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Abstract. Recent works on Control-Flow Integrity (CFI) have mainly
focused on Context-Sensitive CFI policies to provide higher security
guarantees. They utilize a debugging hardware feature in modern In-
tel CPUs, Processor Trace (PT), to efficiently collect runtime contextual
information. These PT-based CFI mechanisms offload the processing of
the collected PT trace and CFI enforcement onto idle cores. However,
a processor does not always have idle cores due to the commonly-used
multi-threaded applications such as web browsers. In fact, dedicating
one or more cores for CFI enforcement reduces the number of available
cores for running user programs. Our evaluation with a state-of-the-art
CFI mechanism (µCFI) shows that the performance overhead of a CFI
mechanism can substantially increase (up to 652% on a single-core pro-
cessor) when there is no idle core for CFI enforcement. To improve the
performance of µCFI, we propose to leverage a hardware monitor that
unlike PT does not incur trace processing overhead. We show that the
hardware monitor can be used to efficiently collect program traces (<1%
overhead) in their original forms and apply µCFI. We prototype the
hardware-monitor based µCFI on a single-core RISC-V processor. Our
analysis show that hardware-monitor based µCFI incurs, on average,
43% (up to 277%) performance overhead.
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1 Introduction and Motivation

With the introduction of Data Execution Prevention (DEP) [8], attackers changed
their focus from code injection to code-reuse attacks such as Return-Oriented
Programming (ROP) [35] and Jump-Oriented Programming (JOP) [12]. Control-
Flow Integrity (CFI) [7] is a security defense that aims to prevent these attacks
by drastically reducing the allowed code targets for each Indirect Control-Flow
Transfers (ICTs). Most CFI mechanisms consist of two phases [10]: an analy-
sis phase and an enforcement phase. The analysis phase generates a statically
constructed Control-Flow Graph (CFG), which approximates the allowed code
targets for each control-flow transfer. The enforcement phase ensures that all
the executed control-flow transfers follow valid paths in the CFG.
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The success of a CFI mechanism mainly relies on two metrics: performance
and security. Recent works focus on context-sensitive CFI [20, 24, 27, 28] to
provide stronger security guarantees than traditional context-insensitive CFI
[42,43]. Context-sensitive CFI mechanisms refine the CFG with additional con-
textual information. Unfortunately, introducing contextual information requires
additional processing time during the enforcement phase; thus, it increases the
overall performance overhead of the CFI mechanisms [20,21].

For efficient context-sensitive CFI enforcement, researchers have repurposed
an already deployed hardware feature in modern Intel CPUs, Processor Trace
(PT) [34]. PT has been designed for offline debugging and failure diagnosis
by capturing runtime target and timing information of ICT instructions (ret
and indirect jmp/call) [32]. Although several works [15, 26, 38] used PT in its
intended direction, recent works leveraged PT to efficiently collect contextual
information for online CFI enforcement [20,21,24,29].

Using PT for CFI enforcement is practical since it already exists in the com-
modity hardware. However, PT is not an optimal hardware feature for CFI
enforcement. Although PT efficiently collects traces (< 3% overhead [29]) in the
form of encoded packets at the hardware level, the decoding of these packets
(trace processing) performed with a software-level decoder is significantly slower
than the trace collection [21, 24, 29]. Unfortunately, any PT-based CFI mech-
anism requires this inefficient trace processing prior to validating ICT targets
at enforcement phase. To avoid the additional performance overhead, existing
PT-based CFI mechanisms [20, 21, 24, 29] offload the trace processing and ICT
validation onto idle cores1. However, commonly used applications (such as web
browsers/servers and games) are multi-threaded; thus, the processor will not
always have idle cores available for CFI enforcement. In fact, dedicating one
or more cores for CFI enforcement reduces the number of available cores for
running user applications.

In Figure 1, we show the performance impact of the number of cores on
CFI enforcement by using a state-of-the-art PT-based approach (µCFI [24])
for SPEC2006 benchmark suite [23]. The details of the experimental setup are
provided in Section 4. We evaluate PT-based µCFI using four configurations:
single-core (1-Core), two-core (2-Core), three-core (3-Core), and eight-core (8-
Core). 8-Core and 3-Core configurations incur similar performance overheads
since µCFI enforcement uses two additional idle cores (one for ICT validation
and one for trace processing). 2-Core and 1-Core results clearly show that PT-
based µCFI significantly impacts the performance of benchmarks if the processor
does not have any idle cores. On average, the performance overhead of µCFI
increases from 23% to 42% from 3-Core to 1-Core. Note that the benchmarks
generating more packets show higher degradation in performance since trace
processing requires more CPU time for these benchmarks. In the worst case,
µCFI incurs 652% overhead on 1-Core for h264ref, which is significantly higher
than 3-Core overhead (372%).

