ThreadLock: Native Principal Isolation Through Memory
Protection Keys

William Blair William Robertson Manuel Egele
wdblair@bu.edu wkr@ccs.neu.edu megele@bu.edu
Boston University Northeastern University Boston University
Boston, MA, USA Boston, MA, USA Boston, MA, USA
ABSTRACT 10-14, 2023, Melbourne, VIC, Australia. ACM, New York, NY, USA, 14 pages.

Inter-process isolation has been deployed in operating systems for
decades, but secure intra-process isolation remains an active re-
search topic. Achieving secure intra-process isolation within an
operating system process is notoriously difficult, but viable solu-
tions that securely consolidate workloads into the same process
have the potential to be extremely valuable.

In this work, we present native principal isolation, a technique to
enforce intra-process security policies defined over a program’s ap-
plication binary interface (ABI) that restrict threads’ access to process
memory. A separate memory protection mechanism then enforces
these policies. We present ThreadLock, a system that enforces these
policies using memory protection keys (MPKs) present on recent
Intel CPUs. We demonstrate that ThreadLock efficiently restricts
access to both thread-local data and sensitive information present
in real workloads. We show how ThreadLock protects data within
3 real world applications, including the Apache web server, Redis in-
memory data store, and MySQL relational database management sys-
tem (RDBMS) with little performance overhead (+1.06% in the worst
case). Furthermore, we show ThreadLock stops real world attacks
against these popular programs. Our results show that native prin-
cipal isolation is expressive enough to define effective intra-process
security policies for real programs and that these policies may be en-
forced without requiring any change to a program’s source or binary.
Furthermore, ThreadLock efficiently enforces these policies with
MPKs, a readily available and easy to use instruction set extension.

CCS CONCEPTS

« Security and privacy — Systems security.

KEYWORDS

Memory Protection Keys; Intra-Process Isolation; Policy Based De-
fenses; Hardware Security; Memory Safety

ACM Reference Format:

William Blair, William Robertson, and Manuel Egele. 2023. ThreadLock: Na-
tive Principal Isolation Through Memory Protection Keys. In ACM ASIA
Conference on Computer and Communications Security (ASIA CCS ’23), July

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’23, July 10-14, 2023, Melbourne, VIC, Australia

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0098-9/23/07...$15.00

https://doi.org/10.1145/3579856.3595797

https://doi.org/10.1145/3579856.3595797

1 INTRODUCTION

Protecting mission critical services and consumer devices from evolv-
ing threats is a vital and unending task. Modern operating systems
and hardware provide robust solutions for inter-process isolation,
but achieving intra-process isolation is less supported by commodity
systems and represents an ongoing research effort. Successful intra-
processisolation techniques can provide significant value by limiting
the security consequences of compromised program components
within an individual process. Furthermore, consolidating multiple
workloads securely within the same process has the potential to
lower operating costs and make more efficient use of computing
resources. Intra-process isolation can take different forms, including
isolating individual code segments and memory to the degree sup-
ported by operating systems and hardware. In this work, we propose
an intra-process isolation policy language for selectively restricting
threads’ access to sensitive data using recent memory protection
hardware features.

Isolating sensitive data used by mission critical services, personal
devices, and embedded systems has previously been accomplished
using secure enclaves [35], control-flow enforcement [3], and hard-
ware memory protection mechanisms [37]. Memory protection keys
(MPK) available in Intel CPUs are a recent addition to Intel’s memory
protection mechanisms. MPKs allow a developer to restrict threads’
access to individual protection domains in a process address space
using a simple interface that introduces low performance overhead.
Prior work has successfully used MPKs to secure sensitive data in ap-
plications through direct program transformations (i.e., annotations)
or to implement intra-process sandboxes.

Prior work has employed this novel primitive to protect the just-
in-time (JIT) Javascript interpreter within a web browser [39], a
browser’s high-performance memory allocators [16], language run-
times [29], and sensitive cryptographic data such as keys used by the
transport layer security (TLS) protocol [28]. These approaches pro-
vide workloads tangible security benefits by preventing adversaries
within a process from accessing or corrupting important applica-
tion data-structures. Furthermore, developers can protect additional
components by introducing annotations at relevant locations within
a source tree.

To limit more capable adversaries or support running untrusted
code, other approaches use MPKs to define full-fledged intra-process
sandboxes [46]. In contrast to isolating data, intra-process sandboxes
isolate individual program modules within a process and prevent
adversaries from observing or modifying process data located out-
side of the sandbox. In this setting, programs may directly benefit

https://doi.org/10.1145/3579856.3595797
https://doi.org/10.1145/3579856.3595797

ASIA CCS ’23, July 10-14, 2023, Melbourne, VIC, Australia

from using MPKs without any changes to their source or binary,
but the program’s execution environment changes significantly to
accommodate sandbox monitors. These monitors are necessary to
verify the activity of untrusted code. This can be done statically,
by scanning instruction sequences in a binary for illegal instruc-
tions [46], or dynamically by defining a hardware monitor that scans
for illegal instructions during execution [19]. Alternatively, strict
system call gates can use nested filtering to prevent adversaries from
evading a sandbox via confused deputy attacks [17, 41]. A more
adaptive sandbox can rely on a ptrace monitor to scan for illegal
instructions by incrementally installing hardware breakpoints at
reachable destinations throughout execution [47].

While prior works have shown MPKs can provide security benefits
to widely used programs, they often require changing the program’s
source code. This can be done through direct source modifications
or through annotations on relevant components that cause compiler
transformations to insert code at build time. Furthermore, MPKs
typically protect extremely high value targets within a process, such
as a web server’s TLS private key [46], but valuable user data may
be left unprotected. The protected software often has a variety of use
cases, and conceiving every useful security policy at build time may
not always be feasible.

Intra-process sandboxes that detect adversaries either through in-
struction scanning or runtime monitoring may not require changes
to a program’s source. However, these methods can require signifi-
cant runtime introspection into the program’s execution. Depending
on an adversary’s capabilities within the sandbox, the cost of intro-
spection may impact the program’s normal operation. As previous
work has shown, this introspection may also be incomplete, and
allow adversaries to break the sandbox by implementing confused
deputy attacks against the operating system kernel [17]. In these
attacks, an adversary can trick the kernel into acting on another sand-
box by calling a seemingly benign system call, such as madvise [41].
Furthermore, an intra-process sandbox may be unnecessary for use
cases that run trusted code and simply need to limit access to sensitive
data within the process.

A compromise between rewriting programs to protect individual
components with MPKs and creating full-fledged intra-process sand-
boxes can be obtained by enforcing intra-process security policies
defined over a program’s application binary interface (ABI). The ABI
encompasses the entire environment necessary to run an individual
program, which includes the external functions a program may in-
voke during execution. This interface permits defining lightweight
security policies that protect sensitive user and application data.
For example, if a developer observes that a thread within a general
purpose program can handle sensitive data, they could author a
policy to grant the thread access using MPKs. Accomplishing this
with previous approaches either requires changing the source code
of a given program or embedding expensive runtime monitors in
production environments where changes that alter a process’ capa-
bilities (to support monitoring) or affect the underlying system may
take significant amount of time to vet. In contrast, simply deploying
an additional library dependency that enforces an intra-process se-
curity policy can be done without changing a program nor altering
internal data-structures. Furthermore, policy enforcement is limited
to intercepting external function calls, as opposed to monitoring the
internal details of a whole process.

William Blair, William Robertson, and Manuel Egele

We propose native principal isolation, a technique for defining and
enforcing intra-process security policies over native programs’ ABIs.
Native principal isolation policies restrict threads’ access to sensitive
data held by principals. In this work, we consider principals as in-
dividual threads, or entities identifiable from an ABI. For example, a
memory allocator may be identified by an external allocation routine
used by a program. Native principal isolation enforces these intra-
process security policies using a memory protection mechanism.

We present ThreadLock, a system for enforcing native principal
isolation policies using MPKs available on recent Intel CPUs. To
evaluate ThreadLock’s ability to implement intra-process isolation
on real workloads, we author native principal isolation policies for
the widely used Apache web server, Redis in-memory data store, and
MySQL relational database management system (RDBMS). These
programs are natural candidates for evaluating ThreadLock since
they both support multi-threaded modes of operation, and, in the
case of Redis and MySQL, exercise ThreadLock’s ability to protect
both thread-local and sensitive data shared across multiple threads.
All of these applications are widely used, either to power 32.1% of
public websites [12], to perform inter-process communication (IPC)
in distributed system components, or as a web application’s database
server. We argue that these applications’ wide production use and di-
verse domains make them suitable for evaluating ThreadLock’s abil-
ity to enforce intra-process security policies. Previous approaches
overcome the limited number of protection domains available in
hardware by virtualizing MPKs. Virtualizing MPKs increases the
number of available protection domains. This increases the number
of principals a policy can use. ThreadLock could benefit from prior
works that make MPKs a virtual resource in the kernel [38], split
applications into virtual machine sandboxes [24], or carve out virtual
domains in processes [51].

During our evaluation, we measure the performance overhead
incurred by enforcing these policies while stress testing each individ-
ual program. Furthermore, we confirm that ThreadLock successfully
stops real world attack vectors that are documented by assigned
CVEs. We argue that these results show native principal isolation is
expressive enough to define effective intra-process isolation policies
for general purpose workloads and that ThreadLock enforces these
policies efficiently.

In summary, we make the following contributions in this paper.

e We introduce native principal isolation as a generic technique
for defining intra-process policies using a program’s ABI and
enforcing these policies using memory protection primitives
(see Section 3). Native principal isolation requires no modifica-
tion to a program’s binary, source, or internal data-structures
which makes it ideal for protecting real world programs.

