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Abstract. One of the main security mechanisms in Android is the per-
mission system. Previous research has pointed out that this system is too
coarse-grained. Hence, several mechanisms have been proposed to address
this issue. However, to date, the impact of changes in the current permis-
sion system on both end users and software developers has not been stud-
ied, and no significant work has been done to determine whether adopting
a finer-grained permission system would be feasible in practice.

In this work, we perform the first study to explore the practical-
ity of the adoption of finer-grained system for the Internet permission.
In particular, we have developed several analysis tools that we used to
perform an empirical study on 1,227 real-world Android applications.
The results of this study provide useful insights to answer the following
three conceptual questions: (1) Is it practical to apply fine-grained access
control mechanisms to real-world Android applications? (2) How can a
system for fine-grained permission enforcement be integrated into the
application development and distribution life-cycle with minimal addi-
tional required effort? (3) What are the incentives and practical benefits
for both developers and end users to adopt a fine-grained permission
model? Our preliminary results show that, in general, finer-grained per-
missions could be practical and desirable for Android applications. In
addition, we show how the tools we have developed can be used to auto-
matically generate and enforce security policies, and thus could be used
to lower the burden of adoption of finer-grained permission systems.

1 Introduction

Smartphones and tablets have become an important part of our everyday lives.
We use these devices to make phone calls, read emails, surf the web, make
payments, and manage our schedules. As these devices have access to sensitive
user information, they have become attractive targets for attackers, as is evident
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from the continuous increase in the number and sophistication of the malware
that targets these mobile devices [22,36].

The primary security mechanism on the Android platform is the permission
system. The purpose of the permission system is to provide user-verifiable and
OS-enforced constraints upon the runtime behavior of Android applications. All
sensitive operations an application may perform (e.g., accessing the Internet,
reading or sending text messages, using the NFC interface) are protected by
specific permissions. An application must declare the set of permissions that it
requires and these permissions must be approved by a user prior to its installa-
tion. At runtime, the Android OS acts as a reference monitor and ensures that
the application cannot access resources that would require more permissions
than those granted at installation time.

While the Android permission model is useful, it is affected by few weak-
nesses, one of the most important being that it is too coarse-grained. For exam-
ple, Android’s permission model for Internet access follows an all-or-nothing
approach: Either an application can access the entire Internet (including any
possible domain, IP, or port) or nothing at all. In many cases, however, Android
applications only need to communicate with a much smaller set of endpoints.
As an example, consider an online banking application that requires Internet
access to connect to the bank server for checking the user’s balance or making
transactions. In this case, it would be sufficient for the application to be able
to connect to a small set of domains that are under the control of the bank.
Another example is constituted by applications that implement games or simple
utilities (e.g., a flashlight): In this scenario, the applications would likely require
internet access just to contact an online scoreboard, or for advertisement-related
reasons. Hence, also in this scenario, they would need to access to only a small
number of network endpoints.

In principle, a coarse-grained permission system does not support secure soft-
ware development, as it prevents the developers from writing code that adheres
to the principle of least privilege [28]: This makes an exploit against a vul-
nerable application more powerful, as it would have permission to access more
resources. Moreover, a coarse-grained permission also makes malicious applica-
tions stealthier, as these applications would not need to reveal all the network
endpoints at installation time. For these reasons, recent research works pro-
posed a variety of approaches through which a finer-grained permission system
can be implemented [9,10,18,21,27,31,33,34]. Even if all these works rely on
technically-different solutions, they all share the same high-level goal: enabling
developers and end users to specify and enforce fine-grained security policies.

While the technical aspects of finer-grained permission systems have been the
focus of much research, the impact of such a modified permission system on users
and developers has not been thoroughly studied: To the best of our knowledge,
no significant work has been conducted to understand whether the adoption of
a finer-grained permission model would be feasible in practice. Motivated by
this observation, in this work we investigate on the security and engineering
implications of finer-grained access control mechanisms and policies in Android.
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To this end, we developed several analysis tools and we used them to perform an
empirical study on how real-world applications make use of their permissions. In
particular, we focus on the Internet permission, as it is the most widely used and
studied permission, and it can be easily adapted to allow finer-grained permission
specification.

Our study aims to shed light on the following three conceptual aspects:

– Is it practical to apply fine-grained access control mechanisms to real-world
Android applications? (Sect. 4)

– Since specifying finer-grained permissions might be more laborious, how can a
system for fine-grained permission enforcement be integrated into the applica-
tion development and distribution life-cycle with minimal additional required
effort? (Sect. 5)

– What are the incentives and practical benefits for both developers and end
users to adopt a finer-grained permission model? (Sect. 6)

To perform this study, we first developed a symbolic executor (Sect. 3.1) to auto-
matically analyze how applications access network resources. Our tool oper-
ates directly on Dalvik bytecode and determines, for each resource access (e.g.,
opening a network connection), the inputs that influence the resource identifier
(e.g., domain names). Using the symbolic executor, we analyzed 1,227 Android
applications to study how real-world applications access external resources. We
find that a large fraction of the applications in our dataset use a limited set of
resources, and that the identifiers of these resources are specified in the appli-
cation code or in configuration files. This suggests that fine-grained permissions
could be a practical mechanism, as application bundles contain the necessary
information to extract tight security policies.