1 Throughout the paper, a “core” refers to a logical core.
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Based on the insights gained from our measurements, efficient context-sensitive
CFI policies should be enforced through a hardware feature which efficiently col-
lects contextual information without requiring trace processing. We show that
a programmable hardware monitor (PHMon [19]) with fine-grained configura-
tion capabilities can be used to efficiently implement a state-of-the-art context-
sensitive CFI mechanism (µCFI [24]) to defend against forward-edge attacks.
PHMon incurs only 1% trace collection overhead when collecting the contextual
information. Moreover, PHMon does not require trace processing during CFI en-
forcement as opposed to PT. In addition, we integrate a hardware-based shadow
stack [19] into PHMon-based µCFI to protect backward-edges as well.
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Fig. 1. Performance overhead (left y-axis) of PT-based µCFI for varying number of
cores and the packet count (right y-axis) for various SPEC2006 benchmarks.2

.

To evaluate our work, we implement a prototype of PHMon-based µCFI
interfaced with the RISC-V Rocket core [9] on an FPGA. We choose the RISC-
V Rocket core since its open-source nature allows us to evaluate our mechanism
using an actual implementation rather than merely a simulation. In summary,
we make the following contributions:

– We show that the performance impact of the trace processing on CFI be-
comes substantial if a processor does not have idle cores dedicated to software-
level decoding. According to our measurements, a state-of-the-art CFI mech-
anism (µCFI) incurs up to 652% overhead on a single-core processor.

– Based on the insights gained from our measurements, we propose to imple-
ment µCFI through a hardware monitor (PHMon [19]), which unlike PT
does not incur trace processing overhead.

– We evaluate PHMon-based µCFI on a single-core RISC-V processor. We
demonstrate that PHMon can efficiently collect traces in their original forms

2 The depicted performance overhead of some of the benchmarks differs from those
reported in the original work [24]. Section 4.1 provides an explanation for this per-
formance variation.
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with only 1% trace collection overhead on average. PHMon-based µCFI in-
curs 43% performance overhead, on average, to secure forward-edges.

– We show that PHMon-based µCFI is compatible with backward-edge CFI so-
lutions by integrating a shadow stack based on a prior work [19]. Integrating
shadow stack minimally affects the performance overhead (<1% additional
overhead) and allows us to secure both forward and backward edges.

The rest of the paper is organized as follows. Section 2 provides background.
Section 3 describes our design and implementation. Section 4 provides our eval-
uation. We discuss our implementation choices in Section 5 and present related
work in Section 6. Finally, Section 7 concludes our work.

2 Background

In this section, we provide the background on Intel PT [32], PHMon [19], and
µCFI [24].

2.1 Intel PT

PT is a debugging hardware feature in modern Intel CPUs [34]. PT collects
Change of Flow Instructions (CoFIs) that cannot be derived statically. Specifi-
cally, PT generates three types of packets while encoding the CoFIs: (1) TNT
packets to record 1-bit taken or non-taken information for each conditional
branch (i.e., jcc), (2) TIP packets to record the target addresses of indirect
branches (i.e., indirect jmp/call and ret), and (3) FUP packets for the source
addresses of signals and interrupts. PT uses an efficient encoding mechanism
while collecting the traces of a program. A software decoder can reconstruct
the control-flow of the program using the program binary and the PT packets
recorded during the execution. To reduce the number of generated packets, PT
can be configured to specify the address range, privilege level, and CR3 (page
table pointer) value to be monitored.

2.2 PHMon

PHMon [19] is a parallel decoupled monitor interfaced with the RISC-V Rocket
processor [9] via Rocket Custom Coprocessor (RoCC). A user can configure PH-
Mon through its software API and monitor the execution of processes. In Figure
2, we present a simplified overview of PHMon. As the processor executes instruc-
tions, PHMon receives the architectural state of the processor for the monitored
program in the form of a commit log from the writeback stage of the pipeline.
The commit log includes the instruction (inst), the PC (pc src), the next PC
(pc dst), memory/register address used in the instruction (addr), and the data
accessed by the instruction (data). Note that unlike PT, PHMon collects these
fields in their original forms and does not require software-decoding.

The incoming commit log is then provided to the Matching Units (MUs).
Each MU applies a set of distinct monitoring rules defined via the software
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interface of PHMon. The MU checks the commit log to detect the matches based
on these rules. For instance, a user can set an MU to detect specific instructions
(e.g., ret, jalr) or instructions at specific PC values. Upon detecting a match,
an MU sends a matching packet to the Action Unit (AU). The AU consists
of a queue, Config Units (CFUs), an Arithmetic and Logical Unit (ALU), a
local Register File, and a Control Unit. The AU stores the incoming matching
packets in the queue. Each MU is associated with a CFU, where the user-defined
instructions are stored for the corresponding match. The AU executes these user-
defined instructions through either hardware operations (i.e., ALU or memory
read/write operations) or an interrupt handled by the Operating System (OS)
running on the RISC-V core.
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Fig. 2. A simplified overview of the PHMon [19] architecture: PHMon receives
a commit log from a processor. It processes the commit log based on the user-defined
rules and performs the follow-up operations such as an interrupt.