We introduce ThreadLock, a system that enforces native prin-

cipal isolation policies using MPKs available on recent Intel

CPUs.

e We present our prototype implementation of ThreadLock
which we evaluate over 3 widely used programs, including the
Apache web server, Redis in-memory data store, and MySQL
RDBMS. We show that ThreadLock isolates memory holding
sensitive application data (i.e., rendered application response
data, data store contents, and user credentials). Furthermore,
the performance overhead incurred by ThreadLock is limited

ThreadLock: Native Principal Isolation Through Memory Protection Keys

and is often comparable to the baseline. Throughout our eval-
uation, we observed the performance overhead stay below
1.06%.

In the interest of open science, the source code for ThreadLock
can be found online!.

2 BACKGROUND AND THREAT MODEL

In this section, we provide background on memory protection keys
(MPK). We demonstrate how MPKs provide a convenient intra-
process isolation mechanism for protecting data. In addition, we
discuss the threat model we assume in this work.

2.1 Memory Protection Keys

Memory protection keys (MPKs) are a recent feature added to Intel
CPUs that allow operators to restrict an individual thread’s access
to a process address space. MPKs are supported by an additional
4-bit field to the page table entry within the memory management
unit (MMU) available on recent Intel CPUs. Every page table entry
that maps a virtual page to a physical page contains a protection key
entry at bits 59-62. Every page assumes a value of 0 by default, and
the kernel can assign a given page to any of the 16 protection key
domains using privileged instructions. A protection key is a value
that refers to one of these 16 domains, and a protection domain refers
to all the pages associated with a given protection key.

On recent kernels, user processes may also alter a page’s protec-
tionkey using a variant of themprotect systemcall. Each CPU thread
in a user space process holds a protection key register for user pages
(PKRU) that designates the thread’s protection key permissions. The
PKRU register represents a bitmap of permissions for each protection
key, where each protection key k occupies two bits in the bitmap, one
to designate access permissions and a second for write permissions.
Whenever the CPU executes a load or store instruction, the CPU
will obtain the relevant page’s protection key k from the MMU and
consult the appropriate bitlocated in k’s position in the PKRU register.
When a load instruction is executed, then the “access’ bit is checked.
Likewise, the “write” bit is checked when the CPU executes a store in-
struction. In either case, if the bit is set, the instruction is denied, and
the hardware raises an interrupt. This causes the operating system to
send a segmentation violation signal to the thread’s process which
will, by default, stop the process. Otherwise, the operation is allowed.
User space programs may change a thread’s permissions by writing
to the PKRU register using a special wrpkru instruction. In addition,
the xrstor instruction can escalate PKRU privileges with malicious
processor state. While 16 keys are available for restricting access and
writes, protection domain 0 is the default domain for all pages. Re-
stricting access to protection domain 0 may inhibit programs’ normal
operation, since a thread would no longer be able to read from or write
toany memory bound to the default domain. This restriction may ben-
efit some use cases, but in this work all threads retain access to protec-
tion domain 0 to ensure the protected program’s normal operation.

In Figure 1, thread X is configured to access and write the protec-
tion domain k’s pages. However, MPKs prevent a malicious thread Y
from doing the same. In this setting, a developer has configured PKRU
for thread X to have full access to pages marked with protection key k

Uhttps://github.com/BUseclab/threadlock

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

by clearing the relevant bits reserved for k in X’s PKRU register. Like-
wise, thread Y is denied access by setting each bit for protection key
k in Y’s PKRU register. This allows thread X to both access and write
pages marked with protection key k. However, ifan adversary were to
cause thread Y toread or alter protection domain k’s pages in any way,
the MMU will observe that Y’s PKRU forbids this interaction and will
cause a segmentation violation in response. This prevents any disclo-
sure or corruption of thread X’s data by another thread running in the
process. In Section 3, we use this simple primitive to define a policy
language that allows developers and operators to isolate individual
threads and data using intra-process security policies (see Section 3).
ThreadLock takes such an intra-process security policy and synthe-
sizes a shared library that enforces the policy on the target workload.

2.2 Policy Based Defenses

In this work, we propose that developers define intra-process se-
curity policies that allow ThreadLock to restrict access to sensitive
data within a program. Previous works have also proposed protec-
tion mechanisms that require authoring security policies tailored
to a program. Requiring developers to author security policies is
in line with prior research. For example, using MPKs to restrict ac-
cess to sensitive pointers requires stateful policies to define which
pointers must be restricted, and access policies can vary between
programs [27]. Section 6 describes additional security defenses that
require developers to author security policies.

2.3 Design Assumptions and Threat Model

One limitation imposed by MPKs is that each page table entry can
only be associated with a single protection key. Therefore, multi-
threaded programs that allocate memory with page level granularity
are best suited for ThreadLock. Multi-threaded programs that allo-
cate memory with smaller granularity can also benefit from Thread-
Lock by treating allocation routines as trusted components. This en-
ables more applications to use ThreadLock, but with the drawback of
incurring less isolation between threads. In Section 5 we show exam-
ples of how popular multi-threaded programs like Redis and MySQL
benefit from selectively granting threads access to sensitive data.
In this work, we assume the following threat model.

o The adversary’s primary goal is to disclose or corrupt sensi-
tive data. Sensitive data may be held within a victim thread or
within a program component, such as a credential store. For
example, an unprivileged user could escalate their privileges
by obtaining an administrator’s security token held within
a separate thread.

To this end, the adversary can statically inspect the protected
program and all of its library dependencies.

o The adversary can influence the program through a remote
socket. We do not assume the adversary has any control over
the victim process’ command line arguments or files on the
system, beyond what he can influence through a socket.
Finally, the adversary has access to a vulnerability in the pro-
gram or any of its libraries that allow him to either disclose
or corrupt data held by principals, but the adversary has no
ability to execute arbitrary code.

We emphasize that the adversary lacks any ability to hijack con-
trol of the process protected by ThreadLock; his main objective is to

https://github.com/BUseclab/threadlock

ASIA CCS ’23, July 10-14, 2023, Melbourne, VIC, Australia

William Blair, William Robertson, and Manuel Egele

k phys addr

wla| [wla| [w[A
1 11| |o
k

o

-
—

6259 50 12 0
Page Table Entry

Page Table

Thread Y Memory Management Unit

Figure 1: Memory protection keys (MPKs) isolating memory belonging to individual threads.

PKRU X Access
PKRU[K].A = 0 Access
A - Access W[A W[A W[A . k
W - Write 1{1| [o]o]| f[o]o Write PKRU[K].A
PKRU[K].W = 0
15
Thread X Page
program P:=p
policy p = prprid stmt
symbol sym
ABI function function
address ?

principal identifier prid::=sym| function| ¢

principal pra=thread| abstract

operation op:=tag|untag | grant|revoke

type ru=0|sym|opt|r—>7T

statement stmtz:=(function,t) | loop stmt| { op,prid)

Figure 2: The native principal isolation policy syntax.

Input Process ThreadLock
N C—1C T 1o 1
é @ Stack Thread-Local Data Data Store
:;‘ Policy %, Program User Space Pages
4 % Library Y | {~""71° """ TTTTTTTTC Kemelspace 7777
s Shared .

thread T: Object Finite i1 2 3 . 15 %
grant(D) Files ~Automata i
tag alloc() (ABl) (FA) pkey_alloc Memory Protection Keys

Figure 3: An overview of ThreadLock enforcing a native
principal isolation policy over individual threads. Each
thread is assigned its own protection domain.

disclose or corrupt sensitive application data. This implies that the ad-
versary cannot gain the ability to issue either the wrpkru or xrstor
instructions to escalate privileges and fetch victim data. Utilizing ex-
isting control-flow integrity (CFI) mechanisms [13] like those found
within Intel control-flow enforcement technology (CET) [44] can
help realize this restriction. In some cases, indirect branch tracking
(IBT) provided by CET may be too course-grained, CET hardware
is unavailable, or the operating system has not yet made full use
of CET’s features [10]. In these cases, efficient software-based CFI
mechanisms can be used instead [5].

3 OVERVIEW

In this section, we introduce a novel intra-process security technique
called native principal isolation which restricts threads’ access to
memory by enforcing policies over production binary artifacts. We
present a syntax and semantics for defining native principal isolation
policies using a program’s ABI. Finally, we describe a motivating pol-
icy that isolates both thread-local data and sensitive global memory
in a relational database (see Section 3.2).

3.1 Native Principal Isolation

Native principal isolation uses a memory protection mechanism to
enforce intra-process isolation policies defined over a multi-threaded
binary program’s application binary interface (ABI). In this work, we
consider policies restricted to the external symbols imported by a bi-
nary program which makes up a single component of the program’s
ABI [4]. The principals given in each policy are represented as either
individual threads running in a workload or abstractions that share
data amongst threads, such as a memory allocator. Native principal
isolation transforms each policy into a finite automaton (FA) for
enforcement. In this work, we assume a deterministic FA. The FA
intercepts calls to functions in a program’s ABI that are referenced
by a policy. A function from the program’s ABI is referred to as an
ABI function. Each state in the FA represents a location in the policy,
and edges represent policy statements. The syntax of native principal
isolation policies is shown in Figure 2. In the following, we describe
the semantics of this policy language.