However, increasing the granularity of the permission system would require
developers to invest more effort in permission selection and policy creation,
as, currently, the developer is in charge of manually specifying the permissions
needed by her application. Additionally, the task of manually generating a secu-
rity policy is non-trivial, in the general case. For example, if an application con-
tains a closed-source third-party component, it can be prohibitively difficult for
a developer to manually specify an accurate, tight security policy. Thus, another
aspect that we studied is if automatic tools (such as the one we developed) can
be used to assist developers by automatically generating security policies. To
this end, we developed a policy extractor component (Sect. 3.2), which processes
the results from the symbolic executor into a set of fine-grained permissions
required by the application. Our preliminary results are encouraging. In fact, we
show that, for the applications in our dataset, the generated policies are small
and accurate, and this suggests that the adoption of a finer-grained permission
system might be practical for both developers and end users.

Finally, to lower the burden of adoption even more, we developed an applica-
tion rewriter component (Sect. 3.3), which allows both developers and end users
to rewrite an Android application (even when its source code is not available)
to enforce a given security policy.
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In summary, this paper makes the following contributions:

– We developed three different components (namely the symbolic executor, the
policy extractor, and the application rewriter) to shed light on important secu-
rity and engineering implications of finer-grained access controls for Android
developers and users. Moreover, we make these tools available upon request.
(Sect. 3)

– We performed an empirical study on how real-world Android applications
make use of the Internet permission. We used our tool to statically analyze
1,227 applications, and, for 67.5% of them, it was possible to extract a non-
trivial constraint (i.e., a constraint different from .*) for all their network
accesses. We also performed several additional experiments that show how
it is possible to automatically extract high-quality, initial security policies.
In fact, we show that these policies are often precise (in 81.6% of the cases,
no refinement is necessary), and small (for 87.8% of the applications, the
respective policy is constituted by at most two domain names). (Sect. 4)

– We present how the three components we developed can be used in tandem
to assist developers and end users, and to lower the burden of adoption of a
finer-grained access control model. (Sect. 5)

– We provide a thorough discussion on the impact and the practical benefits
that a finer-grained permission system would bring to all the actors in the
Android ecosystem—developers and end users. (Sect. 6)

2 Overview

For this paper, we developed three different components, which we then used to
gain insights related to the practicality of adopting a finer-grained permission
system for the Internet permission. In this section, we provide an overview of
these components and we describe their role within the context of this work.
Figure 1 shows how the different components work together, and which insights
are provided by each of them.

Symbolic Executor. The first component is a static analysis tool for Android
applications that performs symbolic execution on Dalvik bytecode. This compo-
nent computes, at each call site of an API method of interest (that we will refer
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Fig. 1. Overview of the developed components, how they interact, and the insights
they provide.
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to as a sink), an over-approximation of the possible values for this method’s
arguments. In particular, we explore how Android applications access different
sites on the Internet, and we study whether it is feasible to restrict their Inter-
net access without breaking their functionality. We used this tool to perform an
empirical study on how real-world applications use network resources. In partic-
ular, one of the goals of this experiment is to assess whether network endpoint
identifiers are usually statically embedded in the application, or whether they
are generated at runtime. This insight directly helps us understanding whether
a fine-grained permission system would be practical for real-world deployment.
In fact, if in most cases it would be possible to determine these resources only
at runtime, it would not be feasible to meaningfully refine a given permission.
The technical details of this component are discussed in Sect. 3.1.

Policy Extractor. The second component is a security policy extractor. Intu-
itively, this component takes as input the information extracted by the symbolic
executor, and analyzes them to extract an initial security policy for a given
Android application. For the Internet permission, a security policy consists of a
set of possible network endpoints associated with their respective call sites. We
then performed a series of analyses on these automatically-generated policies to
first determine their quality (i.e., how well they “cover” the resources that are
accessed at runtime) and their size (i.e., how many entries each policy contains).
The technical details of this component are described in Sect. 3.2.

Application Rewriter. The third component we developed is a generic frame-
work to rewrite Android applications. This tool modifies the application’s Dalvik
bytecode directly, and thus does not need access to source code of the applica-
tion or any included third party libraries. This component is used to study the
feasibility of automatically enforcing a security policy on an Android application
by means of bytecode rewriting. In particular, this tool allowed us to understand
whether it would be possible to retrofit off-the-shelf Android applications with
finer-grained policies. Note how, ideally, the security policies should be enforced
by the operating system itself, and hence this component would not be useful.
However, in a practical sense, transitioning to finer-grained permissions might be
performed incrementally, and hence our tool could be used to lower the burden
of adoption. The details of this component are discussed in Sect. 3.3.

3 System Details

In this section, we discuss the technical implementation details of the main
components we developed. First, we describe the implementation details of our
symbolic executor, and the information it returns. Then, we present the details of
the policy extractor component, which automatically extracts (initial) security
policies. Finally, we discuss the application rewriter component, which is useful
to enforce a security policy on a given Android application.

3.1 Symbolic Executor

Our symbolic execution engine takes an Android APK package as input, unpacks
it, and extracts from it a number of artifacts. These include the DEX file with
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the application code, the application’s resources (e.g., localized strings, image
files, and UI layouts), and the manifest, which contains information such as the
requested permissions as well as the entry points into the application (the main
Activity, for example).

