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Abstract
Traditional spam detection systems either rely on con-
tent analysis to detect spam emails, or attempt to detect
spammers before they send a message, (i.e., they rely
on the origin of the message). In this paper, we intro-
duce a third approach: we present a system for filtering
spam that takes into account how messages are sent by
spammers. More precisely, we focus on the email de-
livery mechanism, and analyze the communication at the
SMTP protocol level.

We introduce two complementary techniques as con-
crete instances of our new approach. First, we leverage
the insight that different mail clients (and bots) imple-
ment the SMTP protocol in slightly different ways. We
automatically learn these SMTP dialects and use them
to detect bots during an SMTP transaction. Empiri-
cal results demonstrate that this technique is successful
in identifying (and rejecting) bots that attempt to send
emails. Second, we observe that spammers also take into
account server feedback (for example to detect and re-
move non-existent recipients from email address lists).
We can take advantage of this observation by returning
fake information, thereby poisoning the server feedback
on which the spammers rely. The results of our experi-
ments show that by sending misleading information to a
spammer, it is possible to prevent recipients from receiv-
ing subsequent spam emails from that same spammer.

1 Introduction
Email spam, or unsolicited bulk email, is one of the ma-
jor open security problems of the Internet. Accounting
for more than 77% of the overall world-wide email traf-
fic [21], spam is annoying for users who receive emails
they did not request, and it is damaging for users who
fall for scams and other attacks. Also, spam wastes re-
sources on SMTP servers, which have to process a sig-
nificant amount of unwanted emails [41].

A lucrative business has emerged around email spam,
and recent studies estimate that large affiliate cam-

paigns generate between $400K and $1M revenue per
month [20].

Nowadays, about 85% of world-wide spam traffic is
sent by botnets [40]. Botnets are networks of compro-
mised computers that act under the control of a single
entity, known as the botmaster. During recent years, a
wealth of research has been performed to mitigate both
spam and botnets [18, 22, 29, 31, 33, 34, 50].

Existing spam detection systems fall into two main
categories. The first category focuses on the content of
an email. By identifying features of an email’s content,
one can classify it as spam or ham (i.e., a benign email
message) [16, 27, 35]. The second category focuses on
the origin of an email [17, 43]. By analyzing distinctive
features about the sender of an email (e.g., the IP address
or autonomous system from which the email is sent, or
the geographical distance between the sender and the re-
cipient), one can assess whether an email is likely spam,
without looking at the email content.

While existing approaches reduce spam, they also suf-
fer from limitations. For instance, running content anal-
ysis on every received email is not always feasible for
high-volume servers [41]. In addition, such content anal-
ysis systems can be evaded [25, 28]. Similarly, origin-
based techniques have coverage problems in practice.
Previous work showed how IP blacklisting, a popular
origin-based technique [3], misses a large fraction of the
IP addresses that are actually sending spam [32, 37].

In this paper, we propose a novel, third approach to
fight spam. Instead of looking at the content of mes-
sages (what) or their origins (who), we analyze the way
in which emails are sent (how). More precisely, we focus
on the email delivery mechanism. That is, we look at the
communication between the sender of an email and the
receiving mail server at the SMTP protocol level. Our
approach can be used in addition to traditional spam de-
fense mechanisms. We introduce two complementary
techniques as concrete instances of our new approach:
SMTP dialects and Server feedback manipulation.



SMTP dialects. This technique leverages the observa-
tion that different email clients (and bots) implement the
SMTP protocol in slightly different ways. These de-
viations occur at various levels, and range from differ-
ences in the case of protocol keywords, to differences in
the syntax of individual messages, to the way in which
messages are parsed. We refer to deviations from the
strict SMTP specification (as defined in the correspond-
ing RFCs) as SMTP dialects. As with human language
dialects, the listener (the server) typically understands
what the speaker (a legitimate email client or a bot) is
saying. This is because SMTP servers, similar to many
other Internet services, follow Postel’s law, which states:
“Be liberal in what you accept, and conservative in what
you send.”

We introduce a model that represents SMTP dialects
as state machines, and we present an algorithm that
learns dialects for different email clients (and their re-
spective email engines). Our algorithm uses both pas-
sive observation and active probing to efficiently gener-
ate models that can distinguish between different email
engines. Unlike previous work on service and protocol
fingerprinting, our models are stateful. This is impor-
tant, because it is almost never enough to inspect a single
message to be able to identify a specific dialect.

Leveraging our models, we implement a decision pro-
cedure that can, based on the observation of an SMTP
transaction, determine the sender’s dialect. This is use-
ful, as it allows an email server to terminate the con-
nection with a client when this client is recognized as a
spambot. The connection can be dropped before any con-
tent is transmitted, which saves computational resources
at the server. Moreover, the identification of a sender’s
dialect allows analysts to group bots of the same family,
or track the evolution of spam engines within a single
malware family.

Server feedback manipulation. The SMTP protocol
is used by a client to send a message to the server. Dur-
ing this transaction, the client receives from the server
information related to the delivery process. One impor-
tant piece of information is whether the intended recipi-
ent exists or not. The performance of a spam campaign
can improve significantly when a botmaster takes into
account server feedback. In particular, it is beneficial
for spammers to remove non-existent recipient addresses
from their email lists. This prevents a spammer from
sending useless messages during subsequent campaigns.
Indeed, previous research has shown that certain bots re-
port the error codes received from email servers back to
their command and control nodes [22, 38].

To exploit the way in which botnets currently lever-
age server feedback, it is possible to manipulate the re-
sponses from the mail server to a bot. In particular, when

a mail server identifies the sender as a bot, instead of
dropping the connection, the server could simply reply
that the recipient address does not exist. To identify a bot,
one can either use traditional origin-based approaches or
leverage the SMTP dialects proposed in this paper. When
the server feedback is poisoned in this fashion, spammers
have to decide between two options. One possibility is to
continue to consider server feedback and, as a result, re-
move valid email addresses from their email list. This
reduces the spam emails that these users will receive in
the future. Alternatively, spammers can decide to distrust
and discard any server feedback. This reduces the effec-
tiveness of future campaigns since emails will be sent to
non-existent users.

Our experimental results demonstrate that our tech-
niques are successful in identifying (and rejecting) bots
that attempt to send unwanted emails. Moreover, we
show that we can successfully poison spam campaigns
and prevent recipients from receiving subsequent emails
from certain spammers. However, we recognize that
spam is an adversarial activity and an arms race. Thus,
a successful deployment of our approach might prompt
spammers to adapt. We discuss possible paths for spam-
mers to evolve, and we argue that such evolution comes
at a cost in terms of performance and flexibility.

To summarize, the paper makes the following main con-
tributions:

• We introduce a novel approach to detect and mit-
igate spam emails. This approach focuses on the
email delivery mechanism — the SMTP communi-
cation between the email client and the email server.
It is complementary to traditional techniques that
operate either on the message origin or on the mes-
sage content.

• We introduce the concept of SMTP dialects as one
concrete instance of our approach. Dialects capture
small variations in the ways in which clients imple-
ment the SMTP protocol. This allows us to distin-
guish between legitimate email clients and spam-
bots. We designed and implemented a technique to
automatically learn the SMTP dialects of both legit-
imate email clients and spambots.

• We implemented our approach in a tool, called
B@bel. Our experimental results demonstrate that
B@bel is able to correctly identify spambots in a
real-world scenario.

• We study how the feedback provided by email
servers to bots is used by their botmasters. As a sec-
ond instance of our approach, we show how provid-
ing incorrect feedback to bots can have a negative
impact on the spamming effectiveness of a botnet.