Every ThreadLock policy consists of one or more policies assigned
to specific principals. Principals and their associated policies are de-
clared via pr. A principal may either be abstract or a thread. Abstract
principals contain policies for specific ABI functions independent of a
calling thread (e.g., a shared memory allocator’s functions). Abstract
principals are identified by a symbol sym which uniquely identifies
the principal in the ThreadLock policy. A thread principal associates
a policy with a specific thread entrypoint. The thread entrypoint can
refer to a specific ABI function function or an address ¢ that points
to a function in memory. In either case, ThreadLock uses the address
of the entrypoint to activate the thread’s policy after thread creation
(see Section 4.3). Each principal policy consists of a sequence of state-
ments stmt. The sequence stmt describes when and how to restrict
the thread’s access to memory. Each statement may refer to an ABI
function given by function. A called ABI function matches a state-
ment if the statement contains an ABI function (e.g., (function,z))
and function equals the called ABI function. Loops may be defined
with the loop statement. Every loop iteratively enforces a sequence
of statements stmt indefinitely by default. The loop only stops once
the program calls an ABI function that matches a statement that
follows the loop.

When the program calls an ABI function, ThreadLock first checks
whether the ABI function matches an abstract policy. Since abstract
principals are not associated with a specific thread, their policies are
naturally stateless. For this reason, ThreadLock always attempts to
match any policy statements for abstract principals. If a called ABI
function does not match an abstract policy, ThreadLock enforces the
current thread’s policy. After thread startup, ThreadLock maintains
a “current” state for the policy. In addition, one or more outgoing
edges from the “current” state denote candidate policy statements.

ThreadLock: Native Principal Isolation Through Memory Protection Keys

ThreadLock compares the called ABI function to one of these can-
didate statements. If the ABI function matches the statement of an
outgoing edge, ThreadLock evaluates this statement and advances
the “current” state to the destination of the edge. Evaluating a state-
ment performs any operations embedded within the statement. For
example, given the statement (function,r), ThreadLock examines the
type signature 7 for any operations that either restrict or allow access
to memory. If op 7 is found within the function’s type signature, then
ThreadLock performs op on the value that corresponds to 7. The
operation op may be applied to either a function argument or a re-
turn value. The recursive definition of 7 allows ThreadLock to easily
match operations to function arguments. If the operation refers to
an argument, ThreadLock performs the operation on the argument
before calling the ABI function. For return values, the operation is
performed after the ABI function returns. The only operations al-
lowed on function arguments are tag and untag. When performing
an operation, ThreadLock examines 7 for an argument that denotes
the operation’s size (i.e., a built-in symbol called n). For example,
tag mmap(0,n), causes ThreadLock to tag n bytes returned by mmap.

In some cases, a policy may contain an operation along with a sym-
bol {op,prid). These statements are useful for defining cooperative
policies where threads temporarily escalate permissions in between
ABI function calls. Such policies are cooperative since developers are
expected to limit threads’ access to sensitive shared resources. The
operations allowed in these statements are grant and revoke. The
grant operation provides the thread access to the domain associated
with the principal given by prid and revoke removes access to the
domain. These constructs are useful for designating privileged crit-
ical sections within a cooperative policy and designating untrusted
threads as unprivileged. In this setting, a critical section is a policy
segment where a thread escalates their privileges to sensitive mem-
ory. In order to simplify authoring policies, the wildcard symbol (O0)
allows a developer to refer to all threads outside of the policy, or to
refer to irrelevant function arguments.

A memory protection mechanism is required to carry out the op-
erations specified in a native principal isolation policy. This memory
protection mechanism must also enforce tagging rules by preventing
invalid accesses and writes to tagged memory. Once a memory page
is tagged to a given principal, the memory protection feature must
ensure that the principal maintains proper access to tagged memory.
Note that the memory protection feature can be implemented in soft-
ware, for example as a compiler pass that limits threads’ view of mem-
ory [26]. Native principal isolation may also use protection features
available in hardware in order to implement operations supported
by our syntax. Such hardware features must be capable of restricting
individual threads’ access to memory. MPKs provide a convenient
mechanism that allows programs to selectively grant threads read or
write access to a principal’s data. Figure 3 visualizes ThreadLock pro-
tecting an individual program with MPKs by enforcing a native prin-
cipal isolation policy provided by a developer. In this example policy,
the developer has designated a principal T, which represents a thread,
to access all memory belonging to the principal D, which represents
a data store. Furthermore, the thread T maintains exclusive access to
its stack and thread-local data returned by the alloc function, which
the policy binds to T. If a compromised principal S were to access
or write to either T’s stack, thread-local data, or D’s data store, then
MPKs would cause the operating system to terminate the program in

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

User

u N Manager

§M|||"|||

> -
g —
A —

Admin

(L
(L

Database

Figure 4: MPKs preventing a compromised user thread from
escalating privileges in a database server.

response. Hardware implementations of MPKs may provide a limited
number protection keys. To address this limitation, prior works have
proposed MPK virtualization approaches that can make more do-
mains available to native principal isolation policies (see Section 7).

Native principal isolation policies can define narrow and coop-
erative scopes that accurately restrict access to sensitive data, which
may be either thread-local or global to a process. Enforcing narrow
scopes helps avoid the risk of over tagging memory. Over tagging
memory to a principal may lead to false positive violations if multiple
principals act on data that is mistakenly assigned to a single principal.

3.2 Database Access Control

As a motivating example, consider the database server visualized in
Figure 4. In this setting, a pool of worker threads fulfill client queries
by interacting with a manager thread that enumerates the B-trees
that represent database indexes. Whenever a thread issues a query on
behalf of a user, the manager checks the user’s token to ensure that
the user may perform the operation. ThreadLock reinforces the data-
base’s existing access control mechanisms by isolating data between
different principals. In this example, a principal is either an individual
thread, or the database D.In Figure 4, principals U and A are assigned
to the unprivileged user and administrator connection threads, and
principal M is assigned to the manager thread. That is, the principal
associated with each thread is given in the lower right corner of each
thread in Figure 4. Note that every principal is assigned its own pro-
tection domain from the chosen memory protection mechanism (see
Section 4). Therefore, every thread created by ThreadLock is assigned
its own protection domain. Furthermore, each abstract principal,
such as a database, is also assigned a single protection domain. For ex-
ample, Principal D is assigned to the database, and the pages that back
the B-tree are bound to D. The policy language allows developers
to designate that specific threads share a domain. This is helpful for
grouping trusted threads together in a single domain. With trusted
threads sharing a domain, more hardware protection keys can be
assigned to untrusted threads that handle adversarial inputs. This
is helpful for restricting untrusted threads in a MySQL database (see
Section 5). The policy given in Figure 5 isolates connection threads.
The trusted manager principal M is granted full access to D.

When an adversary accesses the server through a victim thread
suppose they exploit a vulnerability that allows them to read from

N O R W =

ASIA CCS ’23, July 10-14, 2023, Melbourne, VIC, Australia

abstract database: 8 thread connection:
tag mmap(_, n, _) 9 loop:
munmap (untag p, n) 10 read(_);

thread main: 11 grant (database);
revoke (_) 12 close(_);

thread _: 13 revoke (database);

grant (database)

Figure 5: A native principal isolation policy that selectively
grants threads access to an internal database.

another thread’s stack. This could allow an adversary to steal an
administrator’s authentication token. However, ThreadLock isolates
individual thread stacks and pages allocated by principals. While
enforcing this policy, the MPK hardware observes that principal U
cannot access principal A, and stops any attempt at disclosure. If an
adversary attempts to disclose any sensitive information stored by
principal M, such as the contents of the database, the MPK hardware
triggers the same response. This shows ThreadLock protecting both
thread-local and sensitive shared data in a process.

Figure 5 shows the textual representation of this policy using the
syntax defined in Figure 2. In this policy, Lines (1-3) designate the
database as an “abstract” principal. The purpose of this declaration
is to provision a protection key for internal database data-structures
and to tag all memory returned by mmap with this protection key
(Line 2). Note that _ is a textual representation of a “hole” (O0) which
is helpful for ignoring function arguments that are irrelevant to a pol-
icy. In this case, the “hole” allows us to ignore the arguments passed
to mmap since the policy is only concerned with the return value.
Should the database unmap pages with munmap, ThreadLock binds
pages to the default protection domain 0 (Line 3). Policy authors can
use the n symbol to denote the length for the corresponding tag and
untag operations. Next, the policy simply revokes the main thread’s
access and write privileges to all principals’ memory (Lines 4-5).
Note that _ allows a policy to grant or revoke access to all principals.
This prevents a compromised “main” thread from stealing an authen-
tication token held by another privileged thread. We can also use _ to
grant privileges to threads that are not named elsewhere in the policy
(Line 6). This allows us to effectively declare a set of trusted threads
as a principal and share memory amongst them. This is necessary in
programs where the number of running trusted threads exceeds the
number of principals supported by a memory protection mechanism.
In this policy, we grant all threads outside the policy access to the
database (Line 7), and restrict untrusted connection threads’ access
(Lines 8-13). Note that loops are inherently stateful, so “;” encodes
a sequence of function calls that must occur.

Since individual connection threads process queries in an infinite
loop, we use the 1oop construct (Line 9) to specify that ThreadLock
can expect to see two symbols alternate while handling connections
(read and close) (Lines 10 and 12). These symbols designate the
start and end of a connection, and we use them to determine when
to grant and revoke access to the database, respectively (Lines 11
and 13). Any attempt to access or modify the database outside of
this critical section or access another principal’s data will result in

William Blair, William Robertson, and Manuel Egele

an exception that kills the process before any data can be disclosed.
Note the critical section is defined by the policy between granting
and revoking access (Lines 11 and 13). A more in-depth evaluation
of a related policy for the MySQL RDBMS is given in Section 5.

