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Abstract—Companies adopt Bring Your Own Device (BYOD)
policies extensively, for both convenience and cost management.
The compelling way of putting private and business related
applications (apps) on the same device leads to the widespread
usage of employee owned devices to access sensitive company
data and services. Such practices create a security risk as a
legitimate app may send business-sensitive data to third party
servers through detrimental app functions or packaged libraries.

In this paper, we propose BORDERPATROL, a system for
extracting contextual data that businesses can leverage to enforce
access control in BYOD-enabled corporate networks through
fine-grained policies. BORDERPATROL extracts contextual infor-
mation, which is the stack trace of the app function that generated
the network traffic, on provisioned user devices and transfers this
data in IP headers to enforce desired policies at network routers.
BORDERPATROL provides a way to selectively prevent undesired
functionalities, such as analytics activities or advertisements, and
help enforce information dissemination policies of the company
while leaving other functions of the app intact. Using 2,000 apps,
we demonstrate that BORDERPATROL is effective in preventing
packets which originate from previously identified analytics and
advertisement libraries from leaving the network premises. In
addition, we show BORDERPATROL’s capability in selectively
preventing undesirable app functions using case studies.

I. INTRODUCTION

Mobile smart-devices are omnipresent not only in a personal
setting but also in business environments. To accommodate
for this reality, corporations increasingly implement so-called
Bring Your Own Device (BYOD) processes that allow employ-
ees to access corporate data and applications (apps) on their
personal smart-devices. However, corporate priorities, such
as protecting intellectual property or preventing data leaks,
frequently differ from the priorities of users.

It is therefore customary for corporations to enforce re-
strictions on which apps are allowed to run on a mobile
device or what network properties the device is allowed to
access. Such restrictions allow companies to prevent apps
deemed unwanted or dangerous from executing while the
device is in the corporate network. Widespread solutions
often include commercial device management products such as
Samsung Knox [1] and software specific built-in capabilities
such as the Android Device Management (ADM) framework
[2]. However, such policy enforcement systems are prone
to failure in restraining communications that originate from
mobile devices, causing undesirable information flows that
violate company policies. One such example is the news leak
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of an Apple iPad prototype [3] through apps that use the Flurry
analytics software [4]. In this case, Flurry aggregated analytics
and geo-location data from apps which included the Flurry
library, and identified approximately 50 devices that matched
the hardware characteristics of Apple’s rumored tablet device
at company headquarters well before the official launch.

A straightforward solution to prevent undesirable informa-
tion flow from employee owned devices is to use a BYOD pol-
icy that prevents apps unrelated to the corporate agenda from
executing. Unfortunately, most apps, including those that are
geared towards businesses, are an amalgamation of developer-
authored code and various third party libraries. This poses a
challenge from the perspective of designing a BYOD policy
that will provide selective permeability in access control. That
is, while an app might be in line with the corporate agenda, and
hence should be allowed to execute, the app might be bundled
with libraries that violate the security and privacy goals of
the company. For instance, business apps for word processing
such as Docs To Go [5] often include tracking libraries that
send detailed information about the device for usage analysis
and statistics to the developer.

Preventing communication with network endpoints that the
corporation has identified to be against its own priorities is
an attractive solution. Unfortunately, this only works for end-
points that are exclusively accessed by unwanted components
of an app, such as known tracker, statistics, or advertisement
libraries. The network traffic that is visible by the corporate
infrastructure does not usually contain sufficient information to
make an informed decision about whether the communication
should be allowed or prohibited. A concrete example is the
Dropbox Android app [6]. This app uses a variety of different
developer-created functionalities which serve two main pur-
poses: (i) login and authentication functionality, and (ii) file
synchronization with both upload and download functionali-
ties. While all functionalities are necessary for the daily use
of the app, uploading confidential information to non-business
affiliated servers might violate the corporate policy.

Companies that adopt BYOD policies are also confronted
with novel regulatory challenges such as the European Union’s
General Data Protection Regulation (GDPR) [7]. GDPR ex-
pressively forbids employees to upload customer data to
third party services unless the company has obtained explicit
consent from the customer. Thus, an ideal BYOD policy for



an app should allow authentication and permit file downloads,
but prevent any uploads. Unfortunately, existing BYOD policy
enforcement mechanisms, such as Samsung KNOX or ADM,
lack the granularity to enforce such a policy as they do not
inspect network connections with respect to the app context,
but merely examine the data residing in IP packets such as
source/destination addresses.

Hence, to enable such flexible BYOD policies, we propose
to augment the network traffic originating from a device with
fine-grained, app-execution context information. This informa-
tion allows a network-based policy enforcement mechanism
to pinpoint what functionalities of an app are responsible for
sending the corresponding traffic. The contextual information
we specifically leverage is the Java call stack at the time a
network socket is connected. We then embed a compressed
representation of this call stack in the options field of the
IP header in network packets. This information allows a policy
engine to easily distinguish different app functions, including
authentication and file uploads/downloads, and to selectively
prevent undesired functionalities.

To demonstrate the practicality and effectiveness of this
idea, we implemented a prototype of BORDERPATROL on
Android as an example of a BYOD-managed smart de-
vice and provided a policy enforcement mechanism that
integrates seamlessly into Linux’s net-filter mechanism. We
then evaluated BORDERPATROL on 2,000 apps from Google
Play’s BUSINESS and PRODUCTIVITY categories. BORDERPA-
TROL successfully enforces policies that prevent data leakage
through tracking libraries as well as more fine-grained policies
where a single network endpoint is used for both desired and
potentially harmful purposes. In summary, this paper makes
the following contributions:

e We propose a novel, network-wide, fine-grained pol-
icy enforcement scheme for BYOD devices with a re-
programmable access control framework which is aware
of mobile app contexts.

o We design (§1V) BORDERPATROL, as a system that aug-
ments network traffic originating from BYOD-managed
smart devices with additional contextual information,
which allows fine-grained policies to be enforced at
the corporate network level. We then implement (§V)
a prototype to demonstrate that BORDERPATROL can
enforce policies with minimal modifications to existing
systems and at negligible throughput, latency, and per-
formance overheads even when seeking to thousands of
connections.

o We present our findings from our analysis of 2,000 apps
from the BUSINESS/PRODUCTIVITY categories of Google
Play (§VI) and demonstrate the effectiveness and utility
of BORDERPATROL through case studies (§VI-C).

II. BACKGROUND

As a basis for the details of our proposed system, BORDER-
PATROL, this section describes Android application packages,
networking subsystem in Linux and protocol specifications for
IP packets.