2 Background: The SMTP Protocol
The Simple Mail Transfer Protocol (SMTP), as defined
in RFC 821 [1], is a text-based protocol that is used
to send email messages originating from Mail User
Agents (MUAs — e.g., Outlook, Thunderbird, or Mutt),
through intermediate Mail Transfer Agents (MTAs —
e.g., Sendmail, Postfix, or Exchange) to the recipients’
mailboxes. The protocol is defined as an alternating dia-
logue where the sender and the receiver take turns trans-
mitting their messages. Messages sent by the sender
are called commands, and they instruct the receiver to
perform an action on behalf of the sender. The SMTP
RFC defines 14 commands. Each command consists
of four case-insensitive, alphabetic-character command
codes (e.g., MAIL) and additional, optional arguments
(e.g., FROM:<me@example.com>). One or more
space characters separate command codes and argument
fields. All commands are terminated by a line termina-
tor, which we denote as <CR><LF>. An exception is
the DATA command, which instructs the receiver to ac-
cept the subsequent lines as the email’s content, until the
sender transmits a dot character as the only character on
a line (i.e., <CR><LF>.<CR><LF>).

SMTP replies are sent by the receiver to inform the
sender about the progress of the email transfer process.
Replies consist of a three-digit status code, followed by
a space separator, followed by a short textual descrip-
tion. For example, the reply 250 Ok indicates to the
sender that the last command was executed successfully.
Commonly, replies are one line long and terminated
by <CR><LF>1. The RFC defines 21 different reply
codes. These codes inform the sender about the specific
state that the receiver has advanced to in its protocol state
machine and, thus, allows the sender to synchronize its
state with the state of the receiver. A plethora of addi-
tional RFCs have been introduced to extend and modify
the original SMTP protocol. For example, RFC 1869
introduced SMTP Service Extensions. These extensions
define how an SMTP receiver can inform a client about
the extensions it supports. More precisely, if a client
wants to indicate that it supports SMTP Service Exten-
sions, it will greet the server with EHLO instead of the
regular HELO command. The server then replies with
a list of available service extensions as a multi-line re-
ply. For example, a server capable of handling encryp-
tion can announce this capability by responding with a
250-STARTTLS reply to the client’s EHLO command.

MTAs, mail clients, and spambots implement differ-
ent sets of these extensions. As we will discuss in de-

1The protocol allows the server to answer with multi-line replies. In
a multi-line reply, all lines but the last must begin with the status code
followed by a dash character. The last line of a multi-line reply must
be formatted like a regular one-line reply

� �
S e r v e r : 220 d e b i a n
C l i e n t : HELO example . com
S e r v e r : 250 OK
C l i e n t : MAIL FROM:<me@example . com>
S e r v e r : 250 2 . 1 . 0 OK
C l i e n t : RCPT TO:<you@example . com>
S e r v e r : 250 2 . 1 . 5 OK
C l i e n t : DATA� �

Figure 1: A typical SMTP conversation

tail later, we leverage these differences to determine the
SMTP dialect spoken in a specific SMTP conversation.

In this paper, we consider an SMTP conversation the
sequence of commands and replies that leads to a DATA
command, to a QUIT command, or to an abrupt termina-
tion of the connection. This means that we do not con-
sider any reply or command that is sent after the client
starts transmitting the actual content of an email. An ex-
ample of an SMTP conversation is listed in Figure 1.

3 SMTP Dialects
The RFCs that define SMTP specify the protocol that
a client has to speak to properly communicate with a
server. However, different clients might implement the
SMTP protocol in slightly different ways, for three main
reasons:

1. The SMTP RFCs do not always provide a single
possible format when specifying the commands a
client must send. For example, command identi-
fiers are case insensitive, which means that EHLO
and ehlo are both valid command codes.

2. By using different SMTP extensions, clients might
add different parameters to the commands they
send.

3. Servers typically accept commands that do not com-
ply with the strict SMTP definitions. Therefore,
a client might implement the protocol in slightly
wrong ways while still succeeding in sending email
messages.

We call different implementations of the SMTP pro-
tocol SMTP dialects. A dialect D is defined as a state
machine

D =< Σ, S, s0, T, Fg, Fb >,

where Σ is the input alphabet (composed of server
replies), S is a set of states, s0 is the initial state, and
T is a set of transitions. Each state s in S is labeled with
a client command, and each transition t in T is labeled
with a server reply. Fg ⊆ S is a set of good states, which
represent successful SMTP conversations, while Fb ⊆ S
is a set of bad states, which represent failed SMTP con-
versations.



Figure 2: Simplified state machines for Outlook Express (left) and Bagle (right).

The state machine D captures the order in which com-
mands are sent in relation to server replies by that partic-
ular dialect.

Since SMTP messages are not always constant, but
contain variable fields (e.g., the recipient email address
in an RCPT command), we abstract commands and
replies as templates, and label states and transitions with
such templates.

We do not require D to be deterministic. The reason
for this is that some clients show a non-deterministic
behavior in the messages they exchange with SMTP
servers. For example, bots belonging to the Lethic mal-
ware family use EHLO and HELO interchangeably when
responding to a server 220 reply. Figure 2 shows two
example dialect state machines (Outlook Express and
Bagle, a spambot).

3.1 Message Templates

As explained previously, we label states and transitions
with message templates. We define the templates of the
messages that belong to a dialect as regular expressions.
Each message is composed of a sequence of tokens. We
define a token as any sequence of characters separated by
delimiters. We define spaces, colons, and equality sym-
bols as delimiters. We leverage domain knowledge to
develop a number of regular expressions for the variable
elements in an SMTP conversation. In particular, we de-
fine regular expressions for email addresses, fully qual-
ified domain names, domain names, IP addresses, num-
bers, and hostnames (see Figure 3 for details). Every to-
ken that does not match any of these regular expressions
is treated as a keyword.

An example of a message template is

MAIL From: <email-addr>,

where email-addr is a regular expression that
matches email addresses.

Given two dialects D and D’, we consider them differ-
ent if their state machines are different. For example, the
two dialects in Figure 2 differ in the sequence of com-
mands that the two clients send: Bagle sends a RSET

� �
Email a d d r e s s : <?[\w\.−]+@[\w\.−]+>?
IP a d d r e s s : \[?\d{1 ,3}\ .\d{1 ,3}\ .\d{1 ,3}\ .\d{1 ,3}\ ]?
F u l l y q u a l i f i e d domain name : [\w−]+\ .[\w−]+\.\w[\w−]+
Domain name : [\w−]+\ .[\w−]+
Number : [0−9]{3}[0−9]+
Hostname : [\w−]{5}[\w−]+� �
Figure 3: Regular expressions used in message tem-
plates.

command after the HELO, while Outlook Express sends
a MAIL command directly. Also, the format of the com-
mands of the two dialects differs: Outlook Express puts
a space between MAIL FROM: and the sender email ad-
dress, while Bagle does not.

In Section 4, we show how we can learn the dialect
spoken by an SMTP client. In Section 5, we show how
these learned dialects can be matched against an SMTP
conversation, which is crucial for performing spam miti-
gation, as we will show in Section 7.

4 Learning Dialects
To distinguish between different SMTP speakers, we re-
quire a mechanism that learns which dialect is spoken by
a particular client. To do this, we need a set of SMTP
conversations C generated by the client. Each conver-
sation is a sequence of <reply, command> pairs, where
command can be empty if the client did not send any-
thing after receiving a reply from the server.

It is important to note that the state machine learned
for the dialect is affected by the type of conversations in
C. For example, if C only contains successful SMTP
conversations, the portion of the dialect state machine
that we can learn from it is very small. In the typ-
ical SMTP conversation listed in Figure 1, the client
first connects to the SMTP server, then announces itself
(i.e., sends a HELO command), states who the sender of
the email is (i.e., sends a MAIL command), lists recipi-
ents (by using one or more RCPT commands), and starts
sending the actual email content (by sending a DATA
command). Observing this type of communication gives
no information on what a client would do upon receiv-



ing a particular error, or a specific SMTP reply from the
server. To mitigate this problem, we collect a diverse
set of SMTP conversations. We do this by directing the
client to an SMTP server under our control, and sending
specific SMTP replies to it (see Section 4.2).