4 IMPLEMENTATION

In this section, we describe our prototype implementation of Thread-
Lock which consists of 677 lines of C/C++ code. First, we provide
an overview of how our prototype may be deployed. We show how
ThreadLock transforms a native principal isolation policy into an FA
that, during program execution, enforces a policy. Prior to enforce-
ment, ThreadLock must correctly configure the PKRU to restrict new
threads’ access to memory according to the policy. Finally, we de-
scribe how ThreadLock selectively isolates program memory using
recently introduced system calls and instructions.

4.1 ThreadLock Deployment

The current prototype implementation of ThreadLock generates a
shared object file that wraps individual functions in the protected
binary in order to isolate individual principals. This requires inter-
cepting calls to functions that spawn threads, and to library functions
specified by the policy. We use the LD_PRELOAD environment vari-
able to intercept functions. We emphasize that in a real deployment
of ThreadLock, an operator could avoid using LD_PRELOAD by em-
bedding the shared object file emitted by ThreadLock into a system
folder to be loaded by the linker. An alternative implementation
of ThreadLock could enforce policies by inserting instrumentation
through a compiler pass [32] or via binary rewriting [50].

4.2 Policy Synthesis and Enforcement

Given a native principal isolation policy that outlines how to protect
a workload’s principals, ThreadLock must synthesize C code to en-
force the policy. To do so, ThreadLock simply transforms the policy
provided by the developer into a series of stand alone C functions
that intercept ABI functions given in the policy’s statements. Recall
the policy language in Section 3 permits a developer to isolate data
across different threads identified by their start_routine function.
A hook in the generated code around pthread_create ensures that
a protection key is provisioned for each thread or shared amongst
a set of threads. This also allows ThreadLock to apply portions of the
policy relevant to thread initialization (see Section 4.3). If start_-
routine refers to a function given in the policy, the hook creates an
FA to enforce the policy and associates the FA with the newly created
thread. Additional details on policy enforcement may be found in
the Appendix (see Section A.1).

4.3 Isolating Threads

The widely used POSIX threads (pthreads) library provides pro-
grams the ability to spawn individual threads that execute code con-
currently. In the program generated by the synthesis stage, Thread-
Lock defines a stub that intercepts every call to pthread_create.
Intercepting the call to pthread_create is necessary to enforce a
policy within a new thread using a trampoline visualized in Fig-
ure 6. Upon entering the pthread_create stub, ThreadLock first
allocates a small buffer that stores the attr, start_routine, and
arg pointers that the program passed to the stub. Next, ThreadLock

ThreadLock: Native Principal Isolation Through Memory Protection Keys

pthread_create(attr, start_routine, arg): trampoline(buf):
buf = {attr, start_routine, arg} k = pkey_alloc(..)
1 wlA w|A w|A
libc_pthread_create(trampoline, buf) —>i RSP 1]1 oo oo
2 k 15 k 0
stack pages PKRU
3 start_routine(arg)

4 pkey_free(k)

Child Thread

Parent Thread

Figure 6: A trampoline that allows ThreadLock to isolate a
thread using a protection key obtained from the operating
system.

calls pthread_create, but provides an internal trampoline func-
tion called threadlock_enter as the new thread’s start_routine
function (Step 1).

ThreadLock passes the buffer containing the originalattr,start_-
routine, and arg pointers as the argument to the trampoline. After
the new thread begins, the trampoline obtains the three pointers
givenin the buffer, and then frees the buffer. The trampoline must now
restrict the new thread using an MPK provisioned for the thread (Step
2). Thisimplies that each thread is assigned its own distinct protection
key. Note that a policy may cause multiple trusted threads to share the
same protection key. This is beneficial when the number of threads
outnumber the protection keys available in hardware. In Section 7 we
present alternative solutions to the limited hardware protection keys.

The trampoline allocates a protection key k from the operating
system using the pkey_alloc library function and system call. These
are available in recent releases of the Linux kernel and the GNU C
Library (glibc). ThreadLock binds the thread’s stack pages to pro-
tection key k using the pkey_mprotect system call. This system
call allows ThreadLock to associate all of the thread’s stack pages
to protection key k. After calling pkey_mprotect on the stack, any
thread that is forbidden from accessing protection key k’s pages will
then crash when attempting to read from or write to the new thread’s
stack. ThreadLock stores the protection key k in thread-local memory
using pthread_setspecific. The dual of this function, pthread_-
getspecific, allows ThreadLock to obtain protection key k later
on while enforcing policies.

Next, ThreadLock initializes the PKRU register to permit access
only to memory bound to the new thread’s protection domain and
the default domain 0. Recalling the semantics of the PKRU given in
Section 2, we configure the PKRU in the trampoline using the follow-
ing procedure. First, define a bitmask mask=(0x3<<(2xkey) | 0x3).
This bitmask contains values of 1 in the access and write positions
for the protection key entries for k and 0 within the PKRU. We can
disallow both access and writes to other domains by computing the
bitwise negation of this mask (~mask) and storing the negated mask
in the PKRU register by using the wrpkru instruction. Recent Linux
kernels also save and restore the value of the PKRU during context
switching, so once ThreadLock sets the PKRU register for a thread it
will be preserved unless altered by the policy.

Once the memory protection key restrictions are in place for
the new thread, the trampoline must obtain the function that the
start_routine parameter refers to in the program binary. This is
necessary in order to determine which part of the program’s pol-
icy applies to the newly created thread. In general, this cannot be

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

determined statically since programs may assign the location of
dynamically generated code to start_routine. In this work, we
recover the function given by start_routine by consulting a bi-
nary’s . text section (see Section A). Once the function is obtained,
the trampoline checks whether a policy exists for the function. If a
policy exists, the trampoline initializes an FA to track the execution
of the relevant policy, if necessary, and store the FA in thread-local
memory with pthread_setspecific.

Following this initialization procedure, the now restricted tram-
poline calls the original start_routine function with the original
arg pointer as input (Step 3). Thereafter, any attempt to access mem-
ory outside of protection domain k or 0 will yield a segmentation
violation and the operating system will, by default, terminate the
process in response. Once the start_routine function completes,
the trampoline deallocates the protection key k by calling the pkey_-
free function (Step 4). This is necessary to ensure that future threads
can utilize protection key k after a thread exits. Additional details
can be found in the Appendix (see Section A.1).

4.4 Policy Operations

While ThreadLock automatically hardens individual threads’ stack
pages, pages allocated by threads may benefit from protections of-
fered by MPKs. Since threads may share access to memory pages,
protecting these shared pages without incurring false positives is
accomplished with cooperative policies. In general, ThreadLock can-
not know a-priori whether a given page allocated for heap data will
be accessible solely by a thread. For example, a thread may use a page,
and then recycle the page to be used by another thread. Instead of
re-designing existing memory allocators to accomodate MPKs’ page
level granularity, our policy language allows a developer to choose
when a thread should access sensitive data through cooperative pol-
icy scopes. This assumes that sensitive pages are allocated by ABI
functions imported by the protected program, and thus can be inter-
cepted by ThreadLock. Cooperative scopes require implementing the
operations presented in Section 3. During thread execution, the gen-
erated function stubs handle transitioning between individual policy
states using an FA. Upon encountering a “tag” or “untag” operation
in a policy, the FA needs a way to associate or disassociate a given
page with the thread’s protection key k. On recent Linux kernels,
both of these operations can be accomplished by calling a variant of
the mprotect system call, pkey_mprotect. Given a pointer to the
memory pages to “tag”, the FA will invoke pkey_mprotect on the
memory chunk using protection key k. To “untag”, the FA invokes
pkey_mprotect using protection key 0, which effectively returns the
pages to all threads. The number of bytes for each operation is taken
from the function parameter labeled with the symbol n in the policy
statement. For example, the statement tagalloc(n) causes pkey_-
mprotect to be called on n bytes starting from the pointer returned
by alloc. Details on granting and revoking permissions within co-
operative scopes can be found in the Appendix (see Section A).

5 EVALUATION

In this section, we seek to answer the following research questions.

RQ1: Can ThreadLock protect real world applications without com-
promising performance?

ASIA CCS ’23, July 10-14, 2023, Melbourne, VIC, Australia

William Blair, William Robertson, and Manuel Egele

Program Version No. of Network Threads Policy Description Attack Vector CVE

Apache 2.4.41 15 Isolate dynamically allocated thread memory Memory Disclosure ~ CVE-2014-0160
Redis 7.0.4 5 Grant worker threads access to data store Memory Corruption CVE-2020-14147
MySQL 8.0.31 13 Isolate connection threads from internal memory Privilege Escalation = CVE-2022-21617

Table 1: ThreadLock policies that protect against real world attack vectors on popular programs and the number of initial threads

that handle network inputs.

RQ2: Can enforcing native principal isolation policies with Thread-
Lock provide security benefits to real world applications?

Answering both RQ1 and RQ2 are important to prevent Thread-
Lock from interfering with protected applications, and to ensure
ThreadLock can mitigate real world attack vectors. To answer these
questions, we define ThreadLock policies that restrict access to mem-
ory held by principals in the widely used Apache web server, Redis
in-memory data store, and MySQL RDBMS. Section 5.1 describes the
configuration used for our experiments. Section 5.2 describes our
performance evaluation for each application. Overall, we show that
ThreadLock’s performance overhead is minimal for each workload
included in our evaluation. Finally, Section 5.3 shows the security
benefits of ThreadLock by mitigating exploits against vulnerabilities
documented by CVEs in our evaluation artifacts.