A. Composition of an Android application

Android apps are distributed as Application Package Kit
(apk) files. This package includes an app’s compiled code
(commonly compiled from Java source) as well as resources,
assets, certificates, and manifest files. The app’s code is stored
in the Dalvik bytecode format in a file called classes.dex.
Besides the implementation of the methods in an app,
the Dalvik file-format also prescribes how to store meta-
information about the app. For our purposes, we are interested
in the class hierarchy, method signatures, and debug informa-
tion contained in a dex file.

The class hierarchy of a Java app is a graph that rep-
resents the inheritance relationships between classes. Java
programs and APIs frequently bundle related classes in so-
called packages. Within each class, a method is uniquely
identified by the method’s signature, which consists of the
method’s name and the types of the method’s parameters. In
addition, Java supports method overloading, where within the
same class, multiple methods share a common name but have
a different list of their parameter types, thus have different
method signatures. Hence, a method can be uniquely identified
within an app by the method’s signature. In addition, the
Dalvik format contains provisions to store debug information
along with the byte-code to easily determine and debug the
source of an exception in stack traces. This information can
map individual byte-code instructions to the source file and
line number of the Java code that produced the dex file.

B. Networking in Linux and Java

1) Sockets: A socket is one of the most central aspects
of networking in Linux (and Android) as well as in Java.
Any network communication in Linux will commence with a
socket system call, and the system call’s return value (a file
descriptor) uniquely identifies the socket within a given pro-
cess. This requirement holds true independently of whether an
Android app establishes a network connection from managed
Dalvik code or whether it uses native code. While Java also
provides a java.net.Socket type, the behavior of Java’s
socket method call and the native socket system call are
slightly different. Specifically, the Dalvik virtual machine uses
a lazy initialization of operating system sockets, where it only
issues a socket system call when the app either connects or
binds to the socket. Hence, a call to the java.net.Socket
default constructor (i.e., the overloaded constructor without
arguments) does not result in a socket system call. However,
a subsequent call to connect or bind will automatically
issue a socket system call before connecting or binding to
the socket.

2) IP options: RFC 791 [8] prescribes that IP packet
headers can include an optional field called ITP_OPTIONS,
which can contain up to 40 bytes of data, including one byte
each for the option’s type and length in bytes. The Linux kernel
supports setting these options via the setsockopt system
call. However, besides a few well-known options (e.g., the
timestamp option used by the ping network utility), the
kernel requires administrative privileges (i.e. CAP_NET_RAW)



to configure the TP_OPTIONS header field. Similar to the
socket discussion above, Java also provides a setOption
API for sockets. Unfortunately, however, this API restricts
what values will be passed to the underlying setsockopt
system call and excludes the value to enable IP_OPTIONS.

III. THREAT MODEL AND ASSUMPTIONS

Our threat model is based on a business environment where
a company uses BYOD policies that allow employees to
use their personal mobile devices to access company owned
services and data. To ensure that personal devices do not cause
harm to the company’s network or assets, personal devices
have to be provisioned with a BYOD solution. Similar to the
kernel instrumentation of Samsung KNOX [9], these solutions
often include vendor-specific Read Only Memory (ROM),
therefore vendors can integrate necessary changes for different
frameworks. Hence, a production-level system would not need
any modifications on user devices other than the provisioning.
Following the common practice, work and private applications
are separated and root access is disabled in the device by
the BYOD framework, which can prevent the rooting process
through a hardware-backed chain of trust via Trusted Platform
Module and e-fuses [10]. Furthermore, we assume that the
enterprise network consists of secured network appliances and
previously authenticated devices.

With this business-centric mindset and technology in place,
we target a scenario where company-approved applications
contain highly desirable functionalities for productivity while
also containing features that are detrimental to business in-
terests. This detrimental functionality originates from either
(1) developer-authored application functionality that the busi-
ness does not wish to allow (e.g., file upload), or (ii) third party
libraries that are linked into the application (e.g., tracking and
advertisement libraries) and violate the business information
security policies of the company.

We further assume the operating system on employees’ de-
vices is trusted. Similarly, despite the detrimental functionality,
our threat model assumes that applications are benign in nature
but violate the company’s information security policy via app
functionalities or packaged libraries. Specifically, we assume
that applications do not actively try to circumvent our system.
As our system predominantly relies on dynamic analysis,
“light” obfuscation, such as the transformations performed by
ProGuard, are transparently tolerated. While more advanced
obfuscation techniques might thwart our system, we argue
that such obfuscation should rarely, if ever, occur in benign
applications. Importantly, despite the benign nature of the
applications we consider, our system does not require access
to the application’s source code (i.e., the system is compatible
with the regular app store distribution model).

IV. SYSTEM OVERVIEW

Our goal is to detect and drop network packets originating
from undesired application functionalities (e.g., file uploads
and analytics collection) to ensure an execution- and context-
aware policy enforcement for BYOD environments. Tradi-

tional policy enforcement systems focus on network traffic
flow without taking application state into account, which pre-
vents access control with fine-grained rules. Although network
administrators can fine-tune an access control scheme for
certain cases (e.g. preventing packet flows to a specific IP), the
enforcement system should be flexible enough for changing
company requirements in terms of policy management and
access-control. Additionally, inspecting application state on
user devices and enforcing policies at network perimeter
requires separate modules. Therefore, communication between
such modules should not put extra load on the business
network. Specifically, our system design goals are as follows:

Reconfigurability: Providing enterprise system adminis-
trators with the flexibility to introduce new applications to
the system and inspect specific functionalities of selected
apps. This allows IT managers to create fine-grained policies
regarding application connections.

App integrity: Compatibility with the existing app store
models (i.e., does not require app modifications).

Dynamic context-aware access control: Providing an
inspection scheme to monitor smart devices’ network con-
nections and distinguish application-specific functionalities to
serve as an execution-time context for further inspection.

Fine-grained network policy enforcement: Enforcing
fine-grained policies and preventing malicious connection at-
tempts on different enforcement levels to support prohibiting
select app functions.

Avoiding extra network load: Using IP headers of device-
generated packets for communication between on-device con-
text inspectors and off-device policy enforcers.

In light of these considerations, we design BORDERPA-
TROL, which extracts execution-context about established net-
work connections, conveys data by tagging network packets
and enforces policies at the business network perimeter.

A. System design

BORDERPATROL comprises of four main high-level com-
ponents for different stages of execution: (i) Offline Analyzer
provides app specific information for system components and
policy creation tools, (ii) Context Manager extracts, encodes,
and sends the relevant execution-time contextual information
from user devices to policy enforcers, (iii) Policy Enforcer
evaluates contextual data against fine-grained company poli-
cies and drops non-conforming packets originating from un-
desired functions, (iv) Packet Sanitizer cleanses the contextual
information from policy-conforming packets.

