. Debloating software through
piece-wise compilation and loading. In Proceedings of the 27th USENIX
Security Symposium (2018).

[38] RASTOGI, V., DAVIDSON, D., DE CARLI, L., JHA, S., AND MC-
DANIEL, P. Cimplifier: automatically debloating containers. In Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering (2017).

[39] REDINI, N., WANG, R., MACHIRY, A., SHOSHITAISHVILI, Y., VIGNA,
G., AND KRUEGEL, C. Bintrimmer: Towards static binary debloating
through abstract interpretation. In International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability Assessment (2019).

[40] SECURITY, A. Phpggc: Php generic gadget chains. https://github.
com/ambionics/phpggc, 2017.

[41] SEN, K., MARINOV, D., AND AGHA, G. Cute: A concolic unit testing
engine for c. In Proceedings of the 10th European Software Engineer-
ing Conference Held Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (New York, NY,
USA, 2005), ESEC/FSE-13, Association for Computing Machinery,
p. 263–272.

[42] SNYDER, P., TAYLOR, C., AND KANICH, C. Most websites don’t
need to vibrate: A cost-benefit approach to improving browser secu-
rity. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (2017).

[43] W3TECH. Usage statistics and market share of wordpress. https:
//w3techs.com/technologies/details/cm-wordpress, 2022.

[44] WANG, F., AND SHOSHITAISHVILI, Y. Angr-the next generation of
binary analysis. In 2017 IEEE Cybersecurity Development (SecDev)
(2017), IEEE, pp. 8–9.

Appendix
Example of Branch-coverage guided path
prioritization

1

2

4

3

5

67

9

8

Figure 5: Control flow graph example for path prioritization

In the sample control flow graph in Figure 5, assuming that
all branches are symbolic, and the green nodes have been

https://marmelab.com/blog/2020/06/02/gremlins-2.html
https://marmelab.com/blog/2020/06/02/gremlins-2.html
https://www.zaproxy.org/
https://www.php.net/manual/en/set.mysqlinfo.php
https://www.php.net/manual/en/set.mysqlinfo.php
https://github.com/nikic/PHP-Parser/tree/master/lib/PhpParser/Node
https://github.com/nikic/PHP-Parser/tree/master/lib/PhpParser/Node
https://github.com/ambionics/phpggc
https://github.com/ambionics/phpggc
https://w3techs.com/technologies/details/cm-wordpress
https://w3techs.com/technologies/details/cm-wordpress

explored, once the two branches from node 3 are identified,
the exploration of the branch towards node 5 receives the
maximum priority of 100, as it has never been explored before.
Moreover, immediate children of node 5 also inherit 20% of
the priority of their parent (i.e., 20) as they are the descendants
of a newly discovered node.

Removal of Object Injection Gadgets

Improper use of deserialization APIs in PHP can lead to
object injection vulnerabilities. This vulnerability allows
attackers to build a chain of function calls through existing
classes in the vulnerable web applications–known as gadget
chains–to mount exploits such as SQL injection, arbitrary file
write, and even remote code execution.

Removal of gadget chains via debloating protects web
applications and complicates the exploitation of object
injection vulnerabilities. We use PHPGGC, a public repos-
itory that tracks the known gadget chains in popular web
applications and third-party packages [40], to identify gadgets
for phpMyAdmin and its third-party packages as well as
WordPress. Their dataset does not include gadgets for HotCRP
and FluxBB and therefore we only report the gadget chain
reduction for phpMyAdmin and WordPress.

We identified three gadget chains for phpMyAdmin and
two for WordPress. For WordPress, both AnimateDead and
LIM successfully removed all gadget chains protecting the
web application against exploits even in the presence of an
object injection vulnerability. In the case of phpMyAdmin,
one out of the three gadget chains remains in the source
code after debloating via both AnimateDead and LIM. This
gadget belongs to the tcpdf library used by phpMyAdmin to
generate PDF files. The gadget chain makes use of the class
constructor in the main module of tcpdf (i.e., tcpdf.php).
phpMyAdmin invokes the constructor of all available
Export modules (including the PDF format) upon using the
database export functionality and as a result, this gadget
chain–correctly–remains in the debloated web applications.