To disassemble application bytecode, we leverage dexlib, a library that is
part of the open-source tool apktool. Then, the application’s Dalvik bytecode is
lifted to a custom intermediate representation, on top of which all the subsequent
analysis passes operate. Our prototype is entirely written in the Scala language,
and consists of a total of 10 K LOC. The next paragraphs describe the technical
details of each of the main phase. Note that we do not consider the development
of a symbolic execution engine for Dalvik bytecode as a research contribution.
In fact, it is not novel (e.g., [20]), and, at least in principle, it would have been
possible to re-use existing codebases. However, there are a number of aspects
that are peculiar to our analysis. We describe these aspects in the remainder of
this section.

Preliminary Steps. As the first step, the tool performs class hierarchy analy-
sis to reconstruct the inheritance relations among the classes defined in the
application and in the Android framework. Then, the tool computes the intra-
procedural control flow graphs (CFG) of all methods comprising an application,
and, finally, it reconstructs the application’s super control flow graph (sCFG) by
superimposing the inter-procedural call graph over the intra-procedural control
flow graphs of each application method.

Forward Symbolic Execution. Our static analyzer performs forward sym-
bolic execution as the basis for the discovery of constraints at privileged API
invocations. This analysis step is performed directly on the Dalvik bytecode.
Our symbolic execution engine models the semantics of all individual Dalvik
virtual machine instructions over an abstract representation of program states,
including the current program counter, abstract store, and local environment.
Moreover, the invocation of the numerous entry points into the application that
are exercised by the Android framework is modeled according to the rules of the
various Android components’ lifecycles.

Our tool performs a context-sensitive, inter-procedural data flow analysis. In
particular, our analysis engine implements a generic framework for generating
and merging program contexts. For this work, we opted to implement 2type+1H
type-sensitivity, an approach that has been shown to provide an excellent com-
bination of precision and scalability, especially when analyzing object-oriented
programming languages [30].

In addition to characterize which values can reach a specific API method, our
static analyzer keeps track of the sources of values. That is, for each argument
of an API method of interest, the analysis determines the source method (i.e.,
a method that reads values from other resources, such as files, network, intents)
that “produced” the input value. This kind of information plays a key role when
attempting to automatically generate precise security policies.

As an example, consider the snippet of code reported in Fig. 2. In this exam-
ple, the method foo first uses the static string url to load a web page, and it
stores the content of this web page in res. Then, the extractUrl method parses
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Fig. 2. Example of a method that performs multiple “chained” network connections.

res to extract a new URL, which is stored in the newUrl variable. This new URL
is subsequently used as a parameter to the second call to loadFromUrl, from
which a second web page is downloaded. Intuitively, for the first network access,
the application requires some initial information, taken from a string embedded
in the program or read from a configuration file. After that, results read from
the network are used to construct additional destinations (URLs, domains, etc.).

In this example, the static analysis will easily be able to infer the static
value http://my.example.com as the input argument to the first Internet access.
However, the analysis will not be able to determine the possible values for the
second call to loadFromUrl. Nonetheless, the analysis will correctly identify that
the result of the first call to loadFromUrl is the source that produces this input.
In fact, even if the value of the second argument is statically unknown, it is
ultimately derived from an access to the http://my.example.com URL. In other
words, the information about the sources that are responsible for input values
allows us to go back to the “root” of an access, thus providing useful information
when characterizing even those sinks that cannot be statically constrained.

Symbolic Expressions. The result of the static analysis is a set of symbolic
expressions that represent an over-approximation of all the possible concrete
values that could be used by Android API sources (e.g., the path of a file read
by the application) and sinks (e.g., the network domain names contacted by
the application), as well as symbolic expressions that denote the origin and the
destination of the corresponding values.

Symbolic expressions are essentially constraints (expressed as regular expres-
sions) that represent sets of possible concrete values. One of the most critical
objects to model with high fidelity are strings, as they are pervasively used to
identify file system paths, network endpoints, or URLs. Our tool tracks not
only concrete string values, but also symbolically models string expressions by
recognizing string operations performed using well-known Java classes such as
StringBuffer and StringBuilder. In case our analyzer cannot statically deter-
mine a constraint over the possible values that reach a given sink, then it con-
servatively returns the most generic constraint, i.e., .*.

Another object of key importance is the Intent object, which is exten-
sively used by Android applications to perform inter-component communication,
potentially across application boundaries. For example, the startActivity API
method specifies an intent argument that contains information necessary for the
system to determine which Activity should be launched in response to this ser-
vice request. To correctly model this mechanism, the analysis takes into account
how the intent resolution process operates. Moreover, it also models several other

http://my.example.com
http://my.example.com
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complex objects, such as the Bundle object, a key-value store used to pass aux-
iliary data along with intent-based service requests. Finally, our analysis models
accessory objects such as the Resource object, which controls access to static
values defined in XML-based resource files packaged with the application.

Android Framework Modeling. Since our tool analyzes applications in isola-
tion from the Android framework codebase, proper models of important Android
API methods are required. Mainly, these models allow the static analyzer to
identify and track API methods corresponding to information sources and sinks,
and to precisely associate origin and destination information. As a starting point
to compile a list of API models, we consulted the resources provided by prior
work [3,12,25], and we selected all those API that are relevant to our analysis.
In total, our list is constituted by 174 API models.