Of all four system components (gold boxes in Figure 1),
the Context Manager executes on the BYOD-enabled mo-
bile device (gray box in Figure 1) and the remaining three
components run on the enterprise’s network infrastructure. A
general architectural overview of our system with the main
components placed at strategic locations within the enterprise
network is shown in Figure 1.

1) Offline Analyzer: BORDERPATROL components gener-
ate and interpret the execution-time contextual information in
different modules. Therefore, it is mandatory for all modules to
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use the same encoding/decoding method to work in coherence.
The purpose of the Offline Analyzer is to create a table that
Policy Enforcer uses for decoding method signatures.

Due to size limitations of IP_OPTIONS (§ II-B2), the
Context Manager transmits contextual information to the Pol-
icy Enforcer using an index based encoding scheme, where
every method signature is deterministically mapped to an
index number. Offline Analyzer first processes any new app
that should be managed by BORDERPATROL and extracts the
method signatures. It then organizes method signatures topo-
logically for consistency and assigns sequential indexes to each
method. Since the number and class hierarchy of all methods
are consistent within the packaged app, the mapping of method
signatures to indexes are deterministic in size and ordering. For
supporting multiple applications and differentiating methods
of same libraries that are in use by different applications, the
mappings for different apps are distinguished by the hash of
the apk in a database.

2) Context Manager: BORDERPATROL adds fine-grained
contextual information to every network packet that the device
sends through the enterprise network. We define the context
as the Java call stack associated with the socket at the time
a connection is established (i.e., a socket is created via the
socket system call). However the concept of context can be
expanded into any other relevant information for the purpose
of policy enforcement. As a detrimental activity based on
our threat model requires data connectivity to outside the
business network perimeter, BORDERPATROL monitors the
execution context of the most fundamental network connection
object (i.e. socket). Hence, our system requires the following
capabilities from the Context Manager: (i) monitor the creation
of sockets, (ii) gather the call stack when a socket is created,
and (iii) add call stack information to packet headers. When
an app establishes a network connection, Context Manager
gathers the call stack and associates stack frames with method
signatures. Using method signatures allow a finer-grained
policy enforcement and enables BORDERPATROL to distin-
guish overloaded Java methods within the same library. The
Context Manager then encodes stack signatures into a compact

representation and embeds into IP_OPTIONS header field
along with an app identifier.

3) Policy Enforcer: BORDERPATROL enforces policies on
the network and determines whether packets coming from
the smart devices in the business network perimeter should
be allowed or dropped. The Policy Enforcer comprises of
three stages: (i) extraction, (ii) decoding and (iii) enforcement.
During extraction phase, Policy Enforcer extracts the app-
identifying hash and the sequence of index numbers that
the Context Manager has embedded in ITP_OPTIONS. Then,
during decoding stage, it selects the relevant index-to-method
signature mapping from the database, indicated by the hash
value of the app. Policy Enforcer maps each index back to the
method signature in the order received, thus creating the stack
trace which consists of method signatures. Finally, during
enforcement phase, the Policy Enforcer uses predetermined
policies to decide which network packets violate company
policy and drop them accordingly.

4) Packet Sanitizer: BORDERPATROL removes contextual
information from IP packets before network packets leave
the company. Such removal process is necessary as network
routers drop IP packets with set options due to network
packet filtering specifications such as RFC 7126 [11]. Network
hardware providers also recommend dropping these pack-
ets to protect appliances from known attack vectors [12].
Therefore, packets which are leaving the company network
perimeter should be cleansed of the options that the Con-
text Manager injects into IP packets. The Packet Sanitizer
removes IP_OPTIONS from any outgoing IP packets that
are in compliance with the company policy. Note that packets
violating policy do not reach the Packet Sanitizer as the Policy
Enforcer drops them. Besides ensuring proper routing outside
the BYOD perimeter, the Packet Sanitizer also provides an im-
portant privacy-preserving role by stripping execution-context
identifying information (e.g., application names, loaded Ili-
braries) from the TP_OPTIONS.

B. Policy Specifications

Policies specify the enforcement levels, actions and targets
for select app functionalities or the app as a whole. We define
policy enforcement action («) as the decision for a packet,
enforcement level (L) as the granularity of inspection into each
method signature, and enforcement target (¢) as the unique
string which defines a search query for the method signature.
With k&, ¢ and m denoting library, class, method names in a
method signature; i and sg...s,, denoting the app hash and the
method signatures of a stack trace in the packet header (H);
£y denoting the level of target match in a method signature;
all possible levels of a target in a stack trace are denoted
as f,. Values of ¢, are ordered in accordance to the finer
granularity in enforcement such that ¢, < ¢ < . < {p,.
Policy enforcement rules state that; for s € H, 6 € s, ¢y € U4,
enforce o = deny if 3s with ¢y > L || enforce o = allow iff
Vs with ¢y > L. That is, if there is at least one stack signature
that contains a match with the search query at the policy level
or higher, the packet must be dropped to block an application



functionality (i.e., blacklisting). Alternatively, all the stack
signatures should contain a match with the search query at
the policy level or higher for a packet to be allowed in the
network (i.e., whitelisting). The simplified policy grammar is
presented in Snippet 1. Examples 1 through 4 provide sample
policy rules at library, class, method and hash enforcement
levels respectively.

<POLICY> ::= {[<ACTION>] [<LEVEL>] [<TARGET>]}

<ACTION> ::= (allow | deny)

<LEVEL> ::= (hash | library | class | method)

<TARGET> ::= (target_hash | target_library | target_class |

target_method)

// Example 1: prevent ad library connections
{[deny] [library] ["com/flurry"]}

// Example 2: prevent functions of an entire class
{[deny] [class] ["com/google/gms"] }

// Example 3: prevent uploads for Dropbox
{[deny] [method] ["Lcom/dropbox/android/taskqueue/UploadTask;
—>c () Lcom/dropbox/hairball/taskqueue/TaskResult"]}

// Example 4: whitelist company app connections by hash
{[allow] [hash] ["da6880ablf9919747d39e2bd895b95a5"] }

Snippet 1: Simplified policy grammar.

V. IMPLEMENTATION

This section elaborates on the details of our BORDERPA-
TROL prototype. In the spirit of open science and to facilitate
reproducible experiments, we will release our implementation
of BORDERPATROL under an open source license.

