
CAPTCHA Smuggling:
Hijacking Web Browsing Sessions to Create CAPTCHA

Farms

Manuel Egele
Technical University Vienna,

Austria
+43 58801-18318

manuel@iseclab.org

Leyla Bilge, Engin Kirda
Institute Eurecom,

Sophia Antipolis, France
+33 4 93 00 81 00

{bilge,kirda}@eurecom.fr

Christopher Kruegel
University of California,

Santa Barbara
+1 (805) 893-6198

chris@cs.ucsb.edu

ABSTRACT
CAPTCHAs protect online resources and services from automated
access. From an attacker’s point of view, they are typically per-
ceived as an annoyance that prevents the mass creation of accounts
or the automated posting of messages. Hence, miscreants strive to
effectively bypass these protection mechanisms, using techniques
such as optical character recognition or machine learning. How-
ever, as CAPTCHA systems evolve, they become more resilient
against automated analysis approaches.

In this paper, we introduce and evaluate an attack that we de-
note asCAPTCHA smuggling. To perform CAPTCHA smuggling,
the attacker slips CAPTCHA challenges into the web browsing ses-
sions of unsuspecting victims, misusing their ability to solve these
challenges. A key point of our attack is that the CAPTCHAs are
surreptitiously injected into interactions with benign web applica-
tions (such as web mail or social networking sites). As a result, they
are perceived as a normal part of the application and raise no sus-
picion. Our evaluation, based on realistic user experiments, shows
that CAPTCHA smuggling attacks are feasible in practice.

Categories and Subject Descriptors
H.M [Information Systems]: Miscellaneous; D.2.0 [Software]:
Software Engineering : General

General Terms
Security threats

Keywords
CAPTCHA, attack, real-world experiments

1. INTRODUCTION
Completely Automated Public Turing tests to tell Computers and

Humans Apart (CAPTCHAs) [18] are often the first line of de-
fense in many online services. Their purpose is to protect such ser-
vices and resources from automated misuse by malicious programs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

For example, free email providers frequently use CAPTCHAs to
prevent spammers from automatically creating disposable email
addresses that can then be used for spam campaigns. Similarly,
blogging and forum sites make use of CAPTCHAs to prevent bot-
generated postings. These postings aim to lure readers into follow-
ing links that may point to malicious pages where drive-by attacks
or other dangerous content might await them.

Note that CAPTCHAs may also be used to limit automated ac-
cess to search engines. For example, the Google search engine
requires a visitor to solve a CAPTCHA once it detects abnormal
search behavior [13] (e.g., a high number of search queries stem-
ming from a specific IP).

Reliably breaking CAPTCHAs enables attackers to create large
numbers of fake email accounts, or simplify their spamming activi-
ties on blog and forum sites. As the mail servers of the major web-
based email providers (e.g., Microsoft LiveMail, Gmail, or Yahoo)
are commonly not included in spam blacklists, such accounts are
valuable to spammers. In fact, there was a large increase of spam
messages originating from LiveMail accounts immediately after its
CAPTCHA system was reported to be broken [22].

Ever since CAPTCHAs have been used to prevent automated ac-
cess to specific online services, miscreants have tried to circum-
vent these protection mechanisms. The possible attack strategies
are manifold, and include techniques that rely on optical charac-
ter recognition (OCR), mechanisms to identify distorted charac-
ters [24], machine learning techniques [6] to break CAPTCHAs,
and human “farms” where real people manually solve the chal-
lenges [14].

In this paper, we present a novel attack that we denoteCAPTCHA
smuggling. In a CAPTCHA smuggling attack, user interactions
with legitimate online services (such as web mail or social network-
ing sites) are intercepted by the attacker (i.e., a malicious program
executing on the victim’s computer) and put on hold until the vic-
tim solves a CAPTCHA challenge. The displayed CAPTCHA and
its surrounding browser window spoof the visual characteristics of
the online service that the victim is using. Hence, it is difficult for
victims to distinguish between real CAPTCHAs displayed by the
online service and CAPTCHAs smuggled into the session by the
attacker. As the CAPTCHA challenge is under the direct control of
the attacker, a malicious program that needs to solve a CAPTCHA
can forward the challenge to a victim’s computer. The malicious
component on this computer then performs the CAPTCHA smug-
gling attack (and thus, gets the challenge solved by an unsuspecting
user). The premise of our attack is that users are so accustomed to
solving CAPTCHAs while using online services that they will not
notice extra CAPTCHAs that are smuggled in by a malicious ap-
plication running on their computer.