2.3 µCFI

Although context-sensitive CFI policies significantly reduce the allowed code
targets for each ICT, most of them [20, 27, 40] are unable to provide a unique
valid target for each ICT. As an example, we provide a code snippet (inspired by
the original work [24]) in Listing 1.1. In this example, the value of the function
pointer (func ptr) is specified by a variable uid that indexes into the array
func ptr arr. Since the index value (uid) is non-constant and resolves at run-
time, most context-sensitive CFI policies identify all array elements (A, B, and C)
as valid targets. On the contrary, µCFI [24] (a state-of-the-art context-sensitive
CFI) ensures that each ICT instruction has one Unique Code Target (UCT) at
each step of the program execution. µCFI achieves the UCT property by identi-
fying constraining data (c-data) from the program source code and using c-data
as context when enforcing CFI. c-data refers to any non-constant operand (uid
in the example) of a sensitive instruction, where an instruction is considered sen-
sitive if it is involved in a function pointer calculation (line 3-4 in the example).
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For efficient CFI enforcement, µCFI uses PT when collecting c-data and ICT
targets.

1 void A() ; void B() ; void C() ;
2 void handleReq ( int uid ) {
3 void (* f u n c p t r a r r [ 3 ] ) ( ) = {&A, &B, &C} ;
4 void (* f unc p t r ) ( ) = f un c p t r a r r [ uid ] ;
5 (* f unc p t r ) ( ) ;
6 }

Listing 1.1. Code snippet for describing µCFI.

In Figure 3, we present the overview of µCFI enforcement using PT (PT-
based µCFI). µCFI consists of a compiler (µCFI-compiler) and a dynamic moni-
tor (µCFI-monitor). The µCFI-compiler instruments the program source to iden-
tify c-data and generates an instrumented binary. During the execution of the
instrumented binary, PT writes the encoded traces into its trace buffer. When
the trace buffer reaches capacity, the kernel driver (PT-Driver) copies the trace
buffer into a kernel buffer. µCFI-monitor obtains the encoded PT trace of the
instrumented program from the kernel buffer by signaling PT-Driver, decodes
the PT trace in its trace decoder unit, and validates the ICT targets in the
points-to analyzer unit.

Source
Code

μCFI-compiler

CPU

InterruptOS
PT-Driver

μCFI Region
MEM

In
te

l P
TMemory

Write

User-space

Instrumented
Binary

μCFI-monitor
trace

decoder
points-to
analyzer

Fig. 3. µCFI [24] design overview: µCFI consists of two components: a compiler
(µCFI-compiler) that instruments the program to identify c-data, and a runtime mon-
itor (µCFI-monitor) to validate ICTs.

To guarantee the protection of forward-edges, µCFI-monitor requires collect-
ing c-data, the target of indirect calls3, and the target of sensitive rets from

3 Since the current µCFI implementation does not protect indirect jmps, µCFI-
compiler converts each indirect jmp to a conditional branch.
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the instrumented program. Note that µCFI-monitor requires the target value of
some of the returns (only sensitive ones) for forward-edge protection since they
are involved in the function pointer calculation. More specifically, a return is
“sensitive” if its corresponding function contains at least one sensitive instruc-
tion. For backward-edge protection, the µCFI-compiler instruments the program
to implement a software-based shadow stack based on a prior work [16].

3 PHMon-Based µCFI

PHMon-based µCFI is a hardware-assisted context-sensitive CFI enforcement.
There are two main advantages of leveraging PHMon when enforcing µCFI. First,
PHMon collects the program traces in their original forms. Therefore, it does
not introduce trace processing overhead when enforcing CFI. Second, PHMon
offers a variety of configuration capabilities. This feature allows PHMon to easily
collect both contextual data and ICT targets.

3.1 Design

In Figure 4, we show the overview of µCFI enforcement using PHMon (PHMon-
based µCFI). First, we explain how we leverage PHMon to protect forward-edges.
As a first step, we compile a program with a modified version of the µCFI-
compiler (detailed in Section 3.2) and generate the instrumented binary. Prior
to the execution of this binary, PHMon is programmed to collect the required
information (i.e., c-data, the target of indirect calls, and the target of sensitive
returns) for µCFI enforcement. While the processor executes the binary, PHMon
collects the commit log through RoCC. Then, PHMon applies the user-defined
monitoring rules to the commit log to determine if the commit log includes any
information for µCFI enforcement. PHMon writes the collected information from
the binary into a trace buffer depicted as µCFI Region in Figure 4. Whenever
the trace buffer becomes full, PHMon raises an interrupt. Our kernel module
(PHMon-Driver) copies the collected trace buffer to a kernel buffer and informs
the OS such that the OS can resume the execution of the instrumented binary.
The PHMon-Driver is also in charge of providing the collected traces to the µCFI-
monitor as the µCFI-monitor performs the enforcement of the ICT instructions.

We protect backward-edges by implementing a shadow stack. Delshadtehrani
et al. [19] already showed that PHMon can be used to implement a shadow stack
(PHMon-based shadow stack). Instead of implementing a software-only shadow
stack like PT-based µCFI, we implement PHMon-based shadow stack in our
prototype for completeness. We program PHMon to validate the return targets
by monitoring call/ret instructions (details provided in Section 3.2). In case of
a call instruction, PHMon stores the new return address in a shared memory
space (Shadow Stack in Figure 4). Whenever the function returns, PHMon com-
pares the return address with the one stored in the Shadow Stack to validate
the return target.
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Fig. 4. Design Overview of PHMon-based µCFI: PHMon writes the collected
program traces into µCFI Region and Shadow Stack in memory for forward-edge pro-
tection and backward-edge protection, respectively. µCFI-monitor fetches the traces
via PHMon-Driver and enforces CFI.