A. Offline Analyzer

We implemented the Offfine Analyzer as a Java program,
which accepts a list of apk files and produces a database
containing mappings for method signatures (§IV-A) in json
format for its ease of use and portability. During package
processing, the Offline Analyzer uses the dexlib2 [13]
library to extract method signatures from dex files into a
sorted list, where the position of the method signature in
the list corresponds to the index. The method signatures of
a particular app are grouped under the md5 hash of the apk.

B. Context Manager

The Context Manager runs on the provisioned device of
the user as a user-space program. We implemented Context
Manager as a module for the Xposed Framework [14], which
provides an API for runtime program behavior modification
by hooking Java methods and constructors, thus enabling
BORDERPATROL to monitor the creation of all sockets. When
an app is loaded, the Context Manager parses the dex file
using dex1ib2. The Context Manager then generates the
mapping of stack signatures to indexes and obtains source
line numbers of method signatures. After the app establishes
a connection, Xposed hooks transfer control to the Context
Manager, which then gathers the stack trace by invoking Java
API’s getStackTrace method. This method returns a list
of active stack frames that the application was executing, each
of which corresponds to a method call. The Context Manager
then uses the source line numbers of each stack frame to

associate the method signature of the respective method with
an index using the deterministic mapping. We present an
example of this process along with the case-study values in
Figure 2. For above operations, the Context Manager relies on
three different submodules:

Hooks: Hooking is a technique to modify application
behavior by changing the execution flow in order to alter
or augment a function with arbitrary functionality. We use
post-hooks to socket calls for intercepting socket creation,
triggering context extraction and IP_OPTIONS injection to IP
headers. Using post-hooks ensure that a socket is present and
the connection is established before setting IP_OPTIONS.
Consequently, the Context Manager monitors all connection
attempts that are conveyed over all network sockets.

Shared library: BORDERPATROL  enables the
IP_OPTIONS field of sockets to tag network packets.
However, standard Java API does not allow applications to
access this field. As a result, the Context Manager requires
to execute native code and call the setsockopt system
call to obtain low level access to socket options via Java
Native Interface (JNI). Thus, we compile a shared library
which exposes the set sockopt system call to the managed
Dalvik code via JNI. This library consists of a native function
which serves as a wrapper for the set sockopt system call.

Instrumented Linux kernel: The default Linux kernel
used in Android requires programs to have CAP_NET_ADMIN
capabilities to construct packet headers, which is exclusive to
system applications. Additionally, all non-system applications,
such as our Context Manager, run in user-space without such
privileges and cannot set socket options even in the native
space. To overcome such restrictions, we instrument the Linux
kernel with a one-line patch such that it allows IP header
construction regardless of the privilege level of an application.

C. Policy Enforcer

We implemented Policy Enforcer as a user-space program
which uses Python’s netfilterqueue bindings [15] to
receive incoming network packets and Scapy network packet
processing package [16] to detect and extract the sequence of
indexes from IP headers. The Policy Enforcer decodes an index
to a method signature by using the json database that comes
from the Offline Analyzer, where each index corresponds to the
position of a method signature in the list of method signatures.
To enforce a policy, the Policy Enforcer engine checks policy
rules to determine the required course of action according
to policy specifications (§IV-B). If Policy Enforcer does not
detect a policy violation, it allows corresponding IP packets
to continue their route first to the Packet Sanitizer module and
then to their original destination.

D. Packet Sanitizer

Similar to the Context Manager, the Packet Sanitizer mod-
ule also employs net filterqueue bindings and the Scapy
package to acquire and modify incoming network packets
from the Policy Enforcer. The Packet Sanitizer removes



Java method

fd = connect(IP,port)

getStackTrace()

Frame # | Stack Trace \ Y
1 com.dropbox.internalclient.ct.b(panda.py:1620)
2 com.dropbox.internalclient.ct.c(panda.py:1605)
3 com.dropbox.android.taskqueue.UploadTask.c(panda.py:481)
4 com.dropbox.android.taskqueue.cm.run(panda.py:1715)

Stack Frame to Method Signature Translation

Method Signature & Assigned Index mapping \

Policy Enforcer

liboptlInjector.so
[N method |

lsetsockopt(fd, SOL_IP, IP_OPTIONS, payload, length)

payload T

l optionType + optionLength + md5 + [42065, 42066, 31811, 32208, O, ..., 0]

indices of
method
signatures

Lcom/dropbox/android/taskqueue/UploadTask;->c()Lcom/dropbox/hairball/taskqueue/TaskResult;

31811

Lcom/dropbox/android/taskqueue/cm;->run()V

32208

Lcom/dropbox/internalclient/ct;->b()Lcom/dropbox/hairball/entry/b;

42065

Lcom/dropbox/internalclient/ct;->c()Ljava/lang/Object;

42066

NONE

Fig. 2: Context Manager work flow. The Context Manager obtains the stack trace after a connection is established via
getStackTrace method. Stack frames include source line numbers that allow matching method names to method signatures.
Using sequentially ordered list of method signatures from the dex file, each method signature is encoded into an index number.
Finally, indexes are injected into IP headers using setsockopt system call through our shared library.

IP_OPTIONS from the packet header when it detects that
the respective field is enabled.

E. Policy Extractor

As an extension to the BORDERPATROL architecture, we
also provide a Python analysis tool to assist IT administrators
in determining policies. This tool runs an application twice. In
the first run, administrators can exercise the app for allowed
functionalities, which BORDERPATROL uses to construct a
baseline profile. On the second run, human operators are
guided to invoke undesirable functionalities in the app. The
tool then automatically identifies uniquely appearing method
signatures in stack traces and maps them to the set of targeted
functions per each run. Subsequently, the Policy Extractor
parses each unique method signature and constructs policies
with specified levels of enforcement.

VI. EVALUATION

A. Experimental setup

We implemented our prototype of BORDERPATROL for
Android 7.1.1 Nougat (API 25) and evaluated the system
in the Android emulator. A job dispatcher node assigns
apps to evaluate to a worker node via RabbitMQ message
broker [17]. The worker runs an instance of the Android
emulator on QEMU [18] with a modified Android system
image with Xposed framework for the x86 architecture and
the patched Linux kernel v3.10. The QEMU emulator uses
TAP virtual network interface for network connectivity. We
also use iptables to route packets originating from the
emulator into netfilter queues. During testing, we use
the adb monkey User Interface exerciser [19] to provide
random UI inputs to apps. Finally, the Packet Sanitizer module
removes IP_OPTIONS from outgoing packets to ensure that
the packets get routed on the Internet correctly.

10°

102 b

10 b

Number of Apps (Log scale)

1

2 3 4 5
Number of IPs-of-Interest per app

Fig. 3: Number of apps that have different stack traces
connecting to the same IP addresses.