1865

Note that malicious activity related to solving CAPTCHAs has
already been seen on the the Internet. Troj/CAPTCHA-A [17], for
example, displays a series of pictures of a woman who takes off
her clothes. In order to see the next picture, the user has to solve
a CAPTCHA. Similarly, certain adult web pages require a user
to solve a CAPTCHA before the actual content is displayed [7].
However, the inventors of CAPTCHAs [18] do not consider this
“pornography attack” against CAPTCHAs a concern as annoyed
visitors can easily switch to other offers. In contrast to such an at-
tack,CAPTCHA smuggling is performed seemingly as part of (pop-
ular) online services that the victim has been using over a period of
time. Thus, it is unlikely that, given a low enough level of annoy-
ance (a low number of CAPTCHA puzzles per day), a user would
choose a different online service.

The typical attack scenario that we envision involves a botnet
with bots that intercept user interactions and smuggle CAPTCHAs
into the victim’s active web browsing sessions. For example, a
Facebook CAPTCHA that is under the attacker’s control would
sometimes be displayed when the victim starts to compose a mes-
sage or send a friend request. Requiring a victim to solve only a
few CAPTCHAs a day ensures that the manipulation stays unno-
ticed and is perceived as normal procedure. Note that a CAPTCHA
smuggling attack is very lightweight in terms of required resources.
Therefore, it is trivial for the bot master to add the required func-
tionality to the existing bot program without limiting the existing
functionality of the botnet.

To test the feasibility of our attack, we conducted real-world
user experiments. The results of these experiments suggest that
CAPTCHA smuggling is feasible in practice and can be used by
attackers to make victims solve CAPTCHA challenges on their be-
half.

This paper makes the following contributions:

• We introduce theCAPTCHA smuggling attack, and we de-
scribe the implementation of a man-in-the-middle compo-
nent that performs such attacks.

• We report on a bug in Firefox and a problem with Facebook
that made it easier for us to distribute our attack prototype in
a stealthy fashion.

• We describe the results of our real-world experiments in-
dicating that CAPTCHA smuggling attacks are feasible in
practice. Based on these results we give an estimate how
many CAPTCHAs a botmaster could solve using this attack.

The remainder of this paper is structured as follows: Section 2
gives an overview of existing CAPTCHA systems. Section 3 intro-
duces the technique ofCAPTCHA smuggling. Section 4 describes
our prototype implementation. The setup for our user experiments
is detailed in Section 5, while the results of the experiments is
presented in Section 6. Mitigation approaches against CAPTCHA
smuggling attacks are described in Section 7. Section 8 discusses
research that is related to our work. Finally, Section 9 concludes
the paper.

2. A BRIEF OVERVIEW OF CAPTCHAS
A CAPTCHA is a challenge-response test used to determine

whether the response is generated by a computer or a human. These
tests are designed to be easily solvable by humans, but difficult to
decipher for automated programs.

Text-based CAPTCHAs are the most common. These consist of
a sequence of distorted characters rendered into an image. Bend-
ing, rotating, or mutating colors further complicates the task for

OCR programs [12] to accurately identify the characters. A popular
state-of-the-art, text-based CAPTCHA is reCAPTCHA [21]. The
tests used by reCAPTCHA are derived from the attempt to digitize
old books. Clearly, words that cannot be recognized during scan-
ning have already circumvented sophisticated OCR techniques. re-
CAPTCHA makes use of these words and forms a challenge by
combining an unknown word with a control word whose content
is known. To further thwart programs that try to solve the chal-
lenge, the words are distorted and aligned randomly. reCAPTCHA
accepts a solution if the control word is submitted correctly, and
the text for the unknown word overlaps substantially with already
submitted solutions for the same challenge.

Recent advances in CAPTCHA systems resulted inimage-based
CAPTCHAs. Asirra [4], is an image-based CAPTCHA that re-
quires the user to distinguish between images of cats and dogs. An
Asirra challenge consists of 12 images, each showing either a cat
or a dog. A solution is accepted as correct if the user successfully
selects all the cat pictures, but none of the dog images. The authors
argue that the underlying computer vision problem [5] is particu-
larly difficult to solve efficiently.