Another key challenge is the proper modeling of implicit control flow trans-
fers through the Android framework. Callbacks pertaining to the lifecycle of
individual components (e.g., Activities) are well documented, and, therefore, it
is possible to precisely model them through manual annotations (the authors of
FlowDroid [2] followed a similar approach). For the remaining implicit control
flow transfers, we used as a starting point the results obtained by EdgeMiner [7]
– a system designed to extract a summary of all implicit control flows through
the analysis of the Android framework itself.

3.2 Policy Extractor

The policy extractor generates an initial security policy based on the informa-
tion generated by the symbolic execution engine. For the Internet permission, a
security policy consists of a set of possible network endpoints, associated with
their respective call sites. This section describes how this process works in detail.

The policy extractor first identifies the network endpoints that an application
can contact, by analyzing, for all methods that connect to the Internet, the input
parameters that specify the destinations of these connections. When the analysis
finds that a parameter is one of a set of concrete string values, we extract the
domain(s) from these strings, and add them to a set of permissible destinations.
When the value is read from a file, we go back to the method that accesses
the file, and we try to determine the file name. If a file name can be obtained
statically, our component checks whether this file is bundled with the application
(and statically exists on disk). If so, the file is parsed for domain names, which are
then added to our set. When the destination value used in a network connection
is read from the network (as in the example in Fig. 2), we go back to the method
that performs the read and try to find the destination for that earlier read
(my.example.com for the method foo in Fig. 2).

We then use this information to generate an initial security policy. In par-
ticular, the results from the symbolic execution engine allow us to generate a
policy that not only indicates which resources are accessed (e.g., a set of net-
work endpoints), but also where they are used (e.g., the call site of such sensitive
methods). The precision of this information enables the specification of different
permission sets for each component of the application. As we discuss in Sect. 6,
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this has several advantages with respect to the current permission system, which
grants the same set of permissions to an application as a whole.

3.3 Application Rewriter

The last component we developed is a tool, called application rewriter, that
modifies Android applications to enforce fine-grained security policies. The
enforcing tool takes as input an APK file and a policy, and it returns as output
a modified, self-contained APK where the given policy is enforced. In our con-
text, a security policy specifies a constraint over argument values of a method
sink at a given program location. Concretely, a policy is specified by a list
of tuples in the format <package name>:<class name>:<method name>:<offset>:

<param-idx>:<constraint>, where the first four parameters uniquely identify a
location within the application’s code, <param-idx> defines the position of the
argument for which the constraint is enforced, and <constraint> is the value (for
example, a domain name) that should be allowed to be contacted by the method
invocation at the specified location. Note that all parameters (except <offset>

and <param-idx>) are regular expressions, and hence provide a high-degree of
flexibility. Note also that our tool does not need to modify the permissions spec-
ified in the application’s manifest. Hence, the permission set of the rewritten
application is, by design, a strict subset of the original one.

The application rewriter is implemented on top of a generic, low-level API
filtering engine. This engine works by disassembling a given application (by using
apktool), and by modifying its bytecode so that a custom enforcing method is
invoked just before every invoke instruction that could potentially reach a net-
work sink. In particular, for APIs that accept values representing a URL, the
enforcing method matches the actual argument value observed during runtime
against any constraints that are specified for this call. If the observed value does
not match the constraint, the enforcing method raises an exception, or, if possi-
ble, it modifies the values of the parameters that will be used by the subsequent
call to the framework API. Moreover, since it is not always possible to precisely
model the behavior of specific Android features (e.g., Java classloading, reflec-
tion, native code), we provide a choice to selectively disable these functionality
at runtime, by placing enforcing code that throws proper Java exceptions when
such features are used. We measured the overhead introduced by our instrumen-
tation mechanism, and we determined it to be about 70µs per API invocation,
which is negligible.

We note that the technique we used is similar to the ones proposed in
concurrently-developed works [4,9,10]. For this reason, in the interest of space,
we omit the technical details related to this component, and we prioritize the
description of the truly novel aspects of our work. We invite the interested reader
to consult these already-published works for more technical details.

4 Practicality Evaluation

In this section, we describe the results we obtained by running our tool over
more than a thousand Android applications. We first evaluate the correctness



On the Security and Engineering Implications 291

Fig. 3. Relation between DEX
bytecode size (in bytes) and analy-
sis time.

Table 1. Constraints
for network-related API
methods in the analyzed
apps.

Category Frequency

String 1,864

Prefix 209

Complex 620

Low 2,878

Total 5,571

of our approach and its usefulness in supporting the adoption of a finer-grained
Internet permission system in Android. Then, we discuss the quality and the
correctness of the static analysis results, we show that these results are useful as
a starting point for automatically generating security policies, and, finally, we
show how, in practice, these policies are often small, suggesting that the adoption
of a finer-grained permission system would be practical for both developers and
end users.

As a dataset, we selected a corpus of 1,983 applications from a previous ran-
dom crawl of the official Google Play Store performed in 2012. As our study
mainly focuses on the Internet permission, we only considered applications that
required such permission. These applications belong to several different cate-
gories (e.g., games, entrainment, productivity, shopping, tools), and they are
constituted, on average, by hundreds of methods. Their average APK size is
about 830 KB, and their bytecode size varies from a few hundreds bytes to about
160 KB, representing small- and medium-sized applications on the market.