One of the main differences between protecting forward and backward edges
is the enforcement mechanism. For forward-edge protection, PT-based µCFI
stores the collected packets in trace buffers and provides the buffer content to
the software monitor by raising an interrupt. We keep our PHMon-based µCFI
implementation similar to PT-based µCFI to fairly represent the architectural
benefit of using PHMon. Specifically, PHMon stores the necessary information
in a memory buffer and provides this information to the software monitor by
triggering an interrupt. Here, we use PHMon as a trace collection mechanism
(similar to PT) by leaving the ICT validation to the software monitor. For a
shadow stack, PHMon validates the ICT targets at the hardware level by using
a sequence of ALU instructions. Therefore, PHMon validates the ICT targets
without requiring a software monitor. Note that we implement the shadow stack
to show that our PHMon-based protection mechanism for forward edges is com-
patible with a backward-edge protection mechanism. The performance benefit
of this work arises from the forward-edge protection mechanism.

3.2 Implementation

To enforce µCFI using PHMon, we applied changes to both the µCFI-compiler
and µCFI-monitor. We used the same front-end IR-level instrumentation (LLVM
3.6) used by the original µCFI-compiler [2]. This front-end instrumentation is
in charge of identifying c-data. We used our RISC-V back-end instrumenta-
tion to collect c-data, indirect call targets, and sensitive return targets (detailed
later in this section) using PHMon. At the release of LLVM 3.6, RISC-V was
not a supported architecture. Therefore, we used a newer version (LLVM 7.0)
for the back-end instrumentation. We removed the code that implements the
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trace decoder unit (color-coded with red in Figure 3) from the µCFI-monitor
since PHMon does not perform any encoding while collecting the traces from
the binary. We applied the necessary changes to allow the µCFI monitor to
communicate with the PHMon-Driver. We used LLVM 7.0 to cross-compile the
µCFI-monitor [3] for RISC-V. Overall, we aim to minimize the software-level
implementation differences between PT-based µCFI and PHMon-based µCFI,
so that we can fairly represent the architectural benefit of using PHMon.

We slightly modified the Linux kernel to support PHMon-based µCFI. Since
the frequent suspension of the protected program increases the performance
overhead, µCFI suspends the protected program only at security-sensitive sys-
tem calls to validate the target of the collected ICTs. Similar to many prior
works [13, 20, 24, 40], we modify our kernel to suspend the execution of the pro-
tected program at the following security-sensitive system calls: mmap, mremap,
remap file pages, mprotect, execve, execveat, sendmsg, sendmmsg, sendto,
and write.

As we explained in Section 2.2, PHMon maintains the incoming match pack-
ets in a queue prior to executing the user-defined instructions stored in the CFU.
When the queue gets full, an obvious option for PHMon [19] is to stall the fetch
stage of the Rocket core’s pipeline until PHMon processes all the packets waiting
in the queue. However, this is not the proper way of handling the queue problem
for PHMon-based µCFI since match packets frequently require an action that
should be processed by the processor, i.e., interrupt. Instead of stalling the pro-
cessor, we modified PHMon to raise an interrupt handled by the OS whenever
the queue becomes full. We then perform busy-waiting in the interrupt handler
until all the match packets in the queue are processed. To provide full protection
against control-flow attacks, in addition to leveraging PHMon for forward-edge
protection (PHMon-based µCFI), we also use it for backward-edge protection
(PHMon-based shadow stack). In total, we program 5 MUs to simultaneously
implement PHMon-based µCFI and PHMon-based shadow stack. In the rest of
this section, we explain about programming PHMon for forward-edge as well as
backward-edge protection.

Programming PHMon for Forward-edge Protection For µCFI forward-
edge protection, we use three MUs: one MU for indirect calls, one MU for sen-
sitive returns, and one MU for c-data collection. We use two registers from the
Register File of PHMon to store the base address and the current pointer of
µCFI Region.

Indirect calls: To collect indirect call targets with PHMon, we replace each
indirect call in the program with an indirect jump to a special function (ICF as
shown in Listing 1.2). The ICF loads the indirect call target into a temporary
register (t1) from a fixed memory address, and jumps to the target address stored
in t1. To obtain the target address during the instrumented binary execution,
we use one MU which compares the pc src of the collected commit log with the
PC value of the load instruction (0x104b4 in Listing 1.2) in the ICF. This PC
value can be statically obtained by disassembling the binary. Whenever PHMon
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detects a match, it writes the content of data field of the commit log (this field
holds the t1 value) to the trace buffer allocated for µCFI.

Sensitive returns: As explained in Section 2, the target address of each
sensitive return is required by the µCFI-monitor for forward-edge protection. To
obtain the target values for sensitive returns, we insert a mv t1,ra instruction
before each sensitive return instruction in the application. This instruction copies
the return address value to the temporary register t1. PHMon can then simply
collect the value of t1. To do this, we use one MU to detect the execution of
the mv t1,ra instruction. Whenever the inst value in the incoming commit log
matches with the machine code of the mv t1,ra, PHMon writes the content of
data field of the commit log (t1 in this case) into the trace buffer allocated for
µCFI.

c-data Collection: To collect c-data, we instrument the program to call
a special write cdata function as shown in Listing 1.3. The program calls the
write cdata function to send c-data to the µCFI-monitor. The write cdata

loads the value of c-data into a temporary register (t1) from a fixed memory ad-
dress, and immediately returns. We program one MU to monitor the ld instruc-
tion in the write cdata. The MU compares the pc src value of the incoming
commit logs with the PC value of the ld instruction (0x104bc in Listing 1.3).
Whenever PHMon detects a match, PHMon writes the content of data field (t1
in this case) into the trace buffer allocated for µCFI.