B. Analysis

BORDERPATROL is most useful in situations where (i) an
app contains a mix of desirable as well as non-desirable func-
tionalities, and (ii) these functionalities cannot be distinguished
by existing network-level enforcement mechanisms. Thus, in
this section we present an analysis and estimate the prevalence
of apps that fulfill these criteria. To this end, we evaluate
BORDERPATROL with apps from the PlayDrone [20] dataset.

As BORDERPATROL aims at a BYOD deployment, we
chose the 1,000 most popular (i.e., most downloaded) apps
in each BUSINESS and PRODUCTIVITY categories for a total
of 2,000 apps. We then exercise each app with adb monkey
and issue 5,000 random events while recording all generated
network traffic during this experiment. As discussed above, a
network-based enforcement mechanism can easily distinguish
traffic based on DNS names or IP addresses. Therefore, we
conservatively assume that BORDERPATROL will be most
useful if different functionalities within an app connect to
the same IP address. Hence, we define an IP-of-interest (i.c.,
Iol) as an IP address that is the destination of multiple IP
packets which contain more than one distinct stack trace.



As the calling context is established at the time a socket is
created, all packets of a given connection will contain the same
stack trace. Thus, stack traces will only differ for packets in
connections established at different contexts within the app.

Figure 3 shows the number of apps that connect to one or
more Jols. Note that these numbers are extracted from the
dynamic analysis described above. As it is unlikely that our
monkey-based analysis achieves complete code-coverage, the
data presented in Figure 3 is a lower bound on the apps and
their lols, and BORDERPATROL might be applicable broader
than the figure suggests.

Based on these results, we observe that a total of 218 apps in
our experiment had at least one Iol. In 75% of the applications
with an lol, the methods in the stack traces originate from
the same Java package. This corresponds to the case studies
presented in §VI-C, where the desirable and undesirable
functionality is contained in a third party library (i.e., the same
Java package in the Facebook SDK) or both belong to the core-
functionality of the app (i.e., the app’s main Java package for
Box and Dropbox). Interestingly, 25% of the Iols receive traf-
fic that contains stack traces with methods from different Java
packages. This will happen if different components within an
app reuse a shared common popular library. For example, the
Apache HTTP client library [21] frequently occurs here. An
advanced network-based enforcement mechanism might try to
fingerprint network traffic based on such predictable behavior
by the network library in use. However, the reuse of a network
library by different app components (as discussed here), would
thwart any such fingerprinting attempts. This evaluation on the
prevalence and structure of [ols illustrates that BYOD policy
enforcement mechanisms would greatly benefit from the fine-
grained contextual information that BORDERPATROL provides.

1) Validation: In this section we evaluate whether BOR-
DERPATROL is precise enough to only disable unwanted
functionality but leave the remainder of the app intact. Un-
fortunately, whether a given functionality is beneficial or
detrimental to a company is not a global property. That is,
some functionality (e.g., “Login with Facebook™) might be
beneficial for one company but deemed detrimental by another.
Hence, for this evaluation, we rely on data collected by Li et
al. [22] to determine an unwanted functionality. In their work,
Li et al. identified a set of 1,050 third party libraries that
exfiltrate sensitive information including a variety of popular
analytics and advertisement libraries. Based on these findings,
we created a simple policy that drops all network packets
that contain stack traces that are associated with any of these
libraries. (e.g., com. f1lurry library, Example 1 in Snippet 1)
Subsequently, to assess the impact of this policy on app
usability, we chose a set of 60 apps and manually evaluated
them by sorting the libraries that manifest themselves in lol’s
according to their popularity in our app sample of 2,000
apps. We then traverse this list and for each library, chose
one app that includes the corresponding library. Finally, we
arrive at a data-set of 60 apps that in union include the 60
most popular libraries. To assess the impact created by our
policy on these apps, we manually run each app twice —

once as a baseline with BORDERPATROL disabled, and once
with BORDERPATROL enforcing the above-stated policy. The
task of the human evaluator at this point is to distinguish any
changes in behavior between the two runs.

As Li’s list contains a set of advertisement libraries, one of
the obvious differences observed repeatedly was the lack of
ads displayed when BORDERPATROL was in effect. Li’s list
also contains a wealth of analytics and tracking libraries. We
verified that BORDERPATROL correctly dropped all network
traffic generated by the flagged libraries by inspecting the
network traffic before and after the Policy Enforcer. Blocking
analytics and tracking libraries did not result in any observable
differences in any of the apps. In summary, BORDERPATROL
correctly enforced the stated policy, prevented the transmis-
sion of sensitive information, and did so without negatively
affecting app functionality.

C. Case studies

Existing network-based BYOD enforcement mechanisms
operate on coarse-grained context information pertaining to
the network traffic. The lack of fine-grained context implies
that these systems cannot provide a variety of advantageous
business cases. More precisely, if a given app contains a
mix of useful and detrimental functionalities for the company,
additional context can be used by a BYOD deployment to
allow the former but prevent the latter.

Our case studies focus on two such scenarios. First, cloud
storage apps provide a convenient way to share company data
among employees, but at the same time allow employees to
upload documents that might violate company policy or the
law (e.g., the GDPR or HIPPA). To demonstrate the utility
of a BYOD policy that distinguishes upload and any other
operations, we present this use-case with the Dropbox and Box
cloud storage apps. The second use-case involves apps that
rely on an identity provider (e.g., Facebook) for authentication
purposes, but at the same time transmit analytics information.
The prototypical example in this category is Facebook’s SDK
which provides access to the Facebook Graph API [23]. This
API implements functionality for identity provider capabilities
(e.g., “Login with Facebook™) as well as functionality that app
developers can use to collect usage statistics and implement
user tracking. We demonstrate this use-case on the SolCalen-
dar [24] app. To illustrate the utility of fine-grained contextual
information for a BYOD deployment, we compare, for both
use-cases, a conventional network enforcement approach with
the capabilities provided by BORDERPATROL.

Cloud storage: Dropbox [6] and Box [25] are popular
cloud-based file synchronization apps available on the Google
PlayStore from BUSINESS and PRODUCTIVITY categories,
featuring more than 500M and 10M downloads, respectively.