We analyzed all these applications with our symbolic execution engine. The
experiment was performed on 15 virtual machines with 2 CPUs and 4 GB of
memory each, and we set a one hour timeout for the analysis of each application.
We successfully completed the analysis for 1,227 applications before the timeout
was reached. The average static analysis time was 114.40 s. For these apps, Fig. 3
shows the relation between the size of the application and the analysis time
required. As expected, analysis time and size are (loosely) correlated, although
there are many outliers.

4.1 Results and Quality of Static Analysis

We first assess the quality of the symbolic expressions that our approach pro-
duces for the input arguments of network-related method calls. In the 1,227 apps
of our dataset, we identified a total of 5,571 calls to sink methods. Table 1 shows a
detailed breakdown of the results. The String, Prefix, Complex, and Low labels
indicate the quality of the constraint associated to a given sink. In particular,
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String denotes a set of constant string values; Prefix corresponds to a regular
expression that represents a prefix (e.g., a URL without parameters); Complex
refers to more complex regular expressions; and Low indicates the most generic
(hence less precise) constraint, i.e., .*. Our static analyzer was able to determine
a non-trivial constraint for 48.3% of the sinks (2,693 out of 5,571). Moreover,
many of the extracted constraints provide useful insights into the application’s
behavior. For example, our analysis is able to extract complex constraints such
as "http://maps.google.com/?lat=\d+&lon=\d+".

As an additional experiment, we computed the number of sinks that are
either constrained or whose source is meaningfully constrained (the source value
is retrieved by following backward the data flow chains outputted by the symbolic
execution engine, as described in Sect. 3.2). This condition is satisfied for 4,538
of the 5,571 Internet sinks. That is, in 81.4% of the cases, it was possible to
characterize the origin of the value (either directly or indirectly) that reaches
the security-sensitive API. This indicates that even if it is sometimes challenging
to statically constrain a network sink, it is often possible to at least statically
characterize the value of its source (as in the example provided in Fig. 2). This
observation highlights an interesting pattern adopted by real-world applications:
for the first network access, the application requires some initial information
(taken from a string embedded in the program or read from a configuration file),
and this information is then used as a starting point for determining the target
of the other network sinks.

If we cluster these statistics in terms of number of applications (instead of
number of sinks), we obtain similar results: our tool was able to completely
constrain 483 applications (39.4%), while this number grows to 828 (67.5%) if
the source information is taken into account. These results support the idea that
it is often feasible to automatically refine the set of permissions requested by a
given app, and that the automatic generation of policies is practical (as we will
discuss in more detail in the next section).

Comparison with Dynamic Traces. To check the correctness of our static
analysis, we first executed all the 1,227 applications in an instrumented emulator
(we used the Google Monkey [15] to interact with the application under test, and
we set a timeout of two minutes), and we extracted the dynamic traces, which
consist in the list of methods that are invoked during the dynamic analysis,
accompanied by detailed information about their arguments.

We first assessed the accuracy and the coverage of our static analysis tool
by comparing the edges of the call graph generated by the static analysis with
the call sequences contained in the dynamic traces. The rationale behind this
experiment is that, since the static analysis is designed to produce an over-
approximation of the actual program runs, we expect that all the code that is
run dynamically was also analyzed statically. We found that ∼97 % of the edges
in the dynamic call graph are correctly covered by the static analysis. The sole
reason for the missing edges is that some Dalvik instructions can implicitly throw
an exception (for example, the check-cast instruction throws an exception at
runtime in case of a type mismatch) for which our symbolic execution engine
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currently lacks support. However, since the static code coverage is high (as dis-
cussed in the Code Coverage paragraph below) and only very few edges are
missing, we believe that these minor imprecisions do not undermine the validity
of our analysis.

In a second step, we evaluated the correctness of the constraints that are
statically extracted. To this end, we compared the statically-extracted Internet
constraints with the actual argument values recorded in the dynamic traces. In
total, we observed 6,259 dynamic invocations of 1,311 distinct sinks that are
related to the Internet permission. The static analysis produced expressions for
1,307 of these sinks (4 sinks are not reached due to missing exception support).
In all 1,307 instances the constraints returned by the static analysis covered all
observed values, as expected.

Code Coverage. We estimated the static code coverage by counting the number
of methods that are reached by the static analyzer. On average, our approach
has a static code coverage of ∼95 %. Similarly, we extracted the dynamic method
coverage from the execution traces, and it resulted to be ∼25 %.

Ideally, the dynamic code coverage would have been higher. As a future step,
we could use more powerful GUI exploration techniques [26,35] to increase the
dynamic code coverage. However, we do not expect significant differences in the
results, as state-of-the art dynamic exploration techniques achieve only slightly-
higher coverage (e.g., 27 %–33 %). Moreover, to the best of our knowledge, this
is the first static analysis work targeting the Android platform that extensively
evaluates the static analysis results with dynamically-generated execution traces.

4.2 Quality of the Security Policies

In the next step, we wanted to determine whether the static values extracted by
our approach are useful to automatically generate security policies. To this end,
we used the output from the static analysis to automatically build (initial) secu-
rity policies for all of them. For this experiment, the policies are automatically
built by our policy extractor component (described in Sect. 3.2), and by consid-
ering the set of second-level DNS names for each statically-determined network
endpoint. We then used the previously-collected dynamic traces to check what
would have happened if we had used our rewriting tool to enforce the policies.