1 #load i n d i r e c t c a l l t a r g e t to t1
2 <ICF>:
3 104b4 : ld t1 ,−728(gp )
4 104b8 : j r t1

Listing 1.2. RISC-V assembly code of the
function ICF

1 #load c−data value in to t1
2 <write cdata>:
3 104bc : ld t1 ,−720(gp )
4 104 c0 : r e t

Listing 1.3. RISC-V assembly code of the
function write cdata

Programming PHMon for Backward-edge Protection We implement a
shadow stack (similar to original work [19]) using PHMon to demonstrate the
compatibility of PHMon-based µCFI with backward-edge CFI mechanisms. We
use one MU to monitor calls and one MU to monitor returns. We use two registers
from the Register File of PHMon to store the base address of the Shadow Stack
and the Shadow Stack pointer. We program PHMon to write the original return
addresses into a trace buffer (Shadow Stack in Figure 4) when a call instruction is
executed. Upon a return instruction, PHMon pops a value from the shadow stack
and compares it with the current return value. PHMon performs the comparison
directly on hardware using its ALU unit. In case of a mismatch, PHMon raises
an interrupt and the OS terminates the process.

4 Evaluation

We evaluated our PHMon-based µCFI system to answer the following questions:
(1) What is the execution time overhead of our source code instrumentation to
leverage PHMon?
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Table 1. Microarchitectural details of Intel processor, Rocket core and PHMon.

Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz

Pipeline out-of-order
L1 instruction cache 32 KB, 8-way set-associative
L1 data cache 32 KB, 8-way set-associative
L2 cache 256 KB, 4-way set-associative
L3 cache 12 MB, 16-way set-associative

Rocket Core @ 25MHz

Pipeline 6-stage, in-order
L1 I Cache 16 KB, 4-way set-associative
L1 D cache 16 KB, 4-way set-associative
Register file 31 entries, 64-bit

PHMon

MUs 5
Local Register File 6 entries, 64-bit
Match Queue 1,024 entries, 129-bit
Action Config Table 16 entries

(2) How much overhead does PHMon incur to collect the program traces?
(3) How much overhead does PHMon-based µCFI incur when protecting forward
edges only?
(4) What is the performance degradation of integrating a backward-edge CFI
mechanism into PHMon-based µCFI?

4.1 Evaluation Framework

To evaluate the performance of PT-based µCFI for systems with varying core
numbers, we used an Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz machine run-
ning Ubuntu 16.04. The microarchitectural details are provided in Table 1. We
run PT-based µCFI on four different configurations; 1-Core, 2-Core, 3-Core,
and 8-Core. As discussed in Section 1, in Figure 1, we reported the perfor-
mance overhead of µCFI for these four configurations. In addition, we reported
the packet count collected by PT for enforcing µCFI. We used the open-source
µCFI-monitor [3], µCFI-compiler [2], and µCFI-kernel [4]4 repositories. By us-
ing these three repositories with no modifications, we successfully reproduced
the results (within 1% standard deviation) reported in the original work [24] on
an 8-Core processor. However, we observed that µCFI-kernel does not suspend
the execution of the protected program for three of the security-sensitive system
calls (mremap, remap file pages, and write) reported in the paper [24]. Hence,
we modified µCFI-kernel to include these missing system calls. This modification
lead to higher performance overhead of some benchmarks (i.e., +9% for sjeng,
+84% for astar, and +234% for h264ref) compared to the overheads reported

4 µCFI-kernel is the modified Linux kernel which supports µCFI.
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in the original work [24]. In our analysis, we ran each benchmark three times
and calculated the average (geometric mean) overhead. The standard deviation
in our measurements is less than 1%. We also provide the error bars for each
benchmark in Figure 1.

To measure the PHMon-based µCFI performance overhead, we compared
PHMon-based µCFI with the baseline implementation of the Rocket processor.
The microarchitectural parameters of Rocket core and PHMon are listed in Ta-
ble 1. For both experiments, Rocket core includes a 16K L1 instruction cache
and a 16K L1 data cache without an L2 or an L3 cache5. Due to the limitation
of our FPGA-base evaluation platform, we could run Rocket core with maxi-
mum frequency of 25 MHz for both experiments. We modified the open-source
PHMon architecture [1] interfaced with the 6-stage in-order RISC-V Rocket
processor [9] via RoCC interface. PHMon-based µCFI is prototyped on a Xilinx
Zynq Zedboard [33], running a modified version of RISC-V Linux (v4.20) kernel.
For both experiments, i.e., the baseline and PHMon-based µCFI, we setup the
Rocket processor with the same configurations including a 16K L1 instruction
and data cache. We performed each experiment three times and calculated the
average value. All standard deviations were below 1%. To show the stability of
our measurements, we include the error bars as well (both in Figure 5 and 6).