Current CAPTCHA systems such as reCAPTCHA suggest that
automatically breaking CAPTCHAs will become much more diffi-
cult in the near future. Nevertheless, attackers are constantly trying
to automatically break CAPTCHAs using botnets, and have suc-
ceeded in breaking them in many cases (e.g., [22]). As botnets are
already used to break CAPTCHAs, we believe that the next step for
attackers are CAPTCHA smuggling attacks where CAPTCHAs are
injected into legitimate web browsing sessions of victims.

3. CAPTCHA SMUGGLING ATTACKS
To perform a successful CAPTCHA smuggling attack, a mali-

cious component (such as a bot program) on the victims’ host needs
to intercept the user interactions with an online service (e.g., Face-
book) and delay their execution until the victim successfully solved
a CAPTCHA challenge. Bear in mind that it is not necessary to cre-
ate a new botnet for CAPTCHA smuggling attacks. Existing bot
programs can easily be extended to perform such attacks in addi-
tion to their current behavior. This process is depicted in Figure 1.

In a typical attack, the user first performs an action that the at-
tacker wishes to delay (for example, sending a request to a specific
web server, or clicking a button on a web page). The malware on
the victims’ host intercepts the request and locally stores all infor-
mation necessary to replay the request later on. This component
then retrieves a CAPTCHA challenge from the attacker’s server.
The attacker would forward a challenge that needs to be solved in
order to perform the desired action. He could, for example, for-
ward a CAPTCHA that was encountered during the registration of
an email account. Once the user has solved the challenge, the mal-
ware replays the intercepted request from the stored information.
To the unsuspecting victim, it seems as if the web application she
is using is protected by a standard CAPTCHA mechanism. In re-
ality, however, the victim has just provided the attacker with the
necessary information to continue his nefarious tasks.

In the remainder of this section, we discuss the design of our
prototype system that performsCAPTCHA smuggling attacks. In
order to have a flexible solution, we implemented a plugin for the
popular Mozilla Firefox web browser. Table 1 lists the web sites
that our prototype targets and the user interactions that it intercepts
(e.g., composing a new message).

Note that all web sites (online services) listed in Table 1 require
that a user solves at least one CAPTCHA during account regis-
tration. Moreover, the social networking site Facebook displays
CAPTCHAs on different occasions even after an account has been

1866

Victim

Legitimate Web Server

Web Server Controlled
by the Attacker

1. Victim initiates request

2. Malware intercepts

request

3. Malware requests

 CAPTCHA

4. CAPTCHA

challenge

5. CAPTCHA solution

6. Malware

replays request

Figure 1: CAPTCHA Smuggling

Facebook: Login, open Facebook application,
send message, change profile settings,
comment on status messages, post to wall
Microsoft LiveMail: Sendemail
Twitter: Follow tweet
Flickr: Comment picture
Gmail: Send email

Table 1: User interactions that trigger CAPTCHAs

successfully created. For example, to become friends with another
user on Facebook, one has to send a so-called friend request, ask-
ing that user for permission to add her to one’s friend list. Sending
many consecutive friend requests typically provokes a CAPTCHA
challenge, as Facebook tries to prevent automated friend requests
and spamming. Only after that challenge is solved, the request is
permitted. In our attack, we smuggle CAPTCHA challenges into
an active web browsing session by creating an additionaliframe
node in the DOM tree of the document, thus tricking the victim into
solving our challenge.

4. PROTOTYPE IMPLEMENTATION
Firefox supports extensions as a means for third party develop-

ers to extend the existing browser functionality. Popular examples
include plugins that block advertisements on web pages, or exten-
sions that block the execution of all script content embedded in web
sites, unless they are specifically permitted by the user.

Extensions for the Mozilla line of products are commonly writ-
ten in JavaScript. For Firefox, this implies that the rich API that the
browser exports to the scripting engine is readily available to the
plugin developer. Modifying page contents, for example, is just as
easy as intercepting mouse clicks to elements (e.g., buttons, links,
etc.) on a web site. The extension that we implemented makes use
of this functionality.