Even though sending specific replies allows us to ex-
plore more states than the ones we could explore other-
wise, we still cannot be sure that the dialects we learn are
complete. In Section 7, we show how the inferred state
machines are usually good enough for discriminating be-
tween different SMTP dialects. However, in some cases,
we might not be able to distinguish two different dialects
because the learned state machines are identical.

4.1 Learning Algorithm

Analyzing the set C allows us to learn part of the dialect
spoken by the client. Our learning algorithm processes
one SMTP conversation from C at a time, and iteratively
builds the dialect state machine.

4.1.1 Learning the Message Templates

For each message observed in a conversation Con in
C, our algorithm generates a regular expression that
matches it. The regular expression generation algorithm
works in three steps:
Step 1: First, we split the message into tokens. As men-
tioned in Section 3.1, we consider the space, colon, and
equality characters as delimiters.
Step 2: For each token, we check if it matches a known
regular expression. More precisely, we check it against
all the regular expressions defined in Figure 3, from the
most specific to the least specific, until one matches (this
means that we check the regular expressions in the fol-
lowing order: email address, IP address, fully qualified
domain name, domain name, number, hostname).

If a token matches a regular expression, we substitute
the token with the matched regular expression’s identifier
(e.g., <email-addr>). If none of the regular expres-
sions are matched, we consider the token a keyword, and
we include it verbatim in the template.
Step 3: We build the message template, by concatenating
the template tokens (which can be keywords or regular
expressions) and the delimiters, in the order in which we
encountered them in the original message.

Consider, for example, the command:

MAIL FROM:<evil@example.com>

First, we break the command into tokens:

[MAIL, FROM, <evil@example.com>]

The only token that matches one of the known regular
expressions is the email address. Therefore, we consider
the other tokens as keywords. The final template for this
command will therefore be:

MAIL FROM:<email-addr>

Notice that, by defining message format templates as we
described, we can be more precise than the SMTP stan-
dard specification and detect the (often subtle) differ-
ences between two dialects even though both might com-
ply with the SMTP RFC. For example, we would build
two different message format templates (and, therefore,
have two dialects) for two clients that use different case
for the EHLO keyword (e.g., one uses EHLO as a key-
word, while the other uses Ehlo).

4.1.2 Learning the State Machine

We incrementally build the dialect state machine by start-
ing from an empty initial state s0 and adding new transi-
tions and states as we observe more SMTP conversations
from C. For each conversation Con in C, the algorithm
executes the following steps:
Step 1: We set the current state s to s0.
Step 2: We examine all tuples <ri, ci> in Con.
An example of a tuple is <220 server, HELO
evil.com>.
Step 3: We apply the algorithm described in 4.1.1 to ri
and ci, and build the corresponding templates tr and tc.
In the example, tr is 220 hostname and tc is HELO
domain. Note that ci could be empty, because the client
might not have sent any command after a reply from the
server. In this case tc will be an empty string.
Step 4: If the state machine has a state sj labeled with tc,
we check if there is a transition t labeled with tr going
from s to sj . (i) If there is one, we set the current state s
to sj , and go to Step 6. (ii) If there is no such transition,
we connect s and sj with a transition labeled with tr, set
the current state s to sj , and go to Step 6. (iii) If none of
the previous conditions hold, we go to Step 5.
Step 5: If there is no state labeled with tc, we create a
new state sn, label it with tc , and connect s and sn with
a transition labeled tr. We then set the current state s to
sn. Following the previous example, if we have no state
labeled with HELO domain, we create a new state with
that label, and connect it to the current state s (in this
case the initial state) with a transition labeled with 220
hostname. If there are no tuples left in Con, and tc is
empty, we set the current state as a failure state for the
current dialect, and add it to Fb. We then move to the
next conversation in C, and go back to Step 2 2. Other-
wise, we go to Step 6.
Step 6: If s is labeled with DATA, we mark the state as
a good final state for this dialect, and add it to Fg . Else,
if s is labeled with QUIT, we mark s as a bad final state
and add it to Fb. We then move to the next conversation
in C, and we go back to Step 2.

2By doing this, we handle cases in which the client abruptly termi-
nates the connection



4.2 Collecting SMTP Conversations

To be able to model as much of a dialect as possible, we
need a comprehensive set of SMTP conversations gener-
ated by a client.

As previously discussed, the straightforward approach
to collect SMTP conversations is to passively observe the
messages exchanged between a client and a server. In
practice, this is often enough to uniquely determine the
dialect spoken by a client (see Section 7 for experimen-
tal results). However, there are cases in which passive
observation is not enough to uniquely identify a dialect.
In such cases, it would be beneficial to be able to send
specifically-crafted replies to a client (e.g., malformed
replies), and observe its responses.

To perform this exploration, we set up a testing envi-
ronment in which we direct clients to a mail server we
control, and we instrument the server to be able to craft
specific responses to the commands the client sends.

The SMTP RFCs define how a client should respond
to unexpected SMTP replies, such as errors and mal-
formed messages. However, both legitimate clients and
spam engines either exhibit small differences in the im-
plementation of these guidelines, or they do not imple-
ment them correctly. The reason for this is that imple-
menting a subset of the SMTP guidelines is enough to
be able to perform a correct conversation with a server
and successfully send an email, in most cases. There-
fore, there is no need for a client to implement the full
SMTP protocol. Of course, for legitimate clients, we ex-
pect the SMTP implementation to be mature, robust, and
complete — that is, corner cases are handled correctly.
In contrast, spambots have a very focused purpose when
using SMTP: send emails as fast as possible. For spam-
mers, taking into account every possible corner case of
the SMTP protocol is unnecessary; even more problem-
atic, it could impact the performance of the spam engine
(see Section 7.4 for more details).

In summary, we want to achieve two goals when ac-
tively learning an SMTP dialect. First, we want to learn
how a client reacts to replies that belong to the language
defined in the SMTP RFCs, but are not exposed during
passive observation. Second, we want to learn how a
client reacts to messages that are invalid according to the
SMTP RFCs.

We aim to systematically explore the message struc-
ture as well as the state machine of the dialect spoken by
a client. To this end, the variations to the SMTP protocol
we use for active probing are of two types: (i) variations
to the protocol state machine, which modify the sequence
or the number of the replies that are sent by the server;
and (ii) variations to the replies, which modify the struc-
ture of the reply messages that are sent by the server.

In the following, we discuss how we generate varia-
tions of both the protocol state machine and the replies.

Protocol state machine variations. We use four types
of protocol variation techniques:
Standard SMTP replies: These variations aim at expos-
ing responses to replies that comply with the RFCs, but
are not observable during a standard, successful SMTP
conversation, like the one in Figure 1. An example is
sending SMTP errors to the commands a client sends.
Some dialects continue the conversation with the server
even after receiving a critical error.
Additional SMTP replies: These variations add replies to
the SMTP conversation. More precisely, this technique
replies with more than one message to the commands the
client sends. Some dialects ignore the additional replies,
while others will only consider one of the replies.
Out-of-order SMTP replies: These variations are used to
analyze how a client reacts when it receives a reply that
should not be sent at that point in the protocol (i.e., a state
transition that is not defined by the standard SMTP state
machine). For example, some senders might start send-
ing the email content as soon as they receive a 354 reply,
even if they did not specify the sender and recipients of
the email yet.
Missing replies: These variations aim at exposing the be-
havior of a dialect when the server never sends a reply to
a command.

Message format variations. These variations repre-
sent changes in the format of the replies that the server
sends back to a client. As described in Section 2,
SMTP server replies to a client’s command have the
format CODE TEXT<CR><LF>, where CODE repre-
sents the actual response to the client’s command, TEXT
provides human-readable information to the user, and
<CR><LF> is the line terminator. According to the
SMTP specification, a client should read the data from
the server until it receives a line terminator, parse the
code to check the response, and pass the text of the reply
to the user if necessary (e.g., in case an error occurred).