5.1 Experimental Set Up

We evaluated ThreadLock on an Ubuntu 20.04LTS server with 8 Intel
Xeon Platinum 8275CL CPUs and 32GB of RAM. Table 1 summarizes
the ThreadLock policies used in our evaluation. We argue that these
policies show ThreadLock can protect real-world multi-threaded
workloads across different domains, and enforce diverse policies,
including isolating individual threads’ memory and selectively grant-
ing individual threads access to global data. For each application, we
evaluated ThreadLock using the production binary files available on
Ubuntu 20.04LTS.

We configured each application in our evaluation to limit the
number of threads that handle network inputs. This is done to isolate
threads that handle untrusted data using the limited protection keys
available to each process. Reducing the number of threads may limit
the number of threads available for handling requests. However, an
operator can increase the number of threads available by increasing
the number of application processes (e.g., increase the number of
child processes started by Apache or spin up more Redis servers)
but cap the number of threads in each process. Since process startup
is slower than thread startup, this may incur some performance
penalty. However, provisioning the necessary number of processes
beforehand ensures threads can be managed within each process. In
some cases, as with Redis and MySQL, the initial number of worker
threads is less than the number of available protection keys. This is
necessary to ensure background threads may be protected, and that
the server may start up new worker threads during times of high
load. In the following, we describe our ThreadLock policy for MySQL,
which is similar to the example policy presented in Section 3.2.

MySQL Policy. In contrast to the other applications included in our
evaluation, MySQL’s default configuration spins up more than thirty
threads on start up to manage the operation of the InnoDB database
engine and to monitor the database’s normal operation. This implies

that a blanket ThreadLock policy that assigns a protection key to
each thread will quickly exhaust all the protection keys available
before isolating the connection threads that interact with remote
adversaries. In order to protect these connection threads, we define
a policy that assigns a protection key to each connection thread.
The policy then provisions a shared internal protection key for all
other “internal” threads. Each connection thread only has access to
its stack and protection domain 0. Each “internal” thread has access
to all internal and connection threads’ stack memory. We found
that it is necessary to provide “internal” threads access to connec-
tions’ memory while querying information from the database. That
is, denying “internal” threads’ access to connection thread stacks
quickly crashed the MySQL server with false positives while query-
ing database tables with the SELECT command. Section 5.3 presents
a concrete privilege escalation attack vector thwarted by this policy.
Further details can be found in the Appendix (see Section A.3).

Mean Time Per Request (ms)

Clients Apache Apache (TL)
32 31532 +£1.35 315.01 +1.44
64 633.45 +3.81 634.30 +2.77
128 1,267.22 £5.21 1,266.71 +4.49
256 2,535.34 +13.12 2,553.75 +28.67
512 5,054.10 £18.06 5,075.09 +26.62

Table 2: Mean and standard deviation of the mean time per
request for clients issuing 10k requests to a baseline front-end
Apache server and a server protected by ThreadLock (TL).

5.2 Performance Benchmarks

In this section, we evaluate the performance overhead of ThreadLock
by stress testing our evaluation artifacts using standard benchmarks.

Apache. In order to measure the performance impact incurred by
ThreadLock on Apache, we ran the Apache Benchmark (ab) test suite
on both an unprotected baseline Apache server, and a server pro-
tected by ThreadLock. In this experiment, we set up an Apache web
server to act as a front end server for a Wordpress 6 installation (the
latest version). Next, we measured the server’s response time as we
increased the number of concurrent clients visiting the front page of
the Wordpress site a total of 10,000 times. We repeat this experiment
10 times for each number of clients. Table 2 summarizes the aver-
age mean time per request and standard deviation in milliseconds
(ms) for each configuration. Overall, applying ThreadLock to the
server did not degrade the server’s performance. In fact, the server’s

ThreadLock: Native Principal Isolation Through Memory Protection Keys

performance is often comparable to the baseline. Furthermore, the
overhead imposed by ThreadLock did not increase even as the num-
ber of clients communicating with the server increased and placed
greater pressure on individual threads. In the worst case, we observed
1.06% overhead on the Apache server’s mean time per request.

Redis. In this section, we measure the performance overhead while
pushing a Redis instance protected by ThreadLock to its limits. To do
so, we stress a Redis server with the redisbench utility which allows
us to apply a configurable amount of load to the Redis server. The load
placed on the server is given by the product of the total number of
clients started by redisbench, a constant that represents the object
size created by each client, and the total number of objects each client
creates. In this experiment, we found that choosing a combination of
these parameters to generate a 27GB data-store maximized the load
on the server without exceeding the machine’s memory. Increasing
the total size of the data store beyond this threshold quickly caused
the out of memory killer to terminate the Redis server, both in the
baseline and ThreadLock configuration. In order to keep consistent
load on the server, we decreased the amount of objects created by
each client as the number of clients increased.

Table 3 compares this benchmark’s mean runtime and standard
deviation on both a baseline Redis server and one protected with
ThreadLock. In this experiment, we ran the benchmark 10 times
on each server. These results show that ThreadLock can protect a
multi-threaded Redis server with negligible overhead. In this case,
we observed a 0.04% in the benchmark’s runtime on average while
protecting Redis with ThreadLock.

Mean Time Per Benchmark (s)

Clients Redis Redis (TL))
64 16.39 +0.06 16.41 +0.11
128 25.87 +£0.17 26.02 =+0.12
256 41.10 +0.98 41.14 +0.94
512 73.78 +0.47 73.53 +0.68

1,024 118.29 +0.98 118.26 +0.68

Table 3: Mean and standard deviation of the redisbench
benchmark’s runtime while storing the maximum amount
of data into a baseline Redis server and a server protected by
ThreadLock (TL).

MySQL. To profile the performance overhead of ThreadLock on
MySQL, we utilize the sysbench utility to create large amounts of
records in a database. Next, we simulate realistic load on the server
by having the maximum number of clients query data from the ta-
bles. In this experiment, we use Lua scripts provided by sysbench to
create millions of records in the database, and then utilize separate
scripts to repeatedly issue queries to the database. We argue that this
shows ThreadLock supports the normal operation of the database.
This includes creating the database, adding new records, retrieving
existing records, and deleting the database.

Table 4 summarizes the outcome of this experiment. Overall,
ThreadLock imposed negligible performance overhead, and allowed
the server to perform its operations as normal. Furthermore, the
server often behaves with runtime comparable to the baseline server.

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

Mean Time Per Benchmark (s)
Operation MySQL MySQL (TL))
Bulk Insert 10.15 +0.03 10.13 =+0.03
SelectRange 10.01 +0.01 10.01 =+0.01

Table 4: Mean and standard deviation of the sysbench
benchmark’s runtime while inserting and selecting 1M rows
in a MySQL database protected by ThreadLock (TL).

Since MySQL threads all have their PKRU values assigned during
thread creation and do not change for the lifetime of the server,
traffic submitted to the database avoids the expensive operation
of writing to the PKRU register. This explains the low performance
overhead of using ThreadLock while stress testing MySQL.

5.3 Attack Scenarios

In this section, we evaluate the security benefits of ThreadLock by
describing attack scenarios mitigated in our evaluation artifacts.

Heartbleed Disclosure in Apache. To evaluate ThreadLock’s abil-
ity to protect sensitive data within an Apache server, we reproduced
a proof of concept (PoC) exploit against the Heartbleed vulnera-
bility (CVE-2014-0160) [6]. The Heartbleed vulnerability allowed
malicious clients to disclose up to 64kb of heap memory by tricking
a web server using OpenSSL (1.0.1-1.0.1f) into performing a buffer
over-read while handling heartbeat requests. Before running the
exploit, we confirmed that threads’ protected pages held sensitive
data. We confirmed this by deterministically scanning all protected
pages using our custom PINtool. Running the HeartBleed exploit
against an unprotected Apache web server provides a baseline of
what sensitive data an adversary can disclose using a heap buffer
over-read primitive. If a Heartbleed style attack is unable to recover
information protected by ThreadLock, that provides a small signal
for ThreadLock’s efficacy.

ThreadLock does not prevent adversaries from exploiting Heart-
bleed, since the compromised heartbeat thread can still recover data
presentin buffers unprotected by ThreadLock. In our setting, we were
concerned whether an adversary can find any sensitive data in unpro-
tected buffers. This would easily evade ThreadLock. After running a
Heartbleed attack for over 12 hours, while simultaneously stress test-
ing the server with traffic generated by the Apache Bench (ab) tool,
we observed an adversary could only recover a limited amount of
request data, such as HTTP verb, requested URL, and a fixed amount
of meta-data. Contrast this partial request information to the com-
plete requests, responses, and rendered application content held in
Apache worker threads’ stack and thread-local memory observed
by our PINTool. These results indicate that the glibc heap does not
contain Apache threads’ sensitive data. Otherwise, we would expect
a varying amount of sensitive data to appear after repeatedly dis-
closing 64kb of data from multiple locations on the heap. Therefore,
an adversary would have to obtain sensitive data by accessing pages
protected by ThreadLock. This includes thread stacks or thread-local
memory, which are protected by MPKs. This demonstrates the utility
of ThreadLock, since any attempt to disclose these protected pages
from a heartbeat thread will fail. Additional mitigated heap-based
attack vectors are described in the Appendix (see Section A.2).

ASIA CCS ’23, July 10-14, 2023, Melbourne, VIC, Australia

Poisoning the Redis Data Store. An adversary that corrupts Redis’
internal data-structures can mislead clients that rely on the data
store. This can have serious consequences when Redis is used as a
message broker for transmitting sensitive messages between ser-
vices. For Redis configurations that rely on access control lists (ACLs)
to prevent unprivileged users from writing to the data-store, these
corruption attacks allow adversaries to circumvent existing security
mechanisms provided by Redis. For example, a vulnerability docu-
mented by CVE-2020-14147 [8] and CVE-2015-8080 [7] permit an
adversary to perform a stack-based buffer overflow by taking advan-
tage of a type confusion error within the Lua interpreter embedded
in Redis. This allows an adversary to write a value of their choice to
any address located above a victim stack frame by simply evaluating
a Lua expression via the EVAL command [1]. During our evaluation,
we confirmed that the vulnerability in EVAL allows an adversary to
reach data store pages from worker threads via a stack based buffer
overflow, and that MPKs configured by a native principal isolation
policy prevent a successful corruption. More details are given in the
Appendix (see Section A).