The actions that should trigger CAPTCHA challenges can be de-
fined in two ways in our prototoype: (1) By uniquely identifying an
HTML element whose click event is hooked, or (2) by specifying a
regular expression that matches the URL of HTTP requests:

The identification of an HTML element can happen by specify-
ing the values of attributes, such asid or class properties. Once
a page is finished loading and rendered, the DOM tree of the cur-
rent document is searched for elements that match the given speci-
fication. For each element that matches the description, the plugin
registers an additional click handler that intercepts the click event.
To intercept HTTP requests that match the specified regular expres-
sions, the plugin compares all outgoing requests with this pattern.
If the request matches the specification, the request is put on hold
and the CAPTCHA smuggling code is invoked instead.

When a certain user action triggers a CAPTCHA challenge (as
discussed in the previous paragraph), this action is intercepted. That
is, the plugin discards the event and keeps a record of the inter-
cepted action. This information is necessary to replay the action
once the CAPTCHA challenge is solved. Then, the plugin adds
an HTML iframe tag to the DOM tree of the current document,
displaying a CAPTCHA challenge that is retrieved from our server.
To avoid raising any suspicion, the CAPTCHA challenge mimics
the target web site challenge as closely as possible. To this end,
we downloaded the HTML and CSS sources that define the dialog
windows of the targeted web sites (services) and modified them ac-
cordingly. In addition, the label of the submit button is modified
to resemble the intercepted action. If the CAPTCHA challenge is
solved successfully, the plugin replays the previously intercepted
action from the stored information, which is then executed without
further interference.

Once installed, the plugin applies several techniques to hide its
presence on the infected system. First, the plugin removes itself
from the list of installed add-ons in Firefox. That is, the common
method of uninstalling the plugin via the user interface is not pos-
sible anymore. Second, for the first hour after its installation, the
plugin does not show any CAPTCHAs. We chose to implement this
feature as we believe that victims might get suspicious if, right after
installing a new plugin, they would see more CAPTCHA requests
then usual. Third, the plugin contains an adjustable threshold that
controls the frequency at which CAPTCHAs are displayed to the
victim. Initially, we set this value to display CAPTCHAs for only
15% of the monitored actions.

5. DISTRIBUTING THE PLUGIN TO REAL
USERS

As we did not have a botnet at hand to test-drive our implemen-
tation, and as such an experiment would have been unethical, we
had to distribute the plugin via other channels to test the feasibil-
ity of our idea. To this end, we recruited volunteers among our
friends who would deliberately install the plugin. Besides assuring
the volunteers that no sensitive information (e.g., login credentials)
are stolen, we did not give them any further information regarding
the functionality of the plugin. Furthermore, we could convince
some of these volunteers to post links on Facebook that point to a
page that performs a social engineering attack. More precisely, the
page would ask its visitors to install our plugin, with the premise
that this plugin is needed to see a video.

In addition to links and pictures, Facebook allows to share video
clips with friends. During the sharing process, the user selects
a thumbnail frame that represents the content of the video. This
frame is then overlayed with a play button and shared among the
users’ friends. To watch the video, other users just have to click

1867

the overlayed frame. If the proper video codec is missing (e.g., no
Flash plugin present), the video is replaced by a message informing
the user of this situation. In addition, this message contains a button
that allows to install the required plugin. In our attacks, we used
this standard Facebook behavior to disguise our social engineer-
ing attack. That is, we created a web page that imitates the above
mentioned message to lure a visitor into installing our plugin. In
the following, we elaborate on two problems that we discovered in
Facebook and Firefox, respectively, that allowed us to increase the
credibility of this page.

Cloaking Facebook: Cloaking is a technique commonly applied
in the field of search engine optimization [23]. This term refers
to a method where search engine spiders are served with different
content than real visitors, thus making the page appear in search
results for queries for which it does not provide any information.
Cloaking helped us to disguise the link to our plugin as a video.
This was achieved as follows:

Whenever a link to a resource is posted on a Facebook profile, the
Facebook server fetches a copy of that resource. This copy, which
is stored on the Facebook server, is then displayed as a thumbnail
of that resource. The HTTP user-agent header field that is used
in this request1 identifies Facebook as the origin. Based on the
user-agent identifier, a real visitor can be distinguished from the
Facebook server, and different content can be presented to each
one. Therefore, we were able to return a fake image, mimicking a
video resource, to the Facebook server. When a real user requests
the resource, however, we redirect her to the page that attempts to
install the plugin. Once the user installs the plugin, her browser is
instructed to load the real movie.