During development, we observed that the µCFI-monitor validates the traces
much slower than PHMon’s trace collection speed. Hence, the collected traces
accumulated in the kernel. Due to the limited available memory in our evaluation
framework, the accumulated traces eventually resulted in an out of memory
situation for some of the benchmarks. To circumvent this issue when we reach
the memory limit, PHMon-Driver suspends the protected program until all the
collected traces are processed by the µCFI-monitor. Note that this increases the
duration that we suspend the process and potentially increases the performance
overhead of PHMon-based µCFI. In an evaluation framework with more available
memory, PHMon-based µCFI could outperform our current prototype.

4.2 Evaluation Benchmarks

We calculated the runtime overhead of PT-based µCFI (Figure 1) for C/C++
applications using the ‘test’ workload of SPEC2006 benchmark suite [23]. We
could not obtain results (similar to original work [24]) for gcc, dealII, povray,
omnetpp and xalancbmk since PT loses packets at the hardware level, which
manifests as a segmentation fault in the µCFI-monitor. Additionally, in our
evaluation framework, soplex caused a segmentation fault in the µCFI-monitor.
We did not include perlbench in our evaluation since this benchmark frequently
uses the fork system call. The heavy usage of fork puts more pressure on a
single-core compared to an 8-Core; hence, using this benchmark in our evaluation
framework misrepresents the performance impact of the trace processing for
µCFI enforcement. Note that we represent the dniwog input as a separate data

5 At time of our evaluation, Rocket core was not supporting L2 and L3 cache.
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point for gobmk since its packet number is drastically higher than the remaining
data points.

To evaluate PHMon-based µCFI on a Rocket processor, we used 8 out of
12 benchmarks which successfully run with PT-based µCFI. Unfortunately, we
could not run lbm, namd, and gobmk with a PHMon-based µCFI due to RISC-V
cross-compilation errors using LLVM 7.0. We could not run mcf and perlbench

due to the limited memory on our FPGA. Similarly, sjeng was also too large
for our FPGA. However, by reducing the value of TTSize (which controls the
size of one of the hashtables in sjeng) to 3000 in sjeng’s source code, we were
able to run it with PHMon-based µCFI. For a fair evaluation, we also report the
overhead of PT-based µCFI for sjeng using TTSize=3000 in Figure 6.

4.3 Evaluation Results

Figure 5 depicts the performance impact of the source code instrumentation to
collect program traces (instrumentation overhead) using PHMon. We measured
the instrumentation overhead of the benchmarks by comparing the execution
time of a baseline program with the instrumented program for µCFI enforcement.
Our results demonstrate that the code instrumentation (Instru in Figure 5),
including our RISC-V back-end passes to transfer c-data and ICT targets to
the µCFI-monitor, incurs very low performance overhead (1.7% on average).
Note that the instrumentation overhead is higher (peak 5%) for the benchmarks
generating more packets such as sjeng, astar, and h264ref.
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Fig. 5. Performance overhead (left y-axis) of the instrumented binary (Instru) and
trace collection (TC) overhead of PHMon. We use the right y-axis to show the packet
count for each benchmark.

To demonstrate that PHMon can efficiently collect contextual information,
we measured the trace collection overhead of PHMon (TC in Figure 5). To do
this, we ran the instrumented benchmarks under the monitoring of PHMon
without µCFI enforcement. Whenever the trace buffer of PHMon became full,
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PHMon triggered an interrupt and returned from the interrupt handler without
processing the trace buffers. Note that Instru+TC overhead also includes the
instrumentation overhead. Our results show that PHMon can efficiently collect
program traces (<1% overhead on average and 4% peak). Note that PHMon’s
trace collection overhead is maximum of 4% even for benchmarks generating
more packets such as sjeng, astar, and h264ref.
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Fig. 6. Performance overhead of PHMon-based µCFI, PHMon-based µCFI + Shadow
Stack, and PT-based µCFI. We use the right y-axis for providing the packet count for
each benchmark.

Using Figure 6, we first depict the performance overhead of PHMon-based
µCFI and PT-based µCFI when protecting only the forward-edges. Both PHMon-
based and PT-based µCFI perform efficiently for benchmarks such as milc,
sphinx3, hmmer, bzip2, and libquantum that generate fewer packets. PHMon-
based µCFI introduces 88%, 146%, and 274% overhead for packet-intensive
sjeng, astar, and h264ref benchmarks, respectively. For these benchmarks,
PT-based µCFI results in 131%, 207%, and 652% performance overhead, re-
spectively. Since PHMon-based µCFI does not incur trace processing overhead,
its performance bottleneck mainly arises from the ICT validation performed by
the µCFI-monitor. For PT-based µCFI, there is an additional trace processing
overhead prior to ICT validation.

In Figure 6, we also show the full PHMon-based CFI protection overhead.
The full protection secures forward-edges and backward-edges with PHMon-
based µCFI and PHMon-based shadow stack, respectively. Adding the shadow
stack increases the performance overhead of PHMon-based µCFI by less than
1% on average (peak 3%) and allows us to fully protect the programs against
control-flow hijacking attacks.