We found that for 1,002 (81.6%) of the applications, our security policies
would allow all network accesses that these applications attempt during runtime.
In other words, in all these cases, it was possible to statically infer the set
of domain names that the application would contact during runtime. In 972
cases, the domain names could be extracted from information contained in the
application code base. This indicates that most developers hard-code all domain
names into their programs. In 30 cases, it was necessary to get the domains
from a configuration file, but the name of this configuration file was specified in
the binary. Note that there are a handful of cases in which the dynamic trace
shows that a piece of JavaScript is dynamically evaluated by the application. We
assume that these scripts do not contact any domain outside our policies, and a
quick manual investigation confirmed this assumption.
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Table 2. Number of explicit authorizations required when enforcing the automatically-
generated security policies.

Number of required explicit authorizations Frequency Percentage

No interaction required 1,002 81.66 %

One explicit authorization 180 14.67 %

Two explicit authorizations 42 3.43 %

Three explicit authorizations 2 0.16 %

Four explicit authorizations 1 0.08 %

More than four explicit authorizations 0 0 %

Total 1,227 100 %

Note how this property holds not only for sinks contained in the main core
application, but also for third-party libraries such as the popular AdMob adver-
tisement library from Google. This might be surprising at a first glance, but we
found that these Ad libraries actually only contact a few Google-related domain
names (such as admob.com and googleadservices.com) to fetch their content.
This makes sense because it allows Google to easily control the content that is
displayed on millions of Android devices.

Policy Violations. We also investigated the 225 cases where our automatically-
extracted policy was violated. We manually analyzed a random sample of 10 %
of these applications (23 in total) to have a better understanding of the reasons.
We found that in 7 cases, the domains are actually present in the bytecode, but
the analysis is not precise enough to extract the proper values. In 12 additional
cases, the domains are in configuration files, but again, our approach is not
precise enough to extract the values (and related file names) automatically. Only
in 4 cases do applications load destination domains from the network, and these
domains are not present anywhere in the program or resources. This confirms
that, in most cases, the developer seems to have a clear understanding of the
Internet resources that should be accessed, and our approach is a useful system
to automatically infer initial policies. In the 19 cases above, a developer could
easily add the missing domains to the policy manually.

Alternatively, an application could be modified to be paused if a policy vio-
lation is detected. During the pause, the user would be prompted whether she
wants to permit the violating access. Existing research has established that fre-
quent authorization prompts lead to warning fatigue [6]. That is, users tend to
ignore and blindly grant authorization requests if such requests are too frequent.

To evaluate how often the user would be prompted for authorization due to
a policy violation, we analyzed, once again, the dynamic execution traces from
Sect. 4.1. Table 2 reports the breakdown of the results: user interaction would be
required only for 18.4% of the applications; for 96.3% of the applications, the
user would be prompted at most once; and no application would require more
than four distinct authorizations. Because the user only makes these autho-
rization decisions once per application lifetime, we believe that the number of
authorization prompts is well within reasonable bounds.
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Table 3. Size of the automatically-extracted security policies.

Policy size Frequency Percentage

At most one domain name 956 77.91 %

At most two domain names 1,077 87.78 %

At most three domain names 1,151 93.81 %

At most four domain names 1,175 95,76 %

More than four domain names 52 4.24 %

Total 1,227 100 %

As a final consideration, we note that even if automatically enforcing the
security policies extracted by our approach works in a surprisingly-high number
of cases, such an approach does not always makes sense. Consider, for example,
a web browser application: in this case, the application would need to be able to
access arbitrary domain names specified by the user, which means that it would
be impossible to extract all the network endpoints through static analysis only.

4.3 Size of the Security Policies

As a final step, we investigated whether the adoption of the proposed fine-grained
permission system would be practical. The intuition is that most of the applica-
tions access a limited set of resources (hence this approach would make sense),
but what if, in practice, these policies are prohibitively large and cause too much
overhead for developers to maintain or end users to review?

To answer this question, we analyzed the policies extracted for the 1,227
applications. Table 3, which reports the breakdown of the results, shows how
the majority of the applications (87.8%) access at most two domain names.
Frequently, one domain name is usually linked to a domain controlled by the
owner of the application, while the other one is related to an advertisement
framework. A prolific source for additional domains are widgets from popular
social networks. This observation becomes apparent when we look at the most
frequently accessed domain names. In fact, the domain name that is accessed the
most is related to the AdMob advertisement framework, while the other most
frequently-accessed domain names are related to well-known social platforms,
such as Facebook, Google, and Twitter.

4.4 Discussion and Limitations

In the previous sections, we discussed the results we obtained by using our
tools to analyze over a thousand Android applications. We believe that our
preliminary results are encouraging, as they suggest that it would be possible
to adopt a finer-grained permission system. In fact, the size of the extracted
policies is often small, and the domain names that are accessed the most are
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easily linkable to known companies. As a possible additional step to lower the
burden of adoption even further, it might make sense to integrate our system
with an approach based on whitelisting, so that trusted domain names (such
as the ones related to well-known advertisement frameworks and popular social
platforms) could be automatically approved.