On-network enforcement: In this scenario the policy
enforcement mechanism is implemented exclusively on the
network, and can allow or reject traffic based on IP addresses,
DNS names, packet flow direction and size, or any other
information available on the network layer (we refer the reader
to §VIII for more details about on-network enforcement). For



our purposes, we record the network traffic generated when
using the Dropbox and Box apps to download and upload
content, at first without enforcement. Dropbox uses the same
DNS names and IP addresses to upload and download content.
As such, a network-based enforcement mechanism can only
block both or neither of these functionalities, but cannot
establish the use-case where BYOD provisioned devices can
download documents but not upload (or leak) other data. On
first glance, the situation with Box seems easier to handle for a
network-based mechanism. Specifically, Box uses different IP
addresses for the download and upload functionality. However,
merely blocking the IP address that is used to upload data also
prevents the listing and browsing of documents, and hence
effectively thwarts the download capability too, as users cannot
discover the files they might want to download. Additionally,
preventing outgoing packet flows that exceed a certain size
fails to prevent uploads where file size is below the threshold.

BORDERPATROL: In our approach, we first use BORDER-
PATROL to profile apps and generate the json database.
We then use the policy maker to determine which methods
uniquely appear in the IP_OPTIONS when we upload and
download documents in the Dropbox and Box apps. Based
on this profiling information, the system creates a policy that
drops packets which include method signatures that are only
present in the connections used to upload content. Specifi-
cally, the policy configuration causes BORDERPATROL to drop
packets originating from Dropbox, if the stack trace includes
a specific method from the UploadTask class. (Example
3 in Snippet 1). Similarly, BORDERPATROL drops packets
that originate from Box if the stack trace includes a specific
method in the BoxRequestUpload class.With this policy in
place, we exercised both apps manually by traversing through
all available menu items, listing, searching, previewing and
downloading a previously uploaded image which is not present
on the device. We then downloaded another image from
Google Images which is not present in either of the cloud
storages and attempted to upload this image to both accounts.
We observed that beyond the blocked upload functionality, all
other app capabilities remain intact.

Facebook SDK analytics and login: For analytics activity,
we examine a calendar app called SolCalendar which uses the
Facebook Graph API to provide authentication and report back
analytics information. As discussed in §I, the transmission
of analytics information can be detrimental to a company’s
business interests. Hence to assess the capability of a BYOD
enforcement mechanism to allow authentication and prevent
analytics, we again compare the two different strategies.

On-network enforcement: In this scenario, we first set a
policy to drop all packets whose destination IP corresponds
to a Facebook Graph API DNS name. We then run the
calendar app and immediately observe (unsurprisingly) that
the “Login with Facebook” functionality is broken. While
the above restriction obviously prevents analytics data from
being transmitted to Facebook, it also thwarts the useful
authentication functionality. This example illustrates that fine-
grained contextual information is necessary to enable BYOD

policies that maintain beneficial app functions.
BORDERPATROL: The contextual information provided
by BORDERPATROL is sufficient to distinguish between the
authentication and analytics work-flows. We use BORDER-
PATROL and leverage a simple policy to block undesirable
analytics activities by dropping the packets which include
any of the identified method signatures. During the manual
evaluation at the time of policy enforcement, we observe
that BORDERPATROL preserves the “Login with Facebook”
functionality. Furthermore the policy enforcement does not
lead to any observable changes in the app. We also verified,
by inspecting the network traffic, that our enforcement mech-
anism correctly drops the network packets used for analytics.
Takeaway: The above case studies illustrate how BYOD
enforcement mechanisms that rely exclusively on a network-
viewpoint lack the fine-grained contextual information to
enforce policies that are beneficial to the company. However,
this shortcoming can be rectified with a system like BORDER-
PATROL that augments network information with fine-grained
contextual information within the BYOD perimeter.

D. Performance Evaluation

We evaluated our prototype implementation of BORDERPA-
TROL on a quad core 3.20GHz Intel ® Core ™ i5-4570 CPU
and 24GB of RAM. We performed the Android experiments
on emulators with modifications as described in §V. We
implemented a network stress test app that repeatedly (for
10,000 iterations) creates a socket, sends a single HTTP
GET request for a static 297-byte HTML page to a server,
and closes the socket again as fast as the device allows,
therefore representing the worst case scenario for a device’s
network stack. To avoid network-induced latency fluctuations,
we hosted a Python SimpleHTTPServer [26] on the same host
that runs the Android emulator. The goal of this performance
evaluation is to measure the overhead of every component and
modification we used to realize BORDERPATROL by adding
one component after another to the default emulator (i.e.,
baseline) until we obtain the full BORDERPATROL system.
These configurations are as follows:

(i) default-SLIRP (baseline): This configuration corresponds
to an Android emulator as defined by the Android
SDK, which uses an unmodified system image, default
Android Linux kernel and QEMU’s user-mode (SLIRP)
networking stack for connection.

(i1) default-tap: This configuration modifies the networking
setup of the baseline and uses virtual TAP interface,
allowing us to measure the performance difference be-
tween SLIRP and TAP networking modes.

(iii) default-tap-nfqueue: This configuration introduces
iptables rules to redirect network traffic into an
NFQUEUE, which is then consumed by a simple Python
program that reads all packets and injects them back
unmodified. Such setup corresponds to a situation where
BORDERPATROL enforces an empty (or allow-all) policy
and shows the minimum performance impact that the
Python-based Policy Enforcer introduces.
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Fig. 4: Average latency of an HTTP GET request to a local
server across different Android image modifications, network
interface and routing configurations.

(iv) static-inject-tap-nfqueue: Here, we introduce the instru-
mented Linux kernel (to enable arbitrary IP_OPTIONS)
and the system image (to include Xposed). However,
instead of using the Xposed module from BORDERPA-
TROL, we use a simple module that sets a static string
of characters as IP_OPTIONS for each created socket.
This setup illustrates the performance impact induced
by Xposed when hooking the socket functionality as
described in §V.

static-getStack-tap-nfqueue: In this configuration we use
the same setup as iv. However, hooked functions also
make a getStackTrace call to obtain a stack trace,
which allows us to determine the performance impact of
gathering stack trace elements via provided Java APL
dynamic-tap-nfqueue: This configuration corresponds to
the full prototype of our BORDERPATROL implementa-
tion. In addition to the previous setup, this configuration
adds the Xposed module which extracts call stacks when
sockets get created and encodes the corresponding infor-
mation dynamically into the sockets’ TP_OPTIONS.

v)

(vi)

To measure the overheads introduced by each component
we run our stress-test app for 25 times on each configuration,
and show the average time per HTTP request in Figure 4.
The only overheads worth mentioning are those introduced
the getStackTrace API call that obtains stack traces (i.e.,
iv—v, +1.6ms). While the relative overhead (i.e., 2x) seems
significant, we note that the absolute overhead of less than
2.5ms is negligible compared to often hundreds of ms net-
work latencies induced by networking equipment over inter-
continental distances. Furthermore, BORDERPATROL only per-
forms the most performance sensitive operation of obtaining
and encoding stack traces once per socket, and this 2.5ms
overhead will thus amortize over the lifetime of the socket
(e.g., a socket that is configured as keep-alive serves multiple
HTTP requests and responses during its lifetime).