Given the specification, we craft reply variations in
four distinct ways to systematically study how a client
reacts to them:
Compliant replies: These reply variations comply with
the SMTP standard, but are seldom observed in a com-
mon conversation. For example, this technique might
vary the capitalization of the reply (uppercase/lower-
case/mixed case). The SMTP specification states that re-
ply text should be case-insensitive.
Incorrect replies: The SMTP specification states that re-
ply codes should always start with one of the digits 2, 3,
4, or 5 (according to the class of the status code), and
be three-digits long. These variations are replies that do
not comply with the protocol (e.g., a message with a re-



ply code that is four digits long). A client is expected
to respond with a QUIT command to these malformed
replies, but certain dialects behave differently.
Truncated replies: As discussed previously, the SMTP
specification dictates how a client is supposed to handle
the replies it receives from the server. Of course, it is
not guaranteed that clients will follow the specification
and process the entire reply. The reason is that the only
important information the client needs to analyze to de-
termine the server’s response is the status code. Some
dialects might only check for the status code, discarding
the rest of the message. For these reasons, we generate
variations as follows: For each reply, we first separate it
into tokens as described in Section 3.1. Then, for each
token, we generate N different variations, where N is
the number of tokens in each reply. We obtain such vari-
ations by truncating the reply with a line terminator after
each token.
Incorrectly-terminated replies: From a practical point of
view, there is no need for a client to parse the full re-
ply until it reaches the line terminator. To assess whether
a dialect checks for the line terminator when receiving
a reply, we terminate the replies with incorrect termina-
tors. In particular, we use the sequences <CR>, <LF>,
<CR><CR>, and <LF><LF> as line terminators. For
each terminator, similar to what we did for truncated
replies, we generate 4N different variations of each re-
ply, by truncating the reply after every token.

We developed 228 variations to use for our active
probing. More precisely, we extracted the set of replies
that are contained in the Postfix 3 source code. Then, we
applied to them the variations described in this section,
and we injected them into a reference SMTP conversa-
tion. To this end, we used the sequence of server replies
from the conversation in Figure 1.

5 Matching Conversations to Dialects
After having learned the SMTP dialects for different
clients, we obtain a different state machine for each
client. Given a conversation between a client and a
server, we want to assess which dialect the client is
speaking. To do this, we merge all inferred dialect state
machines together into a single Decision State Machine
MD.

5.1 Building the Decision State Machine

We use the approach proposed by Wolf [46] to merge the
dialect state machines into a single state machine. Given
two dialects D1 and D2, the approach works as follows:
Step 1: We build the Cartesian product D1×D2. That is,
for each combination of states < s1, s2 >, where s1 is a

3A popular open-source Mail Transfer Agent:
http://www.postfix.org/

Figure 4: An example of decision state machine

state in D1 and s2 is a state in D2, we build a new state
sD in the decision state machine MD.

The label of sD is a table with two columns. The first
column contains the identifier of one of the dialects sD
was built from (e.g., D1), and the second column con-
tains the label that dialect had in the original state (either
s1 or s2). Note that we add one row for each of the two
states that sD was built from. For example, the second
state of the state machine in Figure 4 is labeled with a
table containing the two possible message templates that
the clients C1 and C2would send in that state (i.e., HELO
hostname and HELO domain).

We then check all the incoming transitions to s1 and s2
in the original state machines D1 and D2. For each com-
bination of transitions <t1, t2>, where t1 is an incoming
transition for s1 and t2 is an incoming transition for s2,
we check if t1 and t2 have the same label. If they do, we
generate a new transition td, and add it to MD. The label
of td is the label of t1 and t2. The start state of td is the
Cartesian product of the start states of t1 and t2, respec-
tively, while the end state is sD. If the labels of s1 and
s2 do not match, we discard td. For example, a transition
t1 labeled as 250 OK and a transition t2 labeled as 553
Relaying Denied would not generate a transition in
MD. At the end of this process, if sD is not connected
to any other state, it will be not part of the decision state
machines MD, since that state would not be reachable if
added to MD.
Step 2: We reduce the number of states in MD by merg-
ing together states that are equivalent. To evaluate if two
states s1 and s2 are equivalent, we first extract the set of
incoming transitions to s1 and s2. We name these sets
I1 and I2. Then, we extract the set of outgoing transi-
tions from s1 and s2, and name these sets O1 and O2.
We consider s1 and s2 as equivalent if |I1| = |I2| and
|O1| = |O2|, and if the edges in the sets I1 and I2, and
in O1 and O2 have the exact same labels.

If s1 and s2 are equivalent, we remove them from MD,
and we add a state sd to MD. The label for sd is a table
composed of the combined rows of the label tables of
s1 and s2. We then adjust all the transitions in MD that



had s1 or s2 as start states to start from sd, and all the
transitions that had s1 or s2 as end states to end at sd.

We iteratively run this algorithm on all the dialects we
learned, and we build the final decision state machine
MD. As an example, Figure 4 shows the decision state
machine built from the two dialects in Figure 2. Wolf
shows how this algorithm produces nearly-minimal re-
sulting state machines [46]. Empirical results indicate
that this works well in practice and is enough for our
purposes. Also, as for the dialect state machines, the de-
cision state machine is non-deterministic. This is not a
problem, since we analyze different states in parallel to
make a decision as we explain in the next section.

5.2 Making a Decision

Given an SMTP conversation Con, we assign it to an
SMTP dialect by traversing the decision state machine
MD in the following way:
Step 1: We keep a list A of active states, and a list CD of
dialect candidates. At the beginning of the algorithm, A
only contains the initial state of MD, while CD contains
all the learned dialects.
Step 2: Every time we see a server reply r in Con, we
check each state sa in A for outgoing transitions labeled
with r. If such transition exists, we follow each of them
and add the end states to a list A′. Then, we set A′ as the
new active state list A.
Step 3: Every time we see a client command c in Con,
we check each state sa in A. If sa’s table has an entry
that matches c, and the identifier for that entry is in the
dialect candidate list CD, we copy sa to a list A′. We
then remove from CD all dialect candidates whose table
entry in sa did not match c. We set A′ as the new active
state list A.

The dialects that are still in CD at the end of the pro-
cess are the possible candidates the conversation belongs
to. If CD contains a single candidate, we can make a
decision and assign the conversation to a unique dialect.

5.3 Applying the Decision

The decision approach explained in the previous section
can be used in different ways, and for different purposes.
In particular, we can use it to assess to which client a
server is talking. Furthermore, we can use it for spam
mitigation, and close connections whenever a conversa-
tion matches a dialect spoken by a bot.

Similarly to what we discussed in Section 4, the de-
cision process can happen passively, or actively, by hav-
ing a server decide which replies to send to the client.
In the first case, we traverse the decision state machine
for each reply, as described in Section 5.2, and end up
with a dialect candidate set at the end of the conversa-
tion. Consider, for example, the decision state machine
in Figure 4. By passively observing the SMTP conver-

sation, our approach is able to discard one of the two
dialects from the candidate set as soon as the client sends
the HELO message. If the commands of the remaining
candidate match the ones in the decision state machine
for that client until we observe the DATA command, we
can attribute the conversation to that dialect. Otherwise,
the conversation does not belong to any learned dialect.

As discussed in Section 4, passive observation gives
no guarantee to uniquely identify a dialect. In this con-
text, a less problematic use case is to deploy this ap-
proach for spam detection: once the candidate set CD

contains only bots, we can close the connection and clas-
sify this conversation as related to spam. As we will
show in Section 7, this approach works well in practice
on a real-world data set. If passive observation is not
enough to identify a dialect, one can use active probing.