Privilege Escalation in MySQL. A MySQL database often accom-
modates multiple clients with a variety of privileges. After a client
logs in, the connection thread started for the client receives a pointer
to a security context that stores the client’s authentication token.
When the client issues a query from the connection thread, the
thread’s security context determines the client’s visibility into the
database. For example, if an unprivileged client logs into the data-
base, their security context will be unable to delete records stored in
atable or query sensitive information stored in administrative tables.
However, if an adversary can peak into memory held by another
thread, they could steal a logged in administrator’s security context
in order to escalate privileges. We show how ThreadLock can prevent
compromised threads from stealing account credentials by isolating
access to thread stacks and internal memory. For example, consider
the issue present in CVE-2022-21617 [9], where a vulnerability in
the server’s connection manager allows an attacker with low privi-
leges the ability to read the contents of server memory. Successfully
exploiting the connection manager allows the adversary to read
memory from the “main” thread of execution. ThreadLock prevents
this attack by configuring the PKRU register for “main” to permit
access only to protection domain 0 (i.e., the default domain). In-
stead of implementing an exploit against the vulnerable connection
handler, we simulate a successful exploit in line with prior security
evaluations [39] by adding malicious behavior to the connection
handler. Once our “compromised” connection handler reads from
an active connection thread’s memory, ThreadLock terminates the
server process before an adversary can steal user credentials.

6 RELATED WORK

ThreadLock relates to prior work in three main categories, memory
defenses, policy based defenses, and intra-process isolation.

6.1 Memory Defenses

MPKs provide programs more fine-grained control over the tradi-
tional permissions enforced by the memory management unit (MMU)
on modern CPUs. Without the restrictions imposed by MPKs, every
thread running in a process has the same view of memory provided

William Blair, William Robertson, and Manuel Egele

by the MMU. That is, once a program changes a page’s permissions
to some combination of readable, writable, or executable, then the
MMU enforces those permissions whenever any thread accesses,
writes, or executes that page. This enables protections like W & X
where a page is either writable, executable, but never both. This pre-
vents adversaries from spraying instructions into executable code
regions and helps neutralize stack based shellcodes and JIT spraying.
While MPKs are a recent addition to Intel CPUs, MPKs have existed
in other architectures such as the “storage protect keys” available
on IBM AIX systems [11] or the planned memory tagging exten-
sion (MTE) for ARM CPUs [2]. Furthermore, research platforms
like CHERI explore the feasibility of finer-grained memory access
control at the cost of potentially doubling pointer sizes [14, 36].

An analogy can be drawn between restricting access to memory
with protection keys to hiding memory using the address space
layout randomization (ASLR) defense found in every commodity
operating system [45]. ASLR maps program segments into random
locations at runtime. Instead of isolating program components with
hardware features, ASLR conceals the location of code segments
from a curious adversary. Though randomizing the location of pages
holding executable code and allocated memory makes it difficult for
an adversary to exploit a process, historically ASLR implementa-
tions have encountered practical difficulties [43]. Examples include
allowing brute force attacks from remote adversaries [15] and cache
based attacks [23]. These limitations have spawned numerous im-
provements over the years in an attempt to improve the granularity
of randomization or reduce the amount of information gained from a
disclosure [22, 34, 48, 49]. As prior work has suggested [30], memory
protection keys may have the potential to offer an alternative to
randomized defenses like ASLR.

6.2 Policy Based Defenses

Previous tagging schemes required embedding policies within a
program to describe how to protect sensitive user data. For exam-
ple, tagging user data held within a web server protected by HiStar
required manually applying a policy to the web server’s implemen-
tation [52]. Transforming commodity operating system kernels into
anested design requires designing policies for each modified kernel.
In this setting, a developer must decide when to transfer control over
to a trusted computing base (TCB) to perform critical operations [18].
When using a library OS, application authors also need to specify
which components should be isolated from their workload with as-
sistance provided by the library OS’ build system [33]. While secure
computing enclaves like Intel Software Guard Extensions (SGX) silo
sensitive components from the rest of the system, implementation
bugsin the code that interacts with secure enclaves like SGX can have
dire security consequences, especially in distributed settings. Prior
work has addressed this issue by defining language based approaches
for reasoning over programs’ interactions with an enclave. Similar
to ThreadLock, these approaches require a developer to provide a
policy in order to realize the benefits provided by a security feature.

6.3 Intra-Process Isolation

Secure memory views use compiler instrumentation to establish a
hierarchical view of a process address space to restrict individual
thread’s access to memory regions [26]. While secure memory views

ThreadLock: Native Principal Isolation Through Memory Protection Keys

may be more flexible than the limited protection keys available in
recent hardware, their use requires some instrumentation of the
program. While the limited real estate available in page table entries
leads to only 16 usable MPK domains, prior work has shown MPKs
can be virtualized with the assistance of a custom kernel module [38].
Access to MPKs can be further virtualized by running individual
thread pools within virtual machines which guarantees each thread
located in a pool maintains its own protection key [24].

Instead of isolating access to memory held by individual threads,
prior works have attempted to implement general purpose intra-
process sandboxes using MPKs [25, 46]. While innovative, these
approaches have been shown to be susceptible to security issues
that allow adversaries to break the MPK sandbox abstraction [17].
An Achilles’ heel of MPK based sandboxes is the relative ease with
which an adversary can break out of the sandbox by issuing awrpkru
or xrstor instruction or by issuing system calls to interfere with
other sandboxes. More recent work has addressed the former lim-
itation by embedding instruction monitors within the hardware to
prevent adversaries from breaking out of the sandbox [19]. To moni-
tor the execution of sensitive system calls, custom binary loaders and
ptrace monitoring have been proposed [47]. Novel system call at-
tacks against MPK sandboxes have been discovered, including using
the relatively benign madvise system call to clobber MPK permis-
sions. These attacks can be mitigated by using nested-filtering [41]
implemented on top of the Donky framework [42].

MPKs have also found applications outside of implementing intra-
process sandboxes. For example, developers have sought to use static
analysis to guide the introduction of MPKs into security sensitive
sections of widely used code bases like cryptographic APIs [28]. Prior
work also explicitly restructures allocators in language runtimes to
protect allocated chunks while accommodating MPKs’ page level
granularity [29]. Furthermore, MPKs can be used for restricting ac-
cess to sensitive pointers in a process, which is helpful for implement-
ing CFIschemes [27]. While embedded micro-controllers usually lack
an MMU, recent ARM micro-controllers feature amemory protection
unit (MPU) that has been used to isolate control-flow information
from firmware data within a real time operating system [20]. Prior
work has also proposed policy languages used to restrict untrusted
libraries’ access within an application [21]. Static analysis and sanitiz-
ers have also been proposed to detect and mitigate the consequences
of using unsafe features in memory safe programming languages
such as Rust [40]. Other policy language techniques prove security
properties of applications that rely on SGX enclaves, where the incor-
rect use of the enclave API can lead to serious security problems [31].

7 DISCUSSION

In this section, we discuss different domain virtualization approaches
and the limitations of ThreadLock.

7.1 Domain Virtualization

In order to address the limited number of protection keys available in
Intel’s MPKs, ThreadLock could take advantage of recent work that
makes MPKs a virtual resource [38]. ThreadLock could assign a given
thread a random key k on thread start-up. In these settings, more
than 15 domains could be utilized by ThreadLock. Furthermore, an
adversary could not reliably predict the protection key assigned to

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

each thread. However, if a compromised thread were to discover the
set of threads that share the compromised thread’s protection key,
then an adversary may be able to obtain or corrupt sensitive data held
by those threads. This could be improved by providing each thread
its own address space [51]. This address isolation based approach
ensures each thread has its own protection domain (e.g., address
space), but may require significant changes to protected applications.

7.2 ThreadLock Limitations

Though native principal isolation can conveniently isolate memory
regions using a program’s ABI, it is primarily applicable to programs
thatrely on external libraries. For this reason, the current ThreadLock
prototype cannot enforce native principal isolation policies against
statically linked programs, which contain an application and all of its
dependencies in a single executable file (e.g., small container images
with programs statically linked against the “musl” C library). This
couldbe addressed by enforcing policies via compiler passes or binary
rewriting. Furthermore, if a program’s ABI functions neither return
nor receive as input pointers to sensitive memory, it may be difficult
to define a useful policy. Furthermore, domain expertise about an ap-
plication and its libraries may be required to design effective policies.
However, we found that tracing and examining source code of real
world programs was sufficient to derive useful native principal isola-
tion policies. Finally, if an adversary bypasses control-flow integrity
(CFI), they can escalate PKRU privileges either via wrpkruor xrstor.

8 CONCLUSION

In this work, we presented native principal isolation, a technique for
specifying intra-process security policies enforced by a memory pro-
tection mechanism. We introduced ThreadLock, an implementation
of native principal isolation that protects multi-threaded applica-
tions using memory protection keys (MPKs). We applied ThreadLock
to the widely used Apache web server, Redis in-memory data store,
and MySQL RDBMS. We demonstrated that MPKs protect sensitive
data held by each of these workloads from real world attacks while
producing 1.06% performance overhead in the worst case. We argue
that these results show that ThreadLock permits integrating MPKs
into production workloads without requiring any modification to
executable binaries or application source code.