VII. DISCUSSION AND LIMITATIONS

BORDERPATROL implements secure policy enforcement
through different policy actions (i.e., blacklisting and whitelist-
ing) and its operating principles: (i) By enforcing policies on

the network and minimizing the trusted computing base on
user devices, administrators can use BORDERPATROL to en-
sure that users cannot side-step the policy enforcement mecha-
nism, or tamper with company-determined policies. (ii) During
its operation, BORDERPATROL can determine which libraries
are in-use for network connectivity of an app by mapping
stack frames to method signatures. This feature allows admin-
istrators to use a blacklist of libraries and restrict apps from
using these libraries to establish network connections (e.g.,
disallowing tracker and analytics libraries to prevent privacy
leaks or prohibit connections via previously-known vulnerable
libraries [27]). (iii) BORDERPATROL allows administrators to
vet and whitelist only the desired functionalities of an app and
disallow any other unknown app operations. A whitelisting
approach inhibits users from engaging with the app in an
unintended way (e.g., file uploads via the chat window of
a word processor instead of using the upload button) within
the constraints defined by policies. Furthermore, whitelisting
prevents socket connections which originate from malicious
methods in accidentally-installed repackaged apps, as such
functions are not vetted by the administrators.

Related works have delegated the functions of Policy En-
forcer and Packet Sanitizer modules to the device [28], [29].
However, there are a number of reasons why we argue that
placing these modules on the network and only making min-
imal changes to the device is beneficial in a BYOD scenario:

Security: A robust system-wide security mechanism should
have a dependable method of conforming with the principles
of complete mediation [30]. BORDERPATROL achieves this
through enforcing policies on all packets in the business
network perimeter. Enterprise network rules can be configured
such that access to the company resources is limited to local
network or VPN connections. Since BYOD frameworks can
force the packets of work profile applications to go over VPN
connections [31], all packets that leave the work profile are
subject to BORDERPATROL’s policy enforcement.

Ease of use: Traditional security solutions are difficult
and inflexible to program, deploy and manage for BYOD
scenarios [32]. SDN infrastructure requires network equipment
to be SDN-enabled, which is still insufficient to enable fine-
grained app control. In comparison, BORDERPATROL can
extract detailed contextual data on user devices and enforce
policies at the business network perimeter using commod-
ity hardware. By enforcing policies at a centrally managed
location in the network, administrators can configure and
update all their policies in one spot. Furthermore, since the
contextual data extraction happens at the application level,
BORDERPATROL’s operations are not hindered by changes
in Android versions or the underlying hardware structure,
therefore making BORDERPATROL compatible with various
devices and OS versions. However, as different versions of
apps use different sets of methods, BORDERPATROL requires
administrators to use the policy extractor tool on updated
versions of apps which are in use by the enterprise.

Compatibility: In a provisioned device, work related apps
run inside a work profile. The separation of profiles ensures



that BORDERPATROL tags all packets which originate from
work related apps and does not interact with apps that fall
outside the context of business use. If, however, the user uses
their work profile outside the enterprise network premises,
tagged packets will be subject to policy enforcement through
VPN, while non-work related apps’ background network ac-
tivity is routed through mobile networks. Similarly, if the user
does not use the work profile while in the enterprise network,
the Policy Enforcer will drop packets that do not contain
IP_OPTIONS, thus ensuring that all packets that are leaving
the business network perimeter are originating from sockets
which BORDERPATROL controls.

Additionally, BORDERPATROL’s enforcement starts from
the very first outgoing packet. For instance, in traditional
network filtering appliances, it is possible to differentiate
uploads from downloads based on measuring outgoing contin-
uous data transfers in a single flow by setting a data transfer
size limit as a triggering mechanism. However, using multiple
sockets and fragmenting outgoing data would overcome such
precautions. Our empirical analysis shows that a legitimate
request in a single flow can range from 36 bytes to 480MB,
which complicates policy settings for the purpose of setting
a threshold. Unlike the traditional approach, BORDERPATROL
detects upload attempts irrespective of the data transfer size.

a) Limitations: As our goal in this paper is to demon-
strate a proof of concept for augmenting network packets
with contextual data and fine-grained policy enforcement,
our prototype is subject to several implementation-specific
drawbacks. As these drawbacks did not manifest any issues
in BORDERPATROL prototype during our evaluations, we do
not believe that these drawbacks detract from the contribution
put forth by BORDERPATROL. Furthermore limitations of our
prototype can be averted by different engineering choices.

Hash collision: Our system identifies the origin of each
packet by a truncated (8-byte) hash value of the respective
app’s apk file. As the number of bits in a hash value decreases,
the probability of hash collision increases. With existing 3.3M
apps in Google Play Store [33], the probability of collision is
lower than 1076, which is reasonable for practical solutions.

Tag-replay: The patch we introduced to Linux kernel as
part of the BORDERPATROL prototype permits user-space
programs to set IP_OPTIONS of security type. This allows
an app to first use a benign functionality to send packets
outside the corporate network perimeter, and then copy the
same IP_OPTIONS to the socket that a malicious function
has initiated. Such behaviors can be thwarted by modifying
the Linux kernel so that setsockopt system call can only
set ITP_ OPTIONS on a socket once. This ensures that other
apps cannot alter IP_OPTIONS after Context Manager.

Multi-dex file applications: For apps which include more
than 65,536 methods, the apk file packs more than one dex
file due to Dalvik specifications and 2 bytes per stack frame
cannot support apps that have multiple dex files. A way of
overcoming this limitation is to use a variable length encoding
with a single bit to indicate 2 or 3 byte lengths. The length
of a stack frame can be scaled up to 3 bytes if the apk packs
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multiple dex files to provide coverage for large apps.

Socket reuse: BORDERPATROL encodes the same stack
trace which belongs to a socket on all the packets that the app
sends over the same socket. Hence, if an app reuses a socket
for a different purpose before terminating the connection,
BORDERPATROL might not be able to attribute individual
packets in the same connection to the new context. Note that
an app cannot change the endpoint of a socket if it reuses the
socket, either. To change the endpoint, the app would have to
call connect again, which in turn would be correctly handled
by BORDERPATROL.