The original work [19] reports the power and area overhead of PHMon with
varying number of MUs. Based on those results, PHMon-based µCFI using three
MUs incurs 6.5% power and 15.1% area overhead. The full protection requires
five MUs, which results in 9.2% power and 18.4% area overhead.
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5 Discussion

In this section, we discuss some of our design choices when implementing µCFI
using PHMon. We specifically discuss aspects of our source code instrumentation
(Section 3.2) to protect forward-edges.

When enforcing µCFI using PHMon, we aim to minimize the software-level
implementation differences with the original PT-based µCFI work so that we
can fairly represent the architectural benefit of using PHMon. Therefore, similar
to PT-based µCFI, we collected indirect call targets by redirecting the control-
flow to the special function (ICF as shown in Listing 1.2). We initially aimed
to replace indirect calls with direct calls to ICF similar to PT-based µCFI tar-
geting x86 64. Unfortunately, direct calls in RISC-V can target a limited range
(± 1 MiB) since the offset is encoded into the operand of the the instruction
and that operand is only 20 bits. Therefore, we could not replace each indirect
call with a direct call in RISC-V, especially for benchmarks with bigger code
size, and had to use indirect jumps instead. Unfortunately, we do not provide
additional checks to ensure that these indirect jumps are not subverted by an
attacker at run-time. However, we could easily avoid these indirect jumps in the
binary by instrumenting the code with “custom” instructions. The RISC-V ISA
allows adding a custom ISA extension. We could insert a custom instruction that
stores the target address of an indirect call in a register before each indirect call
instruction. This way, we could obtain indirect call targets without redirecting
indirect calls to the ICF using indirect jumps. We redirect indirect calls to ICF
using indirect jumps instead of inserting custom instructions to have a similar
implementation with PT-based µCFI.

We collect c-data by monitoring the ld instruction at a fixed address (see
Listing 1.3). We obtain the PC value of ld instruction using a static analy-
sis. Our design choice aligns with PT-based µCFI which generates packets only
for fixed addresses. To minimize the software-level implementation differences,
we implement PHMon-based µCFI in a similar way. Unfortunately, this design
choice can result in some portability issues. For instance, it can cause problems
with randomization mechanisms like ASLR. In fact, this issue could also easily
be addressed by inserting a custom instruction that will help us store the con-
straining data in a register. This way, we could program PHMon to monitor the
custom instruction rather than a specific program counter. Since the instruction
machine code is the same regardless of the program layout, µCFI enforcement
would be more portable than our current implementation.

We insert mv t1,ra instruction before each sensitive return to collect the
return value using PHMon. We choose the mv t1,ra instruction since none of the
SPEC2006 benchmarks contains it when compiled without our back-end pass.
We acknowledge that the proper way to collect sensitive return values would
be to insert a custom instruction before each sensitive return. For instance, the
custom instruction could store the return value in a register. We could program
PHMon to monitor this custom instruction and write the content of the register
value into memory. This way, we could ensure that the original program does
not contain the inserted instruction unless it enforces µCFI.
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6 Related Work

Our PHMon-based µCFI approach is closely related to works which use hard-
ware support for CFI enforcement. We divide these hardware mechanisms into
two categories: the ones already deployed in modern processors, and the new
hardware designs proposed for future deployment.

6.1 Reusing Deployed Hardware Features

CFI mechanisms that rely on existing hardware features are practical since they
can be readily deployed on commodity hardware. Unfortunately, existing hard-
ware features have several drawbacks since the hardware features are not de-
signed with security in mind. Specifically, CFIMon [42] utilizes Branch Trace
Store (BTS) [34] to enforce CFI. However, BTS incurs high performance over-
heads (20×-40×) [40]. To reduce the overhead, several works [13,31,40] use Last
Branch Record (LBR) [34] for CFI enforcement. LBR can record the last N exe-
cuted branches where N can be 4, 8, 16, or 32 depending on the processor model.
For instance, kBouncer [31] aims to protect backward-edges from ROP attacks
using LBR. kBouncer checks the control flow of the program whenever the pro-
gram makes a security sensitive system call. ROPecker [13] extended kBouncer’s
approach by emulating the potential program execution with the help of a stat-
ically generated ROP gadget database. The key idea is to detect ROP gadgets
which can possibly be stitched together towards a malicious purpose. Due to
LBR’s branch recording capacity, kBouncer and ROPecker are shown to be vul-
nerable to history flushing attacks [11]. This attack initially cleanses any evidence
of the ROP attack in the short-term history and then creates a view of history
that the defense will not classify as an attack. Another LBR-based CFI mecha-
nism (PathArmor [40]) raises the bar for history flushing attacks thanks to its
context-sensitive CFI policy. PathArmor uses LBR to record the last 16 indirect
branches and direct calls as the context. Unfortunately, PathArmor checks less
than 0.1% of total returns on NGINX [21] for backward-edge protection because
of the LBR’s limited trace recording capability.