AnimateDead Configuration Options
Our system exposes a list of configurable options that helps

analysts deal with intricacies of web applications and support
the different modes of execution in AnimateDead. At high
level, the list of configurations encompass the following items:
Symbolic parameters: PHP exposes user controlled variables
via HTTP requests in super global variables ($_GET, $_POST,
$_COOKIE and $_FILES). For different types of requests (e.g.,
GET vs POST), we can configure AnimateDead to mark a
different list of variables as symbolic. For instance in GET
requests, we mark cookies as symbolic and POST parameters
as empty, as a result, will explore code paths that rely on
specific cookie values while skipping code paths that rely on
POST parameters. Similarly, for extended logs, AnimateDead

extracts user-controlled symbolic variables from the logs
instead of the configuration file.
Symbolic objects and methods: These refer to elements of
the PHP engine or web applications that need to be “mocked”
at the level of our emulator. We break this into two main cat-
egories: Symbolic PHP APIs and the web application database
abstraction layer. Symbolic PHP APIs are predefined for each
PHP version and its extensions, and therefore only need to be
configured once (already included in AnimateDead). Configur-
ing the web application database abstraction layer is optional
and speeds up the analysis time of AnimateDead by skipping
unnecessary paths and returning symbolic variables from the
database earlier. AnimateDead includes this list for web ap-
plications in our dataset but for new web applications, analysts
are required to provide this optional configuration item.

We provide the list of PHP built-in APIs for AnimateDead.
PHP exposes these APIs through class objects (e.g., PDO
object oriented database APIs), and functions (e.g., mysqli
API). Moreover, to facilitate faster analysis, database abstrac-
tion layers inside web applications (e.g., phpMyAdmin’s
DatabaseInterface or WordPress’ wpdb) can be marked as
symbolic.
PHP environment: these variables allow AnimateDead to
emulate the execution environment of specific PHP versions
and web server environments (e.g., Server headers populated
by Apache). Examples of these variables include PHP built-in
constants such as available modules and their versions.
Moreover, PHP $_SERVER global variable is populated
through this configuration file to return the correct values for
server_name, server_addr, server_port, etc.
Miscellaneous options: These include the maximum number
of iterations for symbolic loops, whether AnimateDead
needs to follow URL-rewriting via .htaccess files, and the
upper bound for forking when matching symbolic variable’s
constraints to file system for file inclusions.

List of tasks covered by Selenium tests
List of tasks automated by Selenium scripts to generate the

entry points for HotCRP and FluxBB.
Our HotCRP Selenium scripts automate the following tasks:

1.Register a new user (author)

2.Login

3.Create a new submission

4.Check the conference deadline

5.Logout

6.Login as the conference chair

7.Auto assign papers

8.Modify conference details

9.Login as reviewer

10.Submit reviews

Our FluxBB Selenium scripts automate the following tasks:

1.Register as a new user

2.Login as the new user

3.Post a new topic on the forum

4.Reply to a thread

5.Delete a reply

6.Modify replies as admin

7.Change user configurations

8.Logout

	Introduction
	Background
	Symbolic Execution

	System Design
	Application Entry Points
	PHP Emulator
	Handling Symbolic Operations and Logic
	Concolic Execution
	Emulation Replay
	Sources of Symbolic Information

	Distributed Concolic Execution
	Path Prioritization

	Debloating the Web Applications
	Correctness Tests During Development

	Evaluation and Results
	Experimental Setup
	Generating the Code-coverage
	Efficient Path Selection

	Debloating Metrics
	Assessment of Correctness
	Automated Random Testing

	Discussion and Limitations
	Related Work
	Availability
	Conclusion