Firefox disguises the origin of the plugin: Once a user is con-
vinced that she wants to see the video and clicks the fake video
thumbnail, the following happens: Instead of opening the content
right away, Facebook loads a page with additional controls that al-
low the user to comment on, or share the content. The content-page
itself is embedded via aniframe tag. In our case, this content-
page tries to install a browser plugin. This behavior triggers a secu-
rity warning in Firefox and requires the user to agree to install that
plugin. However, Firefox does not identify the source of the plugin
correctly. In fact, the notification indicates that the source of the
plugin iswww.facebook.com, while in fact the true source was our
own server (see Figure 2). We notified the Firefox developers of
this behavior, who confirmed that this is unintended. Of course, we
added an appropriate bug report to the Mozilla bug tracking system.

Clearly, one question that arises is if it is ethically acceptable and
justifiable to conduct such experiments with real users (especially
considering the social engineering aspects). Similar to the exper-
iments conducted by Jakobsson et al. in [8, 9], we believe that
realistic experiments are the only way to reliably estimate success
rates of real attacks. Hence, we chose to test our attacks on real
users to evaluate the potential of CAPTCHA smuggling attacks.
Our work is in accordance with Jakobsson et al.’s definition of eth-
ical fraud experiments. That is, we do not expose the participants
of our experiment to any risk. Furthermore, our CAPTCHA smug-
gling system does not attempt to steal any sensitive information
from the user and consumes minimal additional resources in terms
of bandwidth, CPU cycles, and time of the user. Thus, the negative
impact on any infected victim is very low.

Of course, we included functionality that allows us to notify the
user of the plugin’s existence after the experiment. Since the plugin
requests the CAPTCHA challenge from our server, we can simply
substitute the challenge with a message that informs the user. Fur-

1facebookexternalhit/1.0
(+http://www.facebook.com/externalhit_uatext.php)

thermore, the plugin has the capability to reverse its removal from
the list of installed add-ons. This allows the user to uninstall the
plugin from the Firefox add-on dialog.

6. EVALUATION
In this section, we present the evaluation of the data we gathered

during our experiments. We began to distribute the plugin to volun-
teers on May 15th 2009. Within 14 days, we counted 17 successful
installations. In addition, five volunteers agreed to post a link to our
fake video page in their Facebook profile. This resulted in another
7 people who installed the plugin. In total, our fake video page was
visited 56 times and we could achieve 24 successful installations
of our plugin. Note that two of these 24 users seem to use Firefox
only on a non-regular basis. That is, they first tried to access the
plugin with an unsupported web browser (i.e., not Firefox). Only
after the page indicated that the content is only available to Fire-
fox users, these users revisited the site using the Firefox browser.
Since, despite a successfully installed plugin, neither of these two
installations ever requested a CAPTCHA, the assumption that these
users rely on an other browser for every day work seems justified.

Of these 24 installations, 17 requested CAPTCHA challenges
from our server. The remaining 7 never requested any challenges.
That is, these users did not perform any of the monitored interac-
tions often enough to exceed the frequency limits and be presented
with a CAPTCHA. A possible explanation is that these users only
rarely use the online services we are monitoring with our plugin.
In addition, users that do not produce content, such as comment-
ing or posting to the service, will not see any of our CAPTCHAs.
Furthermore, if a user makes use of the auto-login feature of the
web site, our system will not display CAPTCHAs during the login
procedure.

In total, these 17 infected users requested 167 CAPTCHAs. 126
were solved successfully. For 9 challenges the users submitted a
wrong solution, and in 32 instances, the users did not submit any
solutions (e.g., canceling the action). Note that a user failing to
submit any solution to a challenge does not pose a problem for the
attacker. The reason is that the same CAPTCHA can be forwarded
to another victim, once a timeout expires during which no result
is received. On average, a CAPTCHA was solved within 11 sec-
onds. Table 2 lists the monitored actions that triggered requests for
CAPTCHA challenges. Although we implemented the CAPTCHA
smuggling for many different actions and online services, only the
Facebook and Gmail actions resulted in requests to our CAPTCHA
server during our experiments.