CFIGuard [41] overcomes the limited size of LBR by combining it with the
Performance Monitoring Unit. CFIGuard raises an interrupt whenever LBR
buffer is full. However, triggering an interrupt every 16 branches can significantly
increase the performance overhead, especially for CPU-intensive applications.
OS-CFI [28] implements an origin sensitive context-sensitive CFI mechanism to
reduce the attack surface for C-style indirect calls and C++ virtual calls. For
the former, the origin is the the most recently updated code location. For the
latter, the origin refers to code location where receiving object’s constructor
is called. OS-CFI uses Intel MPX for efficiently storing and retrieving the ori-
gin of the code pointers. OS-CFI uses inline reference monitors to collect and
maintain the contextual information. Since these monitors extensively use mem-
ory to store the temporary data for searching hash table, they are vulnerable
to race conditions for a short interval. To protect the integrity of inline refer-
ence monitors, OS-CFI utilizes the transactional memory (Intel TSX). LMP [25]
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uses MPX for protecting backward-edges by implementing a shadow stack via
program source instrumentation. Unfortunately, Intel MPX is not adopted by
industry widely due to the considerable performance overhead and compatibility
issues [30]. MPX is not available on future Intel processors [5].

Several researchers also leverage Intel PT for CFI enforcement. PT can record
higher number of indirect branches than LBR, which allows researchers to enforce
more precise CFI mechanisms. For instance, PT-CFI [22] enforces backward-edge
CFI by implementing a shadow stack for the COTS binaries based on the PT
traces. Griffin [21] implements three different CFI policies over unmodified bi-
naries and shows the tradeoff between precision and performance. Also, Griffin
shows the performance impact of the number of kernel threads on the speed of
buffer trace processing and CFI enforcement, which goes up from ∼%8 to ∼%19
on NGINX as we increase the number of threads from one to six. FlowGuard [29]
attempts to minimize the performance overhead of PT with its fuzzing-assisted
approach. The key idea is to collect program traces prior to the program exe-
cution by using a fuzzer and minimize the overhead of expensive software-level
decoding of PT. Dynamic analysis-based approaches [20, 24] increase the preci-
sion of CFI by obtaining additional information from the program at runtime,
but at the expense of introducing higher performance overhead. More specif-
ically, PITTYPAT [20] implements a path-sensitive CFI policy, which verifies
the whole executed control path of the program. µCFI uses constraining data to
provide unique code target for each ICT.

PHMon-based µCFI enforces CFI without weakening any security guaran-
tees. As opposed to PT-based µCFI, PHMon-based µCFI can collect the orig-
inal form of the data and does not require software-level decoding of collected
information when validating control-flows. Also, PHMon-based µCFI is not vul-
nerable to history flushing attacks as opposed to LBR-based CFI mechanisms.

6.2 New Hardware Designs

Several works propose new hardware designs to enforce CFI. For instance, HAFIX
[17] proposes a fine-grained backward-edge CFI system which confines function
returns to active call sites. It assigns unique labels to each function by instru-
menting the program source with compiler support and enforces the CFI policy
directly on hardware for efficiency. Unfortunately, recent work shows that HAFIX
is vulnerable to Back-Call-Site attack [39] and cannot fully protect backward-
edges. Also, it is vulnerable to any forward-edge attacks. HCFI [14] can fully
protect backward-edges by implementing a shadow stack. Additionally, it im-
plements the forward-edge CFI policy discussed by Abadi et al. [7]. Similar to
HAFIX, HCFI also modifies the ISA and introduces new instructions to provide
CFI capability to the core. Sullivan et al. [37] enhance HAFIX by supporting
forward edge protection. Although both Sullivan et al. [37] and HCFI implement
efficient forward-edge CFI policies directly on hardware, unlike µCFI, they are
still unable to provide a unique target for each ICT and cannot fully protect
against forward edge attacks. Intel announced its hardware support for CFI in
the form of CET [6]. CET offers strong backward-edge protection with a shadow
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stack. Unfortunately, the forward-edge policy protection (i.e., Indirect branch
tracking) is coarse-grained and vulnerable to advanced attacks such as JOP [12]
and COOP [36]. Nile [18] and PHMon [19] offer full protection against backward-
edge attacks by implementing a shadow stack with less than 2% performance
overhead. However, these two works cannot protect against forward-edge attacks.
This work complements PHMon by offering forward-edge protection.

7 Conclusion

In this work, we show that the hardware features originally designed for debug-
ging on Intel processors are not efficient when used for enforcing CFI. Specifically,
Intel PT-based CFI mechanisms put high pressure onto idle cores in processor
since they require expensive software-level decoding prior to ICT enforcement.
All of these PT-based mechanisms assume that idle cores are readily available
for CFI enforcement, which is not necessarily the case considering the multi-
threaded nature of common applications. We evaluate the performance impact
of the trace processing on PT-based CFI enforcement and show that a state-
of-the-art CFI mechanism (µCFI) incurs up to 652% overhead on a single-core
compared to 372% overhead on a 3-Core processor. When enforcing CFI, we
leverage a programmable hardware monitor (PHMon) which does not introduce
trace processing overhead unlike PT. Our PHMon-based µCFI mechanism in-
curs 43% performance overhead, on average, to secure forward edges. We also
integrate a hardware-based shadow stack to fully secure the program including
backward-edges. Adding the shadow stack increases the performance overhead
of PHMon-based µCFI by less than 1% on average.
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