Overloaded methods: As the Java API only provides
method names in stack traces, BORDERPATROL relies on line
numbers to disambiguate overloaded variants of methods with
the same name within one class. However, developers can
choose to strip line numbers and other debug information
from their apps. While stripped debug information would force
BORDERPATROL to over-approximate context (i.e., merge all
overloaded variants of methods with the same name in the
same class into one identifier), the precision of the context
would only reduce to a method name. Furthermore, we
observed that in our dataset there were no apps that have
overloaded methods and debug information stripped at the
same time. Hence, we postulate that for benign apps (as per
our threat model) this should not be a significant problem.

Android image: In the Android security framework, apps
fork from a parent process called Zygote and run in sepa-
rate sandboxes as non-privileged users. This clear separation
prevents other user-space programs (like Context Manager)
from monitoring app context from outside the sandbox. In
recent literature, we observed several methods to overcome
this prevention mechanism for system prototyping, such as:
i) rooting the device for hooking into Android and Java
API (Xposed) [34], [35], ii)) modifying the default Zygote
behavior [36], [37], iii) relying on customized system image
distributions from hardware vendors [32] and iv) using altered
versions of an app [38], [39]. We chose to use Xposed for
our implementation purposes to demonstrate the applicability
of our idea. In a production level implementation of BOR-
DERPATROL, hardware vendors can provide custom images
for BYOD services for supported devices [40], [41], thus
incorporating required access controls in the image.

Native functions: Due to its functioning mechanism,
Xposed does not support hooking native functions or direct
system calls. Hence, our prototype of BORDERPATROL does
not handle apps that call the socket APIs in 1ibc or issue
system calls directly from a native component. However, this
drawback could be rectified by using a hooking system that
supports native code (e.g., Frida [42]), or by implementing the
Xposed module’s functionality in native code.

VIII. RELATED WORK

Recent works have shown that mobile apps increasingly col-
lect personal and identifiable information [35], [43]. To address
this threat, a large body of related work have proposed solu-



tions to enforce corporate BYOD policies. Existing solutions
can be classified under two different layers of enforcement:
On-device enforcement: Existing policy administration
frameworks provide separation between work and personal
data through containerized profiles. While these systems pro-
vide the ability to incorporate BYOD solutions into existing
business network infrastructure, they are limited in enforcing
fine grained context-aware policies. ADM [2] is a remote
device management framework for companies to provision
devices, control and enforce policies on Android devices.
ADM provides the capability to log DNS lookups and TCP
connections where IP addresses, ports package names and
respective timestamps can be recorded [44]. However, it cannot
inspect application context or packets that belong to different
sockets, and limited in capacity due to their dependence of the
provided ADM SDK. Samsung KNOX [45] provides a more
advanced network analysis feature with “"Network Platform
Analytics”, where compatible a network appliances examine
detailed information such as PID of the application which orig-
inated the network flow. However, unlike our implementation,
this approach lacks context of the established connection.
Conti et al. [28] apply a fine-grained policy enforcement
for Android smart phones with a system called CRePE and
modify the Android framework to introduce a runtime checker
that enforces different context-related policies. CRePE can
restrict the set of applications authorized to run, however,
unlike our system, CRePE cannot restrict access to only certain
libraries within an app (i.e., app-level granularity). Zhan et
al.’s [46] propose inserting an in-line reference monitor within
the application, which requires apps to be modified prior to
installation (using repackaging). Contrarily, BORDERPATROL
works on unmodified apps. Pearce et al. [29] present a priv-
ilege separation framework called AdDroid and introduce a
new advertisement API to limit the scope of such libraries.
Although Nativeguard [47] is not constrained by the type of
libraries and provides a library-level enforcement with app
modification, it cannot provide fine-grained policies at the level
of distinct functionalities that are tied to specific methods. Our
work offers expressive policies and can deal with cases where
a single library is used for legitimate and illegitimate purposes
at the same time. Other recent works have proposed new sys-
tems that extend the granularity of previous approaches [48],
[49]. A number of techniques require OS support and solve
the problem on privilege and permission levels. Adsplit [50]
isolates ad processes from user activities with distinct UID
to serve different permissions to the processes, Aframe [51]
isolates processes with iframe displays and compartmentalizes
ad permissions and Swirls [52] focuses on data protection
through encapsulation across different app contexts.
On-network enforcement: Early efforts aiming at en-
forcing policies on the network rely on solutions that are
transparent to both the protected and remote endpoints [53].
Later works propose to use mechanisms for tagging data as
it flows through the network stack [54]. This allows to add
more semantics to the packages originating the communica-
tion and enable more complex enforcement on the network.
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Dymo [55] injects a process’ identity label to network packets
for enforcing which software packages to be permitted on
users’ machines. Hond et al. [32] proposed a SDN-based
programmable BYOD system that can provide app-specific
policy enforcement on the enterprise network. One major
problem common to all current works performing on-network
enforcement is that they lack on expressiveness to build fine-
grained enforcement systems, which relates to the granularity
of the information embedded in the network package (i.e.,
embedding either the process or app identifier). As opposed
to our work, we embed contextual information from the soft-
ware component operating the network connection. For finer
granularity in inspection phase, Shebaro’s work [56] inspects
uses device location as context, however it revokes/grants app
permissions as a policy enforcement mechanism and lacks
enforcement on app functions. While Hong et al. [32] provide
larger expressiveness than previous works, their approach
requires important changes in the network architecture of a
corporation such as extending already existing SDN frame-
works. Similarly, Poise [57] also rely on SDN controllers while
inspecting context for network-enforcement while periodically
broadcasting context. Our work addresses these issues by
augmenting the resulting network traffic with key contextual
information on every packet header, which is used to build
expressive policies that are enforced at the corporate network
level without relying on SDN. Backes et al. [58] leverages
the well structured class hierarchy and method signatures of
ad libraries for fingerprinting, but modifies the class structures
during ad blocking efforts. PrivacyGuard [59] uses a localized
VPN-based platform to intercept network traffic of apps and
filter them based on taint analysis of data leaking apps.
Previous studies have also characterized applications’ be-
havior on requesting dangerous permissions, accessing and
sending sensitive information over the network [60] and iden-
tified a set of commonly used libraries with keyword matching
and ad component detection [22], which provided us with the
insights to determine high level policies in BORDERPATROL.

IX. CONCLUSIONS

In this paper, we presented a novel fine-grained policy
enforcement system for Bring Your Own Device (BYOD)
enabled corporate networks. Our approach distinguishes it-
self with the feature of blocking packets originating from
undesirable application functionalities while leaving remaining
functions operational. We then built BORDERPATROL, a proto-
type system that implements this approach, presented realistic
use cases in a BYOD context, and analyzed 2,000 apps from
Google PlayStore. Finally, we evaluated the performance over-
head of our prototype. Our results show that BORDERPATROL
is effective in enforcing policies with negligible overhead.
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