Action # solved # failed
Facebook login 68 2
Facebook Post to Wall 6 1
Facebook Open an Application 6 2
Facebook Send Message 5 0
Facebook Comment Wall-Post 35 4
Facebook Change Profile Settings 1 0
Gmail Send Email 5 0

Total 126 9

Table 2: Actions that triggered CAPTCHA requests

Table 2 indicates that most of the solutions submitted in response
to the spoofed CAPTCHA challenges were correct. In our exper-
iment, we could observe an overall success rate, in terms of cor-
rectly solved CAPTCHAs, of 75%. Assuming that unanswered

1868

Figure 2: Firefox warning indicates wrong origin of plugin

CAPTCHA challenges are forwarded to other victims this value
increases to 93%.

During our experiments, we gradually increased the frequency
at which the user is prompted to solve CAPTCHAs. The ratio-
nale behind this was to learn at what level the users would get an-
noyed and just cancel the action instead of submitting solutions to
the CAPTCHA challenges. From an attacker’s point of view, this
value denotes the maximum output she can expect from performing
a CAPTCHA smuggling attack. We varied the frequency between
15%, 25%, 35%, and 50%. Interestingly, not even setting the fre-
quency to 50% resulted in a noticeable reaction by the users. That
is, even if the users are required to solve a CAPTCHA for every
second monitored action, they still submit valid solutions. Table 3
presents a detailed breakdown of the gathered data. As one would
expect, the number of solved CAPTCHAs per day and user is di-
rectly proportional to the frequency at which the plugin displays
CAPTCHA challenges.

Freq. days # users # correct # CAPTCHAs
solutions per day per user

15 6 10 30 0.5
25 3 5 24 1.6
35 3 10 57 1.9
50 2 3 15 2.5

Table 3: CAPTCHA smuggling success rates

Discussion.
Our premise is that the attacker already controls a botnet, and

hence, has access to the victim’s computer to perform CAPTCHA
smuggling that happens in addition to the already existing bot be-
havior. Our experiment shows that even without such a powerful
infrastructure, an attacker can achieve a considerable number of in-
fections. In particular, exploiting the trust relationships between
users on social networking sites together with social engineering
could allow an attacker to successfully infect many users. For ex-
ample, extending our system with the ability to automatically prop-
agate the fake video content on an infected profile would have been
straightforward. Clearly, we did not wish to create a plugin imple-
menting worm-like propagation strategies in Facebook.

Also, we note that our experiment mainly focused on Facebook.
Of course, a real attacker could extend CAPTCHA smuggling to
other online services as well.

To roughly estimate the monetary gain an attacker can expect
from performing CAPTCHA smuggling attacks, we refer to the
Symantec Internet Threat Report for the year 2008 [16]. Accord-
ing to these studies, email credentials are the third most frequently
offered information in the underground economy. The lowest esti-
mated value for such credentials is listed at 0.10$. Taking a medium
sized botnet of 10,000 infected machines as a basis and assuming
that each user can be tricked into solving only two CAPTCHAs
per day, this would result in 2,000$ daily revenue only for email
account credentials. A botnet of this size is easily possible, as re-
cent studies [15] indicate that current botnets can reach sizes of
hundreds of thousands of infected machines.

7. MITIGATION APPROACHES
Although an attacker controlling a victim’s machine via a bot

program is a powerful enemy, this section introduces techniques
that could improve current CAPTCHA systems to make them more
resilient against CAPTCHA smuggling attacks. As a first improve-
ment, we suggest CAPTCHA systems that make use of additional
forms of authentication towards the user.Site Keys, commonly ap-
plied in online banking systems to thwart phishing attacks, can eas-
ily be adapted to raise the bar for attackers to perform CAPTCHA
smuggling attacks. This technique uses visual information as a
shared secret to indicate to the user that the content she is viewing
is indeed from the site she is currently interacting with. To this end,
the user can select a custom image that is included on the content
produced by the service in question (e.g., an online banking login
site authenticates itself to the user by including a user-selected im-
age). In terms of CAPTCHA systems, this scheme can be applied
by letting the user choose the background for all CAPTCHAs. The
user is then instructed to solve only such CAPTCHAs that have the
chosen background set. A CAPTCHA challenge retrieved by the
attacker and forwarded to an infected user would not have the cor-
rect background set, and the user can easily detect the attempted
attack.

Note that it is not impossible for an attacker to circumvent this
additional protection. In theory, a sophisticated attacker could spoof
the Site Key as well. However, this simple addition considerably
raises the bar to successfully launch CAPTCHA smuggling attacks.