Gain heuristic. To perform active detection, we need
to identify “good” replies that we can send to achieve
our purpose (dialect classification or spam mitigation).
More specifically, we need to find out which replies can
be used to expose the deviations in different implementa-
tions. To achieve this goal, we use the following heuris-
tic: For each state ci in which a dialect i reaches the end
of a conversation (i.e., sends a DATA or QUIT command,
or just closes the connection), we assign a gain value gi
to the dialect i in that state. The gain value represents
how much it would help achieve our detection goal if
we reached that state during our decision process. Then,
we propagate the gain values backwards along the tran-
sitions of the decision state machine. For each state s,
we set the gain for i in that state as the maximum of the
gain values for i that have been propagated to that state.
To correctly handle loops, we continue propagating the
gain values until we reach a fixed point. We then calcu-
late the gain for s as the minimum of the gains for any
dialect j in s. We do this to ensure that our decision is
safe in the worst-case scenario (i.e., for the client with
the minimal gain for that state). We calculate the initial
gain for a state in different ways, depending on the goal
of our decision process.

When performing spam mitigation, we want to avoid
a legitimate client from failing to send an email. For this
reason, we strongly penalize failure states for legitimate
clients, while we want to have high gains for states in
which spambots would fail. For each state in which a di-
alect reaches a final state, we calculate the gain for that
state as follows: First, we assign a score to each client
with a final label for that state (i.e., a QUIT, a DATA, or
a connection closed label). We want to give more impor-
tance to states that make bots fail, while we never want
to visit states that make legitimate clients fail. Also, we
want to give a neutral gain to states that make legitimate
clients succeed, and a slightly lower gain to states that



make bots succeed. To achieve this, we assign a score of
1 for bot failure states, a score of 0 for legitimate clients
failure states, a score of 0.5 for legitimate-client success
states, and a score of 0.2 for bot success states. Notice
that what we need here is a lattice of values that respect
the stated precedence; therefore, any set of numbers that
maintain this relationship would work.

When performing classification, we want to be as ag-
gressive as possible in reducing the number of possible
dialect candidates. In other words, we want to have high
gains for states that allow us to make a decision on which
dialect is spoken by a given client. Such states are those
with a single possible client in them, or with different
clients, each one with a different command label. To
achieve this property, we set the gain for each state that
includes a final label as G = d

n , where n is the total num-
ber of labels in that state, and d is the number of unique
labels.

Reply selection. At each iteration of the algorithm ex-
plained in Section 5.2, we decide which reply to send
by evaluating the gain for every possible reply from the
states in A. For all the states reachable in one transi-
tion from the states in A, we first select the states Sa that
still have at least an active client in their label table. We
group together those states in Sa that are connected to
the active states by transitions with the same label. For
each label group, we pick the minimum gain among the
states in that group. We consider this number as the gain
we would get by sending that reply. After calculating the
gain for all possible replies, we send the reply that has
the highest gain associated to it. In case more than one
reply yields the same gain we pick one randomly.

6 The Botnet Feedback Mechanism

Modern spamming botnets typically use template-based
spamming to send out emails [22,31,38]. With this tech-
nique, the botnet C&C infrastructure tells the bots what
kind of emails to send out, and the bots relay back in-
formation about the delivery as they received it from the
SMTP server. This server feedback is an important piece
of information to the botmaster, since it enables him to
monitor if his botnet is working correctly.

Of course, a legitimate sender is also interested in in-
formation about the delivery process. However, she is
interested in different information compared to the bot-
master. In particular, a legitimate user wants to know
whether the delivery of her emails failed (e.g., due to a
typo in the email address). In such a case, the user wants
to correct the mistake and send the message again. In
contrast, a spammer usually sends emails in batches, and
typically does not care about sending an email again in
case of failure.

Nonetheless, there are three main pieces of informa-
tion related to server feedback that a rational spammer
is interested in: (i) whether the delivery failed because
the IP address of the bot is blacklisted; (ii) whether the
delivery failed because of specific policies in place at the
receiving end (e.g., greylisting); (iii) whether the deliv-
ery failed because the recipient address does not exist. In
all three cases, the spammer can leverage the information
obtained from the mail server to make his operation more
effective and profitable. In the case of a blacklisted bot,
he can stop sending spam using that IP address, and wait
for it to be whitelisted again after several hours or days.
Empirical evidence suggests that spammers already col-
lect this information and act accordingly [38]. If the re-
cipient server replied with an SMTP non-critical error
(i.e., the ones used in greylisting), the spammer can send
the email again after some minutes to comply with the
recipient’s policy.

The third case, in which the recipient address does
not exist, is the most interesting, because it implies that
the spammer can permanently remove that email address
from his email lists, and avoid using it during subsequent
campaigns. Recent research suggests that bot feedback
is an important part of a spamming botnet operation. For
example, Stone-Gross et al. [38] showed that about 35%
of the email addresses used by the Cutwail botnet were
in fact non-existent. By leveraging the server feedback
received by the bots, a rational botmaster can get rid
of those non-existing addresses, and optimize his spam-
ming performance significantly.

Breaking the Loop: Providing False Responses to
Spam Emails. Based on these insights, we want to
study how we can manipulate the SMTP delivery pro-
cess of bots to influence their sending behavior. We want
to investigate what would happen if mail servers started
giving erroneous feedback to bots. In particular, we are
interested in the third case, since influencing the first two
pieces of information has only a limited, short-term im-
pact on a spammer. However, if we provide false in-
formation about the status of a recipient’s address, this
leads to a double bind for the spammer: on the one hand,
if a spammer considers server feedback, he will remove
a valid recipient address from his email list. Effectively,
this leads to a reduced number of spam emails received at
this particular address. On the other hand, if the spammer
does not consider server feedback, this reduces the effec-
tiveness of his spam campaigns since emails are sent to
non-existent addresses. In the long run, this will signifi-
cantly degrade the freshness of his email lists and reduce
the number of successfully sent emails. In the following,
we discuss how we can take advantage of this situation.

As a first step, we need to identify that a given SMTP
conversation belongs to a bot. To this end, a mail server



can either use traditional, IP-based blacklists or lever-
age the analysis of SMTP dialects introduced previously.
Once we have identified a bot, a mail server can (instead
of closing the connection) start sending erroneous feed-
back to the bot, which will relay this information to the
C&C infrastructure. Specifically, the mail server could,
for example, report that the recipient of that email does
not exist. By doing this, the email server would lead
the botmaster to the lose-lose situation discussed before.
For a rational botmaster, we expect that this technique
would reduce the amount of spam the email address re-
ceives. We have implemented this approach as a second
instance of our technique to leverage the email delivery
for spam mitigation and report on the empirical results in
Section 7.3.

7 Evaluation
In this section, we evaluate the effectiveness of our ap-
proach. First, we describe our analysis environment.
Then, we evaluate both the dialects and the feedback ma-
nipulation techniques. Finally, we analyze the limitations
and the possible evasion techniques against our system.

7.1 Analysis Environment

We implemented our approach in a tool, called B@bel.
B@bel runs email clients (legitimate or malicious) in
virtual machines, and applies the learning techniques ex-
plained in Section 4 to learn the SMTP dialect of each
client. Then, it leverages the learned dialects to build a
decision machine MD, and uses it to perform malware
classification or spam mitigation.

The first component of B@bel is a virtual machine
zoo. Each of the virtual machines in the zoo runs a dif-
ferent email client 4. Clients can be legitimate email pro-
grams, mail transfer agents, or spambots.

The second component of B@bel is a gateway, used to
confine suspicious network traffic. Since the clients that
we run in the virtual machines are potentially malicious,
we need to make sure that they do not harm the outside
world. To this end, while still allowing the clients to
connect to the Internet, we use restricting firewall rules,
and we throttle their bandwidth, to make sure that they
will not be able to launch denial of service attacks. Fur-
thermore, we sinkhole all SMTP connections, redirecting
them to local mail servers under our control.

We use three different mail servers in B@bel. The
first email server is a regular server that speaks plain
SMTP, and will perform passive observation of the
client’s SMTP conversation. The second server is instru-

4We used VirtualBox as our virtualization environment, and Win-
dows XP SP3, Windows Server 2008, Windows 7, Ubuntu Linux 11.10,
or Mac OS X Lion as operating systems on the virtual machines, de-
pending on the operating system needed to run each of the legitimate
clients or MTAs. We used Windows XP SP3 to run the malware sam-
ples

mented to perform active probing, as described in Sec-
tion 4.2. Finally, the third server is configured to always
report to the client that the recipient of an email does not
exist, and is used to study how spammers use the feed-
back they receive from their bots.