That being said, we acknowledge that our study suffers from few limitations.
For example, while we believe that our dataset contains a sizeable number of
applications, the current app store features many more applications (according
to [32], more than a million). Thus, it is unknown whether our results gener-
alize to the entire market. Another limitation relates to the fact that, for this
study, we did not consider large and complex applications (e.g., the Facebook
app) due to the fact that our analysis, at its core, uses symbolic execution,
which is known to be affected by scalability issues. Finally, a drastic change
in how developers implement Android applications (e.g., tunneling all network
traffic through a single network endpoint) could affect the applicability of the
fine-grained policies extracted by our analysis. Nonetheless, we believe that our
preliminary results already offer useful insights related to an important security
aspect of the Android framework. Moreover, the analysis primitives we devel-
oped can be used as building blocks to study further security aspects of Android
applications that extend beyond fine-grained permissions.

5 Viable Workflows

In this section, we describe how the various actors participating in the Android
ecosystem, namely developers and end users, would use a finer-grained permis-
sion system, and how they could take advantage of the components we developed.
Even if the two categories of actors would use the system for different reasons,
they would follow the generic, high-level workflow depicted in Fig. 1: the actor
would use our components to statically analyze her application, generate initial
security policies, and enforce them.

A developer would take advantage of a fine-grained permission system by
writing a security policy to be enforced. Note that writing such a policy might
not be a trivial task if external libraries are added, especially if their source code
is not available. This is because it can be problematic to understand the full
set of resources (e.g., contacted URLs) accessed by these libraries. Moreover,
a developer might decide to enforce fine-grained permissions on a third-party
component if it is not fully trusted (not only it could be malicious, but, more
likely, it could open the main application to security vulnerabilities). In the
case that the task of manually compiling a security policy is too burdensome,
the developer could take advantage of our symbolic executor and the policy
extractor components to automatically extract an initial security policy. Then,
the developer could review it and adapt it to her own needs, if possible. At
this point, the developer could use our application rewriting tool to rewrite the
application so that the security policy is enforced.

The other actor of the system, the user, can then download the rewritten
app and review the policy before deciding whether to install the application.
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For instance, a user might be comfortable installing an app that only requires the
ability to contact a single domain name managed by the application’s developer,
but she might prefer not to install an application that requires unconstrained
Internet permissions. Even in this case, the user could take advantage of the
symbolic executor and the policy extractor components to automatically deter-
mine an initial security policy, which can be then modified and used as input to
the enforcing component.

Note how, in both scenarios, the usage of the enforcing component is superflu-
ous on a modified version of Android that enforces fine-grained security policies.
However, on standalone Android versions, our enforcing tool will benefit the
community and lower the burden of adoption of fine-grained policies.

6 Security Implications and Benefits

A fine-grained permission system in Android would introduce a variety of signif-
icant security improvements that affect all the actors of the Android ecosystem.
This section describes these aspects in detail.

Implications for Benign Applications. Several studies showed that Android
applications often suffer from confused deputy vulnerabilities [8,11,14,16,23].
While a finer-grained permission system does not eradicate confused deputy
vulnerabilities, it significantly reduces the negative impacts of their exploitation.
Consider, for example, an application accompanied by a fine-grained policy that
identifies all legitimate network endpoints. Even if this application suffers from a
confused deputy vulnerability, an attacker could exploit it only to communicate
with the endpoints explicitly listed in the policy – a vast improvement over the
current unrestricted system.

Another security benefit of a fine-grained permission system is that it allows
the specification of a different permission set for each component. This fea-
ture is useful whenever the application contains third-party libraries that often
require different permissions than the core application. Consider, as an explana-
tory example, a gaming application that requires the Internet permission for
connecting to a game-related scoreboard and to include advertisement. This
application could be modified so that the game-specific component would be
able to access only the game-related network endpoint, while the advertisement
library would be able to access only the advertisement-related one. Note that this
use case is currently not supported by the Android permission model. Instead,
the current Android permission system grants the same set of permissions to an
application as a whole, and all components within the application consequently
enjoy the same privileges, thus violating the principle of least privilege.

Implications for Malicious Applications. A widely deployed finer-
permission system would place additional constraints on malicious applications
that declare excessive permissions. In fact, a malicious application would need
to either explicitly specify the domain name of the server under their control,
or ask for unconstrained network access: both options would make malicious
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applications less stealthy, as they would need to reveal part of their behav-
ior. The security policy declared by an application could also be used as an
additional feature to improve the accuracy of existing malware detection tools
(e.g., [1,11,17,38]).

Moreover, this explicit mapping between applications and their network end-
points would make information related to the domain names more useful: for
example, if a domain name is found to be part of malicious activities, it would
then be trivial to identify and flag all those applications that are somehow related
to that domain name.

Implications for End Users. A finer-grained permission system would allow
a security-conscious user to make more informed decisions about whether it is
safe to install a given Android application. These users would be more aware of
the risks associated with installing an application that requests unconstrained
network access, as such permission should be required only by very specific
types of applications (e.g., web browsers). Moreover, in case the application
would only require access to well-known domain names, the user would be able
to install and use the app with greater confidence. We believe that a finer-
grained permission system would benefit non-security-conscious users as well.
In fact, even if they might not be able to take informed decisions on whether
an application is suspicious or not, they would still (indirectly) benefit from the
advantages described above. One last aspect to be considered when extending the
permission system is that such extension might lead to confusion and, therefore,
misuse. However, we note that the new extension would enforce, by design, a
set of permissions that is stricter than the original one. Thus, in this context,
confusion and misusage would not have negative security repercussions.