Recall that the main purpose of CAPTCHAs is to tell computers
and humans apart. Hence, if an online service can tell with certainty
that the current user is human, such tests are not required anymore.
Identifying users with information that is not as easily available as
email addresses fulfills this requirement. Facebook, for example,
allows its users to register their phones with the service. Users who
perform this registration can post news to their profiles from their
phones and, additionally, are exempt from solving CAPTCHAs.
Educating users that registering their phone numbers will prevent
further CAPTCHA challenges would make it easy for the victims
to recognize potential CAPTCHA smuggling attacks.

8. RELATED WORK
This section covers related work in the field of CAPTCHAs and

automated attempts on breaking them. Von Ahn et al. were the
first to introduce CAPTCHAs in the year 2000 [19]. Their later
work [20] elaborates on different techniques that can be used to tell
computers and humans apart automatically. Chew et al. focused on
challenges that are based on image recognition [2]. They propose
a system where the a human user should describe the subject in a
picture, or recognize an interfering image from an otherwise coher-
ent set of pictures. Making CAPTCHAs usable on mobile devices
is the main contribution of [3] by Chow et al. Their system does
not rely on keyboard input, which can be annoying especially on
mobile devices. Instead, they designed a CAPTCHA that can be
solved with touch screens or numeric keypads.

Kolupaev et al. [10] summarizes automatic techniques that break
text-based CAPTCHAs by applying OCR methods. Mori et al. [11]
perform shape context matching allowing them to break the EZ-
Gimpy CAPTCHA. This variant of a text-based CAPTCHA con-
sists of approximately seven words that are cluttered in an image.

1869

The challenge is solved if three words in such a cluttered image are
correctly recognized.

The Asirra CAPTCHA, introduced by Elson et al. [4] relies on
a mechanism where the user has to identify pictures of cats out of
a set of twelve pictures of cats and dogs. The authors argue that
this distinction is hard to make for computers even under different
attack scenarios. This assumption is partially falsified by Golle [6].
By leveraging machine learning techniques, it was possible to break
this scheme with a probability of 10.7%.

Among the heavy users of CAPTCHAs are social networking
sites. These sites prevent automated crawling attacks by requiring
the user to solve CAPTCHAs every once in a while. By targeting
social networks for impersonation attacks, Bilge et al. [1] demon-
strated that the employed CAPTCHA techniques are not sufficient
to prevent such automated attacks. The main reason for their suc-
cess in automatically breaking CAPTCHAs is that the system al-
lows to request an arbitrary amount of CAPTCHAs for the same
challenge. Introducing a reasonable threshold for the maximum
number of CAPTCHAs that can be requested would make such au-
tomatic attacks much more difficult.

Although many of the automated attacks have more or less rea-
sonable success rates (up to 10%), it is very unlikely that the rates
will remain at this level once current CAPTCHA systems are up-
graded and improved. As CAPTCHAs are intended to be solved
by humans (only),CAPTCHA smuggling allows to have constantly
high success rates even for advanced CAPTCHA systems that suc-
cessfully thwart automated attacks.

9. CONCLUSION
Improvements of automated attacks against current CAPTCHA

techniques drives the development of more robust CAPTCHA tech-
niques. Once the computational effort of breaking CAPTCHAs re-
liably becomes too high, attackers could try to misuse unsuspect-
ing victims to solve CAPTCHAs.CAPTCHA smuggling intercepts
user interactions and presents the victim with a CAPTCHA the at-
tacker needs solved to continue his malicious tasks. The victim
is conned into believing that the CAPTCHA is displayed by the
legitimate online service, and she has no easy way to distinguish
between an authentic and a smuggled-in CAPTCHA.

We implemented a proof-of-concept plugin for the popular Fire-
fox browser, and we evaluated our CAPTCHA smuggling attack
with realistic real-world user experiments. Our results suggest that
it is feasible for an attacker to launch such attacks in practice and
achieve high volumes and success rates for solving CAPTCHAs.

Acknowledgments
This work has been supported by the Austrian Science Foundation
(FWF) under grant P18764, SECoverer FIT-IT Trust in IT-Systems
2. Call, Austria, Secure Business Austria (SBA), and the WOM-
BAT and FORWARD projects funded by the European Commis-
sion in the 7th Framework.