The third component of B@bel is the learner. This
component analyzes the active or passive observations
generated between the clients in the zoo and the mail
servers, learns an SMTP dialect for each client, and gen-
erates the decision state machine using the various di-
alects as input, as explained in Section 5. According
to the task we want to perform (dialect classification or
spam mitigation), B@bel tags the states in the decision
state machine with the appropriate gain.

The last component of B@bel is the decision maker.
This component analyzes an SMTP conversation, by
either passively observing it or by impersonating the
server, and makes a decision about which dialect is spo-
ken by the client, using the process described in Sec-
tion 5.2.

7.2 Evaluating the Dialects

Evaluating Dialects for Classification We trained
B@bel by running active probing on a variety of pop-
ular Mail User Agents, Mail Transfer Agents, and bot
samples. Table 1 lists the clients we used for dialect
learning. Since we are extracting dialects by looking
at the SMTP conversations only, B@bel is agnostic to
the family a bot belongs to. However, for legibility pur-
poses, Table 1 groups bots according to the most fre-
quent label assigned by the anti-virus products deployed
by VirusTotal [44]. Our dataset contained 13 legitimate
MUAs and MTAs, and 91 distinct malware samples5. We
picked the spambot samples to be representative of the
largest active spamming botnets according to a recent re-
port [26] (the report lists Lethic, Cutwail, Mazben, Cut-
wail, Tedroo, Bagle). We also picked worm samples that
spread through email, such as Mydoom. In total, the mal-
ware samples we selected belonged to 11 families. The
dialect learning phase resulted in a total of 60 dialects.
We explain the reason for the high number of discovered
dialects later in this section.

We then wanted to assess whether a dialect (i.e., a
state machine) is unique or not. For each combination
of dialects <d1, d2>, we merged their state machines to-
gether as explained in Section 5.1. We consider two di-
alects as distinct if any state of the merged state machine
has two different labels in the label table for the dialects
d1 and d2, or if any state has a single possible dialect in
it.

The results show that the dialects spoken by the legit-
imate MUAs and MTAs are distinct from the ones spo-

5The MD5 checksums of the malware samples are available at
http://cs.ucsb.edu/~gianluca/files/babel.txt



Mail User Agents Mail Transfer Agents Bots (by AV labels)
Eudora, Opera, Outlook 2010, Exchange 2010, Waledac, Donbot, Grum, Klez
Outlook Express, Pegasus, Exim, Postfix, Qmail, Buzus, Bagle, Lethic, Cutwail,
The Bat!, Thunderbird, Windows Live Mail Sendmail Mydoom, Mazben, Tedroo

Table 1: MTAs, MUAs, and bots used to learn dialects.

ken by the bots. By analyzing the set of dialects spoken
by legitimate MUAs and MTAs, we found that they all
speak distinct dialects, except for Outlook Express and
Windows Live Mail. We believe that Microsoft used the
same email engine for these two products.

The 91 malware samples resulted in 48 unique di-
alects. We manually analyzed the spambots that use the
same dialect, and we found that they always belong to the
same family, with the exception of six samples. These
samples were either not flagged by any anti-virus at the
time of our analysis, or match a dropper that downloaded
the spambot at a later time [8]. This shows that B@bel
is able to classify spambot samples by looking at their
email behavior, and label them more accurately than anti-
virus products.

We then wanted to understand the reason for the high
number of dialects we discovered. To this end, we con-
sidered clusters of malware samples that were talking the
same dialect. For each cluster, we assigned a label to it,
based on the most common anti-virus label among the
samples in the cluster. All the clusters were unique, with
the exception of eleven clusters marked as Lethic and two
clusters marked as Mydoom. By manual inspection, we
found that Lethic randomly closes the connection after
sending the EHLO message. Since our dialect state ma-
chines are nondeterministic, our approach handles this
case, in principle. However, in some cases, this non-
deterministic behavior made it impossible to record a re-
ply for a particular test case during our active probing.
We found that each cluster labeled as Lethic differs for at
most five non-recorded test cases with every other Lethic
cluster. This gives us confidence to say that the dialect
spoken by Lethic is indeed unique. For the two clusters
labeled as Mydoom, we believe this is a common label
assigned to unknown worms. In fact, the two dialects
spoken by the samples in the clusters are very different.
This is another indicator that B@bel can be used to clas-
sify spamming malware in a more precise fashion than is
possible by relying on anti-virus labels only.

Evaluating Dialects for Spam Detection To evaluate
how the learned dialects can be used for spam detection,
we collected the SMTP conversations for 621,919 email
messages on four mail servers in our department, span-
ning 40 days of activity.

For each email received by the department servers, we
extracted the SMTP conversation associated with it, and
then ran B@bel on it to perform spam detection. To this

end, we used the conversations logged by the Anubis sys-
tem [4] during a period of one year (corresponding to
7,114 samples) to build the bot dialects, and the dialects
learned in Section 7.2 for MUAs and MTAs as legitimate
clients. In addition, we manually extracted the dialects
spoken by popular web mail services from the conversa-
tions logged by our department mail servers, and added
them to the legitimate MTAs dialects. Note that, since
the goal of this experiment is to perform passive spam
detection, learning the dialects by passively observing
SMTP conversations is sufficient.

During our experiment, B@bel marked any conversa-
tion as spam if, at the end of the conversation, the di-
alects in CD were all associated with bots. Furthermore,
if the dialects in CD were all associated with MUAs
or MTAs, B@bel marked the conversation as legitimate
(ham). If there were both good and malicious clients in
CD, B@bel did not make a decision. Finally, if the deci-
sion state machine did not recognize the SMTP conversa-
tion at all, B@bel considered that conversation as spam.
This could happen when we observe a conversation from
a client that was not in our training set. As we will show
later, considering it as spam is a reasonable assumption,
and is not a major source of false positives.

In total, B@bel flagged 260,074 conversations as
spam, and 218,675 as ham. For 143,170 emails, B@bel
could not make a decision, because the decision pro-
cess ended up in a state where there were both legitimate
clients and bots in CD.

To verify how accurate our decisions were, we used
a number of techniques. First, we checked whether the
email was blocked by the department mail servers in
the first place. These servers have a common configu-
ration, where incoming emails are first checked against
an IP blacklist, and then against more expensive content-
analysis techniques. In particular, these servers used a
commercial blacklist for discarding emails coming from
known spamming IP addresses, and SpamAssassin and
ClamAV for content analysis. Any time one of these
techniques and B@bel agreed on flagging a conversa-
tion as spam, we consider this as a true positive of our
system. We also consider as a true positive those con-
versations B@bel marked as spam, and that lead to an
NXDOMAIN or to a timeout when we tried to resolve the
domain associated to the sender email address. In addi-
tion, we checked the sender IP address against 30 addi-



tional IP blacklists6, and considered any match as a true
positive. According to this ground truth, the true positive
rate for the emails B@bel flagged as being sent by bots is
99.32%. Surprisingly, 98% of the 24,757 conversations
that were not recognized by our decision state machine
were flagged as spam by existing methods. This shows
that, even if the set of clients from which B@bel learned
the dialects from is not complete, there are no widely-
used legitimate clients we missed, and that it is safe to
consider any conversation generated by a non-observed
dialect as spam. For the remaining 2,074 emails that
B@bel flagged as spam, we could not assess if they were
spam or not. They might have been a false positive of
B@bel, or a false negative of the existing methods. To
remain on the safe side, we consider them as false posi-
tives. This results in B@bel having a precision of 99.3%.