As a final consideration, it is worth noting that many of these benefits can
be enjoyed only when the finer-grained policies are enforced by the end user or
by the system. In fact, in the alternative scenario where the developer herself is
in charge of enforcing a given security policy, one would need to assume a trust
relationship, which, in most cases, is not realistic.

7 Related Work

Recent research efforts have focused on the analysis and improvement of the
Android permission system. For example, Barrera et al. [5] observed that some
Android permissions are overly broad (included the Internet permission). Other
works aim to understand how Android applications use the current permission
system. For example, Felt et al. presented Stowaway [12], and by using it, they
found that many Android applications were over-privileged. Based on this obser-
vation, several research works [4,9,10,34] developed tools to rewrite applica-
tions to enforce finer-grained security policies. Other works proposed Apex [24],
AppFence [19], and SEAndroid [29], which provide additional privacy controls
for Android through user-defined security policies, data shadowing, and exfiltra-
tion blocking. More recently, researchers proposed ASM [18], a framework that
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provides a programmable interface for defining new reference monitors, Copper-
Droid [31], which relies on syscall monitoring to enforce finer-grained policies,
and DeepDroid [33], which aims to achieve the same goal by dynamic mem-
ory instrumentation. Our work is complementary to all these: in fact, the main
goal of this work is to shed light on the security and practicality implications of
finer-grained access control.

Several recent research works focus on discovering vulnerabilities within
benign Android applications [16,23,37]. All these works discover a variety of
serious vulnerabilities in real-world applications. These findings indicate that
Android developers are often not aware of the many peculiarities of the Android
framework, thus leading to severe vulnerabilities in real-world applications that,
in most of the cases, lead to a confused deputy problem. As we discussed in
Sect. 6, a finer-grained permission system would greatly minimize the threat
posed by such confused deputy vulnerabilities.

Felt et al. [13] evaluate two different application permission systems: the
Android permission system and the mechanism that is implemented for Chrome
extensions. As opposed to the current Internet permission on Android, the per-
mission system for Chrome allows the developer to narrowly define the resources
(URLs specified as regular expressions) an extension can communicate with. An
analysis of 714 popular Chrome extensions shows that for 60 % of the extensions,
the developers explicitly list a narrow set of domains their extension can interact
with. This study clearly shows that developers are willing to use a finer-grained
permission system, if available.

A work that is close, in principle, to ours is by Jeon et al. [21]. In their
work, the authors develop a simple analysis tool that aims to characterize how
Android applications use the Internet permission: for their work, the authors
developed a best-effort static analysis tool that first consults the application’s
string pool, it applies pattern matching on all the strings to extract those that
look like URLs, and it then performs basic constant propagation. On the one
hand, their overall goal is aligned with one of ours. In fact, as part of their
experiments, the authors perform a study to characterize how many network
resources are generally contacted by each application, with the goal of showing
that this number is usually small and that, consequently, the adoption of finer-
grained security policies is practical. On the other hand, the authors implemented
an approach based on a best-effort, simple static analysis that is affected, by
design, by false negatives. In particular, the authors specifically state that when
their tool cannot statically constrain a network sink, such sink is ignored, instead
of conservatively report a .* constraint, as our tool does.

This important limitation undermines the validity of their results, and leaves
the “Is a finer-grained permission system practical?” question unanswered. In
fact, consider, as an example, a browser application, which of course cannot be
statically constrained (as the network endpoints to be contacted are chosen at
runtime by the user). In this case, their tool would ignore all the unconstrained
network sinks, and their results would suggest that it is possible to statically
constrain the given application, which is incorrect. Instead, our approach would
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correctly return a .* constraint, the application under analysis would be cor-
rectly flagged as non-constrainable, and we would correctly conclude that a finer-
grained permission system would not be practical in that case. In summary, while
their results provide some interesting data, we believe they cannot be used to
understand the practicality of a finer-grained permission system.

Moreover, the authors themselves point out that, to address the limitation of
their work, one would need to perform inter-procedural analysis, modeling the
heap, and modeling the Android Intent system. The static analysis tool imple-
mented in our symbolic executor component precisely models all such aspects
and it is designed to return an over-approximation of all the possible values that
reach the sink methods.

8 Conclusion and Future Work

In this paper, we studied the security and engineering implications of a finer-
grained permission system in Android. In particular, we focused on the Internet
permission, and we developed several different analysis tools to shed light on the
following three aspects: (1) Is it practical to adopt fine-grained access control
mechanisms to real-world Android applications? (2) How can such a system
be integrated into the application development and distribution life-cycle with
minimal additional required effort? (3) What are the incentives and security
benefits in adopting them?

Our preliminary results suggest that a finer-grained Internet permission
would be practical. In fact, we found that applications in our sample typically
require access to only a small set of resources, and these resources are explicitly
referenced in the application’s code or configuration files. Finally, our findings
suggest that a finer-grained permission model for Android would entail a series
of security benefits without overburdening developers or end users.

While our work mainly focuses on the Internet permission, it would be inter-
esting to explore whether the adoption of a finer-grained permission system
would be practical to protect other types of resources, such as file-system access,
location information, or the user’s contact list. We believe this constitutes a very
interesting and important direction for future work.
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