9 ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation (NSF) under Grant No. CNS-1916393 and CNS-1916398.

REFERENCES

[1] 2015. Integer overflow (leading to stack-based buffer overflow) in embedded
lua_struct.c. https://github.com/redis/redis/issues/2855. Acc. 2022-10-06.

[2] 2019. Memory Tagging Extension: Enhancing memory safety through architec-
ture. https://community.arm.com/arm-community-blogs/b/architectures-and-
processors-blog/posts/enhancing-memory-safety. Acc. 2022-02-27.

[3] 2020. A Technical Look at Intel’s Control-flow Enforcement Technology.
https://www.intel.com/content/www/us/en/developer/articles/technical/
technical-look-control-flow-enforcement-technology.html. Acc. 2022-08-28.

[4] 2022. Binary Compatibility. https://gcc.gnu.org/onlinedocs/gce-
12.2.0/gec/Compatibility.html. Acc. 2022-09-21.

[5] 2022. Close, but No Cigar: On the Effectiveness of Intel’s CET Against Code Reuse
Attacks. https://grsecurity.net/effectiveness_of_intel _cet_against_code_reuse_
attacks. Acc. 2022-08-24.

[6] 2022. CVE-2014-0160. https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-
2014-0160. Acc. 2022-05-29.

https://github.com/redis/redis/issues/2855
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhancing-memory-safety
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhancing-memory-safety
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Compatibility.html
https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Compatibility.html
https://grsecurity.net/effectiveness_of_intel_cet_against_code_reuse_attacks
https://grsecurity.net/effectiveness_of_intel_cet_against_code_reuse_attacks
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160

ASIA CCS ’23, July 10-14, 2023, Melbourne, VIC, Australia

[15]

[16

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28

[29]

[32]

[33]

2022. CVE-2015-8080. https://nvd.nist.gov/vuln/detail/CVE-2015-8080. Acc.
2022-10-05.

2022. CVE-2020-14147. https://nvd.nist.gov/vuln/detail/ CVE-2020-14147. Acc.
2022-05-29.

2022. CVE-2022-21617. https://www.cve.org/CVERecord?id=CVE-2022-21617.
Acc. 2022-11-22.

2022. How to Survive the Hardware-assisted Control Flow Integrity Enforce-
ment. https://paper.bobylive.com/Meeting_Papers/BlackHat/Asia-2019/bh-
asia-Sun-How-to-Survive-the-Hardware-Assisted-Control-Flow-Integrity-
Enforcement.pdf. Acc. 2022-08-24.

2022. Storage Protect Keys. https://www.ibm.com/docs/en/aix/7.2?topic=
concepts-storage-protect-keys. Acc. 2021-08-16.

2023. Usage statistics of Apache. https://w3techs.com/technologies/details/ws-
apache. Acc. 2023-05-02.

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009. Control-flow
integrity principles, implementations, and applications. ACM Transactions on
Information and Systems Security (2009).

Thomas Bauereiss, Brian Campbell, Thomas Sewell, Alasdair Armstrong,
Lawrence Esswood, Ian Stark, Graeme Barnes, Robert NM Watson, and Peter
Sewell. 2022. Verified security for the Morello capability-enhanced prototype
Arm architecture. In European Symposium on Programming.

Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres, and Dan Boneh.
2014. Hacking blind. In IEEE Symposium on Security and Privacy.

William Blair, William Robertson, and Manuel Egele. 2022. MPKAlloc:Efficient
Heap Meta-Data Integrity Through Hardware Memory Protection Keys. In
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment.
R Joseph Connor, Tyler McDaniel, Jared M Smith, and Max Schuchard. 2020. PKU
Pitfalls: Attacks on PKU-based Memory Isolation Systems. In USENIX Security
Symposium.

Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell, and
Vikram Adve. 2015. Nested kernel: An operating system architecture for
intra-kernel privilege separation. In ACM Conference on Architectural Support
for Progamming Languages and Operating Systems.

Leila Delshadtehrani, Sadullah Canakci, William Blair, Manuel Egele, and Ajay
Joshi. 2021. FlexFilt: Towards Flexible Instruction Filtering for Security. In Annual
Computer Security Applications Conference.

Yufei Du, Zhuojia Shen, Komail Dharsee, Jie Zhou, Robert J. Walls, and John
Criswell. 2022. Holistic Control-Flow Protection on Real-Time Embedded Systems
with Kage. In USENIX Security Symposium.

Adrien Ghosn, Marios Kogias, Mathias Payer, James R Larus, and Edouard Bugnion.
2021. Enclosure: language-based restriction of untrusted libraries. In ACM Confer-
ence on Architectural Support for Progamming Languages and Operating Systems.
Cristiano Giuffrida, Anton Kuijsten, and Andrew S Tanenbaum. 2012. Enhanced
operating system security through efficient and fine-grained address space
randomization. In USENIX Security Symposium.

Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida.
2017. ASLR on the Line: Practical Cache Attacks on the MMU. In Network and
Distributed System Security Symposium.

Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo Chen. 2022. EPK: Scalable and
Efficient Memory Protection Keys. In USENIX Annual Technical Conference.
Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L Scott, Kai Shen, and Mike Marty. 2019. Hodor: Intra-process isolation
for high-throughput data plane libraries. In USENIX Security Symposium.

Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and Mathias Payer.
2016. Enforcing least privilege memory views for multithreaded applications.
In ACM Conference on Computer and Communications Security.

Mohannad Ismail, Jinwoo Yom, Christopher Jelesnianski, Yeongjin Jang, and
Changwoo Min. 2021. VIP: Safeguard Value Invariant Property for Thwarting
Critical Memory Corruption Attacks. In ACM Conference on Computer and
Communications Security.

Xuancheng Jin, Xuangan Xiao, Songlin Jia, Wang Gao, Dawu Gu, Hang Zhang, Siqi
Ma, Zhiyun Qian, and Juanru Li. 2022. Annotating, Tracking, and Protecting Cryp-
tographic Secrets with CryptoMPK. In IEEE Symposium on Security and Privacy.
Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian Dabrowski,
David Gens, Yeoul Na, Stijn Volckaert, and Michael Franz. 2022. PKRU-safe:
automatically locking down the heap between safe and unsafe languages. In
European Conference on Computer systems.

Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopoulos.
2017. No need to hide: Protecting safe regions on commodity hardware. In
European Conference on Computer systems.

Shivendra Kushwah, Ankush Desai, Pramod Subramanyan, and Sanjit A Seshia.
2021. PSec: Programming Secure Distributed Systems using Enclaves. In ACM
ASIA Conference on Computer and Communications Security.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization.

Hugo Lefeuvre, Vlad-Andrei Badoiu, Alexander Jung, Stefan Lucian Teodorescu,
Sebastian Rauch, Felipe Huici, Costin Raiciu, and Pierre Olivier. 2022. FlexOS:

William Blair, William Robertson, and Manuel Egele

towards flexible OS isolation. In ACM Conference on Architectural Support for
Progamming Languages and Operating Systems.

Kangjie Lu, Wenke Lee, Stefan Niirnberger, and Michael Backes. 2016. How to
Make ASLR Win the Clone Wars: Runtime Re-Randomization. In Network and
Distributed System Security Symposium.

Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson,
Rebekah Leslie-Hurd, and Carlos Rozas. 2016. Intel Software Guard Extensions
Support for Dynamic Memory Management Inside an Enclave. In Proceedings
of the Hardware and Architectural Support for Security and Privacy.

Kyndylan Nienhuis, Alexandre Joannou, Thomas Bauereiss, Anthony Fox, Michael
Roe, Brian Campbell, Matthew Naylor, Robert M Norton, Simon W Moore, Peter G
Neumann, et al. 2020. Rigorous engineering for hardware security: Formal
modelling and proof in the CHERI design and implementation process. In IEEE
Symposium on Security and Privacy.

Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof
Fetzer. 2018. Intel MPX Explained: A Cross-layer Analysis of the Intel MPX
System Stack. Proceedings of the ACM on Measurement and Analysis of Computing
Systems (2018).

Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo Kim. 2019.
libmpk: Software Abstraction for Intel Memory Protection Keys (Intel MPK). In
USENIX Annual Technical Conference.

Taemin Park, Karel Dhondt, David Gens, Yeoul Na, Stijn Volckaert, and Michael
Franz. 2020. Nojitsu: Locking down javascript engines. In Network and Distributed
System Security Symposium.

Elijah Rivera, Samuel Mergendahl, Howard Shrobe, Hamed Okhravi, and Nathan
Burow. 2021. Keeping safe Rust safe with Galeed. In Annual Computer Security
Applications Conference.

David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard. 2022.
Jenny: Securing Syscalls for PKU-based Memory Isolation Systems. In USENIX
Security Symposium.

David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael
Schwarz, Stefan Mangard, and Daniel Gruss. 2020. Donky: Domain Keys-Efficient
In-Process Isolation for RISC-V and x86. In USENIX Security Symposium.

Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and
Dan Boneh. 2004. On the effectiveness of address-space randomization. In ACM
Conference on Computer and Communications Security.

Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. 2019. Security analysis of
processor instruction set architecture for enforcing control-flow integrity. In Inter-
national Workshop on Hardware and Architectural Support for Security and Privacy.
Team Pax. [n.d.]. Address space layout randomization. http://pax.grsecurity.
net/docs/aslr.txt. Acc. 2022-10-11.

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-process
Isolation with Protection Keys (MPK). In USENIX Security Symposium.

Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Volckaert. 2022.
You Shall Not (by)Pass! Practical, Secure, and Fast PKU-Based Sandboxing. In
European Conference on Computer systems.

Zhe Wang, Chenggang Wu, Yingian Zhang, Bowen Tang, Pen-Chung Yew,
Mengyao Xie, Yuanming Lai, Yan Kang, Yueqiang Cheng, and Zhiping Shi. 2021.
Making Information Hiding Effective Again. IEEE Transactions on Dependable
and Secure Computing (2021).

David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake,
Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P Kemerlis, Junfeng
Yang, and William Aiello. 2016. Shuffler: Fast and deployable continuous code
re-randomization. In USENIX Symposium on Operating Systems Design and
Implementation.

David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham
Patterson, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P Kemerlis.
2020. Egalito: Layout-agnostic binary recompilation. In ACM Conference on
Architectural Support for Progamming Languages and Operating Systems.

Ziqi Yuan, Siyu Hong, Rui Chang, Yajin Zhou, Wenbo Shen, and Kui Ren. 2023.
VDom: Fast and Unlimited Virtual Domains on Multiple Architectures. In ACM Con-
ference on Architectural Support for Progamming Languages and Operating Systems.
Nickolai Zeldovich, Hari Kannan, Michael Dalton, and Christos Kozyrakis. 2008.
Hardware Enforcement of Application Security Policies Using Tagged Memory.
In USENIX Symposium on Operating Systems Design and Implementation.

https://nvd.nist.gov/vuln/detail/CVE-2015-8080
https://nvd.nist.gov/vuln/detail/CVE-2020-14147
https://www.cve.org/CVERecord?id=CVE-2022-21617
https://paper.bobylive.com/Meeting_Papers/BlackHat/Asia-2019/bh-asia-Sun-How-to-Survive-the-Hardware-Assisted-Control-Flow-Integrity-Enforcement.pdf
https://paper.bobylive.com/Meeting_Papers/BlackHat/Asia-2019/bh-asia-Sun-How-to-Survive-the-Hardware-Assisted-Control-Flow-Integrity-Enforcement.pdf
https://paper.bobylive.com/Meeting_Papers/BlackHat/Asia-2019/bh-asia-Sun-How-to-Survive-the-Hardware-Assisted-Control-Flow-Integrity-Enforcement.pdf
https://www.ibm.com/docs/en/aix/7.2?topic=concepts-storage-protect-keys
https://www.ibm.com/docs/en/aix/7.2?topic=concepts-storage-protect-keys
https://w3techs.com/technologies/details/ws-apache
https://w3techs.com/technologies/details/ws-apache
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt

ThreadLock: Native Principal Isolation Through Memory Protection Keys

A APPENDIX

In this section, we provide supplementary material for our paper.

A.1 ThreadLock Implementation Details

Policy Synthesis and Monitoring. Currently, policies attached to
abstract principals are inherently stateless since ThreadLock does
not track the execution of abstract principals. In the event that a
thread’s policy is stateless, the generated stubs avoid creating and
storing an FA. In these settings, ThreadLock only needs to fetch the
thread’s protection key k from thread-local memory (see Section 4.3).

Signal Handlers. By default, the current implementation always
includes stubs for hardening individual threads’ stacks and modify-
ing signal handlers. The former ensures that each thread maintains
exclusive access to its own stack. The latter allows signal handlers to
operate on memory associated with any principal. This is necessary
because a signal handler may need to access memory held by a thread,
but ThreadLock cannot predict which thread’s data may need to be
accessed for every signal. For this reason, the signal handling stub
generated by ThreadLock always zeroes the contents of the PKRU
register before handling a signal. Recall from Section 2 that applying
zeros to every slot in the PKRU grants a thread read and write access
to all protection key domains. This prevents signal handling from
incurring any unnecessary false positives. This general solution can
be refined by enforcing policies tailored to signal handling threads.
This allows ThreadLock to limit a potentially compromised signal
handler’s access to application data.

Thread Stacks. The ThreadLock trampoline restricts a newly created
thread by doing the following. First, the trampoline fetches the cur-
rent stack pointer by declaring a local variable equal to asm("rsp").
This allows the trampoline to orient itself on the thread’s stack. By
default, the trampoline will find the page that RSP refers to and then
enumerate pages downward in memory in order to find the bottom of
the stack. Since the default size of pthread stacks is known, Thread-
Lock can just use the default size to find the bottom of the stack. How-
ever, if an application were to change the stack size through the attr
pointer, the trampoline can still obtain the size of the stack by inspect-
ing the original at tr pointer which the trampoline receives as input.

Function Recognition. To determine which function the start_-
routine refers to the trampoline does the following. First, find
the location of the . text section in virtual memory by consult-
ing /proc/<pid>/maps where <pid> is the process identifier (PID)
of the current process. The function referred to by start_routine
in the program binary can then be obtained by start_routine —
textym+. textoffser where . text,,, is the address of the . text
section in virtual memory and . text, s s, is the location of the
.text section in the program binary. Policies refer to individual
functions via symbols or by direct addresses. When symbols are pro-
vided, the function’s address is obtained by inspecting the program’s
symbol table. The addresses of individual functions of interest can
be obtained either by static or dynamic binary analysis. However,
knowing a function’s address a priori is not always feasible (e.g., just
in time (JIT) compiled functions).

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

Restricting Main Thread. Note that the trampoline is not necessary
when isolating the main thread of execution. ThreadLock initializes
the main thread by intercepting the __libc_start_main function.
During policy enforcement, ThreadLock detects the main thread by
checking that getpid() equals gettid().

Isolating Threads. After a new thread is initialized, the trampoline
may alter additional permissions based on the policy. For example,
apolicy may consider a thread either privileged or unprivileged. In
these cases, the initial “grant” or “revoke” operations given in the
policy are performed by the trampoline.

Memory Access Control. Note that the “grant” and “revoke” opera-
tions can be implemented by permitting or denying access and writes
to the relevant principal in the current thread’s PKRU. For example,
if a thread calls a function that advances its FA to a grant(data-
base) statement, then the FA will update the PKRU to PKRU&~ (@x3<<
(2xdatabase_pkey)) where database_pkey is the protection key
provisioned for the database principal. Likewise, a revoke (data-
base) statement will update the PKRU to PKRU| (0x3<<(2*data-
base_pkey)). A cooperative policy grants a thread access to shared
memory pages when needed, and otherwise revokes access.

A.2 Attacking Apache from the Heap

Onmodern systems, guard pages are placed around the pages holding
Apache workers’ thread-local data. Hypothetically, if an adversary
found other ways toreach sensitive data aside from a buffer over-read,
MPKs would prevent the data’s disclosure. As an example, we con-
sistently observed protected pages located close to and at higher ad-
dresses than heap arenas in memory. This implies that a small write or
read primitive from a heap pointer could easily reach threads’ sensi-
tive data. We observed the same behavior while running Apache built
to run without guard pages. In this configuration, ThreadLock would
prevent Heartbleed from disclosing protected pages should the top of
the heap be located immediately before the victim page in memory.

A.3 MySQL Policy Details

While “internal” threads manage the normal operation of the data-
base, the “main” thread of execution accepts incoming connections
and spins up a thread for each individual client. Since this is the
adversary’s first point of contact with the server, it is important
that we limit the potential damage caused by a compromised “main”
thread. For this reason, we restrict the “main” thread’s access to solely
protection domain 0. This prevents an adversary from disclosing
sensitive information held either by “internal” threads, or individual
connection threads.

A.4 Redis Proof of Concept

An adversary can exploit the stack based overflow described in
Section 5 by running EVAL"struct.pack('>1262914270"',"'42"')"
0 in Redis’ Lua interpreter. This causes the putInteger function
in the Lua interpreter to write the value 42 into the address given
262914270 bytes above the victim stack buffer [1]. In a real deploy-
ment, an adversary would be likely unable to directly issue EVAL
commands, but they may be able to compromise a privileged client
that can issue the newer EVAL_RO command. This command only al-
lows Lua scripts to read from the data store. If this vulnerability were

ASIA CCS ’23, July 10-14, 2023, Melbourne, VIC, Australia

to be introduced again, as it was in 2020, then an adversary could use
the vulnerability to break out of the read-only sandbox provided by
EVAL_RO. ThreadLock prevents an adversary with an arbitrary write
primitive with a 31-bit range above the victim buffer from corrupting
data store pages. We argue that shrinking the attack surface for this
exploit demonstrates that ThreadLock can protect program compo-
nents, like language parsers, that typically suffer from security bugs.

William Blair, William Robertson, and Manuel Egele

	Abstract
	1 Introduction
	2 Background and Threat Model
	2.1 Memory Protection Keys
	2.2 Policy Based Defenses
	2.3 Design Assumptions and Threat Model

	3 Overview
	3.1 Native Principal Isolation
	3.2 Database Access Control

	4 Implementation
	4.1 ThreadLock Deployment
	4.2 Policy Synthesis and Enforcement
	4.3 Isolating Threads
	4.4 Policy Operations

	5 Evaluation
	5.1 Experimental Set Up
	5.2 Performance Benchmarks
	5.3 Attack Scenarios

	6 Related Work
	6.1 Memory Defenses
	6.2 Policy Based Defenses
	6.3 Intra-Process Isolation

	7 Discussion
	7.1 Domain Virtualization
	7.2 ThreadLock Limitations

	8 Conclusion
	9 Acknowledgments
	References
	A Appendix
	A.1 ThreadLock Implementation Details
	A.2 Attacking Apache from the Heap
	A.3 MySQL Policy Details
	A.4 Redis Proof of Concept