We then looked at our false negatives. We consider as
false negatives those conversations that B@bel classified
as belonging to a legitimate client dialect, but that have
been flagged as spam by any of the previously mentioned
techniques. In total, the other spam detection mecha-
nisms flagged 71,342 emails as spam, among the ones
that B@bel flagged as legitimate. Considering these
emails as false negatives, this results in B@bel having a
false negative rate of 21%. The number of false negatives
might appear large at first. However, we need to con-
sider the sources of these spam messages. While the vast
majority of spam comes from botnets, spam can also be
sent by dedicated MTAs, as well as through misused web
mail accounts. Since B@bel is designed to detect email
clients, we are able to detect which MTA or web mail
application the email comes from, but we cannot assess
whether that email is ham or spam. To show that this is
the case, we investigated these 71,342 messages, which
originated from 7,041 unique IP addresses. Assuming
these are legitimate MTAs, we connected to each IP ad-
dress on TCP port 25 and observed greeting messages
for popular MTAs. For 3,183 IP addresses, one of the
MTAs that we used to learn the dialects responded. The
remaining 3,858 IP addresses did not respond within a 10
second timeout. We performed reverse DNS lookups on
these IP addresses and assessed whether their assigned
DNS names contained indicative names such as smtp or
mail. 1,654 DNS names were in this group. We could
not find any conclusive proof that the remaining 2,204
addresses belong to legitimate MTAs.

For those dialects for which B@bel could not make a
decision (because the conversation lead to a state where
both one or more legitimate clients and bots were active),

6The blacklists we leveraged come from these services: Barracuda,
CBL, Spamhaus, Atma, Spamcop, Manitu, AHBL, DroneBL, DShield,
Emerging Threats, malc0de, McAfee, mdl, OpenBL, SORBS, Sucuri
Security, TrendMicro, UCEPROTECT, and ZeusTracker. Note that
some services provide multiple blacklists

we investigated if we could have assessed whether the
client was a bot or not by using active probing. Since the
spambot and legitimate client dialects that we observed
are disjoint, this is always possible. In particular, B@bel
found that it is always possible to distinguish between the
dialects spoken by a spambot and by a legitimate email
client that look identical from passive analysis by send-
ing a single SMTP reply. For example, the SMTP RFC
specifies that multi-line replies are allowed, in the case
all the lines in the reply have the same code, and all the
reply codes but the last one are followed by a dash char-
acter. Therefore, multi-line replies that use different re-
ply codes are not allowed by the standard. We can lever-
age different handling of this corner case to disambiguate
between Qmail and Mydoom. More precisely, if we send
the reply 250-OK<CR><LF>550 Error, Qmail will
take the first reply code as the right one, and continue
the SMTP transaction, while Mydoom will take the sec-
ond reply code as the right one, and close the connec-
tion. Based on these observations, we can say that if we
ran B@bel in active mode, we could distinguish between
these ambiguous cases, and make the right decision. Un-
fortunately, we could run B@bel only in passive mode
on our department mail servers.

Our results show that B@bel can detect (and possi-
bly block) spam emails sent by bots with high accuracy.
However, B@bel is unable to detect those spam emails
sent by dedicated MTAs or by compromised webmail ac-
counts. For this reason, similar to the other state-of-the-
art mitigation techniques, B@bel is not a silver bullet,
but should be used in combination with other anti-spam
mechanisms. To show what would be the advantage of
deploying B@bel on a mail server, we studied how much
spam would have been blocked on our department server
if B@bel was used in addition to or in substitution to
the commercial blacklist and the content analysis sys-
tems that are currently in use on those servers.

Similarly to IP blacklists, B@bel is a lightweight
technique. Such techniques are typically used as a first
spam-mitigation step to make quick decisions, as they
avoid having to apply resource-intensive content anal-
ysis techniques to most emails. For this reason, the
first configuration we studied is substituting the commer-
cial blacklist with B@bel. In this case, 259,974 emails
would have been dropped as spam, instead of the 219,726
that were blocked by the IP blacklist. This would have
resulted in 15.5% less emails being sent to the content
analysis system, reducing the load on the servers. More-
over, the emails detected as spam by B@bel and the IP
blacklist do not overlap completely. For example, the
IP blacklist flags as spam emails sent by known misused
MTAs. Therefore, we analyzed the amount of spam that
the two techniques could have caught if used together. In
this scenario, 278,664 emails would have been blocked,



resulting in 26.8% less emails being forwarded to the
content analysis system compared to using the blacklist
alone. As a last experiment, we studied how much spam
would have been blocked on our servers by using B@bel
in combination with both the commercial blacklist and
the content analysis systems. In this scenario, 297,595
emails would have been flagged as spam, which consti-
tutes an improvement of 3.9% compared to the servers’
original configuration.

7.3 Evaluating the Feedback Manipulation

To investigate the effects of wrong server feedback to
bots, we set up the following experiment. We ran 32 mal-
ware samples from four large spamming botnet families
(Cutwail, Lethic, Grum, and Bagle) in a controlled envi-
ronment, and redirected all of their SMTP activity to the
third mail server in the B@bel architecture. We config-
ured this server to report that any recipient of the emails
the bots were sending to was non-existent, as described
in Section 7.1.

To assess whether the different botnets stopped send-
ing emails to those addresses, we leveraged a spamtrap
under our control. A spamtrap is a set of email addresses
that do not belong to real users, and, therefore, collect
only spam mails. To evaluate our approach, we leverage
the following idea: if an email address is successfully
removed from an email list used by a spam campaign,
we will not observe the same campaign targeting that ad-
dress again. We define as a spam campaign the set of
emails that share the same URL templates in their links,
similar to the work of Xie et al. [48]. While there are
more advanced methods to detect spam campaigns [31],
the chosen approach leads to sufficiently good results for
our purposes.

We ran our experiment for 73 days, from June 18 to
August 30, 2011. During this period, our mail server
replied with false server feedback for 3,632 destination
email addresses covered by our spamtrap, which were
targeted by 29 distinct spam campaigns. We call the set
of campaigns Cf and the set of email addresses Sf . Of
these, five campaigns never targeted the addresses for
which we gave erroneous feedback again. To estimate
the probability Pc that the spammer running campaign c
in Cf actually removed the addresses from his list, and
that our observation is not random, we use the following
formula:

Pc = 1− (1− n
tf−tb )te−tf ,

where n is the total number of emails received by Sf

for c, tf is the time at which we first gave a negative
feedback for an email address targeted by c, tb is the first
email for c which we ever observed targeting our spam
trap, and te is the last email we observed for c. This
formula calculates the probability that, given a certain

number n of emails observed for a certain campaign c,
no email was sent to the email addresses in Sf after we
sent a poisoned feedback for them. We calculate Pc for
the five campaigns mentioned above. For three of them,
the confidence was above 0.99. For the remaining two,
we did not observe enough emails in our spamtrap to be
able to make a final estimate.

To assess the impact we would have had when send-
ing erroneous feedback to all the addresses in the spam-
trap, we look at how many emails the whole spamtrap
received from the campaigns in Cf . In total, 2,864,474
emails belonged to campaigns in Cf . Of these, 550,776
belonged to the three campaigns for which we are con-
fident that our technique works and reduced the amount
of spam emails received at these addresses. Surprisingly,
this accounts for 19% of the total number of emails re-
ceived, indicating that this approach could have impact
in practice.

We acknowledge that these results are preliminary and
provide only a first insight into the large-scale applica-
tion of server feedback poisoning. Nevertheless, we are
confident that this approach is reasonable since it leads
to a lose-lose situation for the botmaster, as discussed in
Section 6. We argue that the uncertainty about server
feedback introduced by our method is beneficial since it
reduces the amount of information a spammer can obtain
when sending spam.

7.4 Limitations and Evasion

Our results demonstrate that B@bel is successful in de-
tecting current spambots. However, spam detection is an
adversarial game. Thus, once B@bel is deployed, we
have to expect that spammers will evolve and try to by-
pass our systems. In this section, we discuss potential
paths for evasion.