10. REFERENCES
[1] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda. All your contacts are

belong to us: automated identity theft attacks on social networks. In
WWW ’09: Proceedings of the 18th international conference on
World wide web, pages 551–560, New York, NY, USA, 2009. ACM.

[2] M. Chew and J. D. Tygar. Image recognition captchas. InInformation
Security, 7th International Conference, ISC, pages 268–279, 2004.

[3] R. Chow, P. Golle, M. Jakobsson, L. Wang, and X. Wang. Making
captchas clickable. InHotMobile ’08: Proceedings of the 9th
workshop on Mobile computing systems and applications, pages
91–94, New York, NY, USA, 2008. ACM.

[4] J. Elson, J. R. Douceur, J. Howell, and J. Saul. Asirra: a captcha that
exploits interest-aligned manual image categorization. InACM
Conference on Computer and Communications Security, pages
366–374, 2007.

[5] M. Everingham, A. Zisserman, C. K. I. Williams, and L. Van Gool.
The PASCAL Visual Object Classes Challenge 2006 (VOC2006)
Results.
http://www.pascal-network.org/challenges/VOC/voc2006/results.pdf.

[6] P. Golle. Machine learning attacks against the asirra captcha. InCCS
’08: Proceedings of the 15th ACM conference on Computer and
communications security, pages 535–542, New York, NY, USA,
2008. ACM.

[7] Heise Online. Cracking Google captchas with porn.http:
//www.heise.de/english/newsticker/news/113336,
2008.

[8] M. Jakobsson, P. Finn, and N. Johnson. Why and how to perform
fraud experiments.Security & Privacy, IEEE, 6(2):66–68,
March-April 2008.

[9] M. Jakobsson and J. Ratkiewicz. Designing ethical phishing
experiments: a study of (rot13) ronl query features. InWWW ’06:
Proceedings of the 15th international conference on World Wide
Web, pages 513–522, New York, NY, USA, 2006. ACM.

[10] A. Kolupaev and J. Ogijenko. Captchas: Humans vs. bots.IEEE
Security and Privacy, 6(1):68–70, 2008.

[11] G. Mori and J. Malik. Recognizing objects in adversarial clutter:
Breaking a visual captcha. In2003 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR
2003), 16-22 June 2003, Madison, WI, USA, pages 134–144, 2003.

[12] S. Mori, C. Y. Suen, and K. Yamamoto. Historical review of OCR
research and development.Document image analysis, pages
244–273, 1995.

[13] N. Provos. Google online security blog: The reason behind the
"we’re sorry..." message.
http://googleonlinesecurity.blogspot.com/2007/
07/reason-behind-were-sorry-message.html, 2007.

[14] B. Stone. Breaking google captchas for some extra cash.
http://bits.blogs.nytimes.com/2008/03/13/
breaking-google-captchas-for-3-a-day/, 2008.

[15] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna. Your botnet is my botnet:
Analysis of a botnet takeover. Technical report, University of
California, Santa Barbara, 2009.

[16] Symantec Corporation. Internet security threat report, volume XIV.
http://eval.symantec.com/mktginfo/enterprise/
white_papers/b-whitepaper_internet_security_
threat_report_xiv_04-2009.en-us.pdf, 2009.

[17] Humans + porn = solved captcha.Network Security, 2007(11):2 – 2,
2007.

[18] C. M. University. The Official CAPTCHA Site.
http://captcha.net.

[19] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. Captcha: Using
hard ai problems for security. InEUROCRYPT, pages 294–311, 2003.

[20] L. von Ahn, M. Blum, and J. Langford. Telling humans and
computers apart automatically.Commun. ACM, 47(2):56–60, 2004.

[21] L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum.
reCAPTCHA: Human-Based Character Recognition via Web
Security Measures.Science, September 2008.

[22] Websense. Microsoft live hotmail under attack by streamlined
anti-captcha and mass-mailing operations.
http://securitylabs.websense.com/content/
Blogs/3063.aspx, 2008.

[23] B. Wu and B. Davison. Cloaking and Redirection: A Preliminary
Study. InAdversarial Information Retrieval on the Web, 2005.

[24] J. Yan and A. S. El Ahmad. A low-cost attack on a microsoft captcha.
In CCS ’08: Proceedings of the 15th ACM conference on Computer
and communications security, pages 543–554, New York, NY, USA,
2008. ACM.

1870