Evading dialects detection. The most immediate path
to avoid detection by dialects is to implement an SMTP
engine that precisely follows the specification. Alterna-
tively, a bot author could make use of an existing (open
source) SMTP engine that is used by legitimate email
clients. We argue that this has a negative impact on the
effectiveness and flexibility of spamming botnets.

Many spambots are built for performance; their aim
is to distribute as many messages as possible. In some
cases, spambots even send multiple messages without
waiting for any server response. Clearly, any additional
checks and parsing of server replies incurs overhead that
might slow down the sender. We performed a simple ex-
periment to measure the speed difference between a mal-
ware program sending spam (Bagle) and a legitimate
email library on Windows (Collaboration Data
Objects - CDO). We found that Bagle can send an
email every 20 ms to a local mail server. When trying to
send emails as fast as possible using the Windows library



(in a tight loop), we measured that a single email required
200 ms, an order of magnitude longer. Thus, when bots
are forced to faithfully implement large portions of the
SMTP specification (because otherwise, active probing
will detect differences), spammers suffer a performance
penalty.

Spammers could still decide to adopt a well-known
SMTP implementation for their bots, run a full, paral-
lelized, SMTP implementation, or revert to a well-known
SMTP library when they detect that the recipient server
is using B@bel for detection. In this case, another as-
pect of spamming botnets has to be taken into account.
Typically, cyber criminals who infect machines with bots
are not the same as the spammers who rent botnets to dis-
tribute their messages. Modern spamming botnets allow
their customers to customize the email headers to mimic
legitimate clients. In this scenario, B@bel could exploit
possible discrepancies between the email client identified
by the SMTP dialect and the one announced in the body
of an email (for example, via the X-Mailer header).
When these two dialects do not match (and the SMTP
dialect does not indicate an MTA), we can detect that
the sender pretends to speak a dialect that is inconsis-
tent with the content of the (spam) message. Of course,
the botmasters could take away the possibility for their
customers to customize the headers of their emails, and
force them to match the ones typical of a certain legiti-
mate client (e.g., Outlook Express). However, while this
would make spam detection harder for B@bel, it would
make it easier for other systems that rely on email-header
analysis, such as Botnet Judo [31], because spammers
would be less flexible in the way they vary their tem-
plates.

Mitigating feedback manipulation. As we discussed
in Section 6, spammers can decide to either discard any
feedback they receive from the bots, or trust this feed-
back. To avoid this, attackers could guess whether the
receiving mail server is performing feedback manipula-
tion. For example, when all emails to a particular domain
are rejected because no recipient exists, maybe all feed-
back from this server can be discarded. In this case, we
would need to update our feedback mechanism to return
invalid feedback only in a fraction of the cases.

8 Related Work
Email spam is a well-known problem that has attracted a
substantial amount of research over the past years. In the
following, we briefly discuss how our approach is related
to previous work in this area and elaborate on the novel
aspects of our proposed methods.
Spam Filtering: Existing work on spam filtering can
be broadly classified in two categories: post-acceptance
methods and pre-acceptance methods. Post-acceptance

methods receive the full message and then rely on con-
tent analysis to detect spam emails. There are many ap-
proaches that allow one to differentiate between spam
and legitimate emails: popular methods include Naive
Bayes, Support Vector Machines (SVMs), or similar
methods from the field of machine learning [16, 27, 35,
36]. Other approaches for content-based filtering rely on
identifying the URLs used in spam emails [2,48]. A third
method is DomainKeys Identified Mail (DKIM), a system
that verifies that an email has been sent by a certain do-
main by using cryptographic signatures [23]. In practice,
performing content analysis or computing cryptographic
checksums on every incoming email can be expensive
and might lead to high load on busy servers [41]. Fur-
thermore, an attacker might attempt to bypass the con-
tent analysis system by crafting spam messages in spe-
cific ways [25, 28]. In general, the drawback of post-
acceptance methods is that an email has to be received
before it can be analyzed.

Pre-acceptance methods attempt to detect spam before
actually receiving the full message. Some analysis tech-
niques take the origin of an email into account and an-
alyze distinctive features about the sender of an email
(e.g., the IP address or autonomous system the email
is sent from, or the geographical distance between the
sender and the receiver) [17,34,39,43]. In practice, these
sender-based techniques have coverage problems: pre-
vious work showed how IP blacklists miss detecting a
large fraction of the IP addresses that are actually sending
spam, especially due to the highly dynamic nature of the
machines that send spam (typically botnets) [32, 37, 38].

Our method is a novel, third approach that focuses on
how messages are sent. This avoids costly content anal-
ysis, and does not require the design and implementa-
tion of a reputation metric or blacklist. In contrast, we
attempt to recognize the SMTP dialect during the ac-
tual SMTP transaction, and our empirical results show
that this approach can successfully discriminate between
spam and ham emails. This complements both pre-
acceptance and post-acceptance approaches. Another
work that went in this direction was done by Beverly et
al. [5] and Kakavelakis et al. [19]. The authors of these
two papers leveraged the fact that spambots have often
bad connections to the Internet, and perform spam detec-
tion by looking at TCP-level features such as retransmis-
sions and connection resets. Our system is more robust,
because it does not rely on assumptions based on the net-
work connectivity of a mail client.

Moreover, to the best of our knowledge, we are the
first to study the effects of manipulating server feedback
to poison the information sent by a bot to the botmaster.
Protocol Analysis: The core idea behind our approach
is to learn the SMTP dialect spoken by a particular
client. This problem is closely related to the problem of



automated protocol reverse-engineering, where an (un-
known) protocol is analyzed to determine the individual
records/elements and the protocol’s structure [6,13]. Ini-
tial work in this area focused on clustering of network
traces to group similar messages [14], while later meth-
ods extracted protocol information by analyzing the ex-
ecution of a program while it performs network commu-
nication [10, 15, 24, 45, 47]. Sophisticated methods can
also handle multiple messages and recover the protocol’s
state machine. For example, Dispatcher is a tool capa-
ble of extracting the format of protocol messages when
having access to only one endpoint, namely the bot bi-
nary [9]. Cho et al. leverage the information extracted
by Dispatcher to learn C&C protocols [11]. Brumley et
al. studied how deviations in the implementation of a
given protocol specification can be used to detect errors
or generate fingerprints [7]. The differences in how a
given program checks and processes inputs are identified
with the help of binary analysis (more specifically, sym-
bolic execution).

Our problem is related to previous work on protocol
analysis, in the sense that we extract different SMTP pro-
tocol variations, and use these variations to build finger-
prints. However, in this work, we treat the speaker of the
protocol (the bot) as a blackbox, and we do not perform
any code analysis or instrumentation to find protocol for-
mats or deviations. This is important because (i) mal-
ware is notoriously difficult to analyze and (ii) we might
not always have a malware sample available. Instead,
our technique allows us to build SMTP dialect state ma-
chines even when interacting with a previously-unknown
spambot.

There is also a line of research on fingerprinting pro-
tocols [12, 30, 49]. Initial work in this area leveraged
manual analysis. Nonetheless, there are methods, such
as FiG, that automatically generate fingerprints for DNS
servers [42]. The main difference between our work and
FiG is that our dialects are stateful while FiG operates
on individual messages. This entirely avoids the need to
merge and explore protocol state machines. However, as
discussed previously, individual messages are typically
not sufficient to distinguish between SMTP engines.

9 Conclusion
In this paper, we introduced a novel way to detect and
mitigate spam emails that complements content- and
sender-based analysis methods. We focus on how email
messages are sent and derive methods to influence the
spam delivery mechanism during SMTP transactions.
On the one hand, we show how small deviations in
the SMTP implementation of different email agents (so
called SMTP dialects) allow us to detect spambots dur-
ing the actual SMTP communication. On the other hand,
we study how the feedback mechanism used by botnets

can be poisoned, which can be used to have a negative
impact on the effectiveness of botnets.

Empirical results confirm that both aspects of our ap-
proach can be used to detect and mitigate spam emails.
While spammers might adapt their spam-sending prac-
tices as a result of our findings, we argue that this reduces
their performance and flexibility.
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