
A Solution for the Automated Detection
of Clickjacking Attacks

Marco Balduzzi
Institute Eurecom
Sophia-Antipolis

balduzzi@eurecom.fr

Manuel Egele
Technical University Vienna

pizzaman@seclab.tuwien.ac.at

Engin Kirda
Institute Eurecom
Sophia-Antipolis

kirda@eurecom.fr

Davide Balzarotti
Institute Eurecom
Sophia-Antipolis

balzarotti@eurecom.fr

Christopher Kruegel
University of California

Santa Barbara
chris@cs.ucsb.edu

ABSTRACT

Clickjacking is a web-based attack that has recently received
a wide media coverage. In a clickjacking attack, a malicious
page is constructed such that it tricks victims into clicking
on an element of a different page that is only barely (or not
at all) visible. By stealing the victim’s clicks, an attacker
could force the user to perform an unintended action that is
advantageous for the attacker (e.g., initiate an online money
transaction). Although clickjacking has been the subject
of many discussions and alarming reports, it is currently
unclear to what extent clickjacking is being used by attackers
in the wild, and how significant the attack is for the security
of Internet users.

In this paper, we propose a novel solution for the auto-
mated and efficient detection of clickjacking attacks. We
describe the system that we designed, implemented and de-
ployed to analyze over a million unique web pages. The
experiments show that our approach is feasible in practice.
Also, the empirical study that we conducted on a large num-
ber of popular websites suggests that clickjacking has not yet
been largely adopted by attackers on the Internet.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information

Systems]: Security and Protection

General Terms

Security, Design, Experimentation

Keywords

Clickjacking, Web Security, ClickIDS, HTML IFRAME, CSS,
Javascript, Browser Plug-In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’10 April 13–16, 2010, Beijing, China.
Copyright 2010 ACM 978-1-60558-936-7 ...$10.00.

1. INTRODUCTION
Web applications have evolved from simple collections of

static HTML documents to complex, full-fledged applica-
tions containing hundreds of dynamically generated pages.
The combined use of client and server-side scripting allows
developers to provide highly sophisticated user interfaces
with the look-and-feel and functionalities that were previ-
ously only reserved to traditional desktop applications. At
the same time, many web applications have evolved into
mesh-ups and aggregation sites that are dynamically con-
structed by combining together content and functionalities
provided by different sources. This rapid evolution, com-
bined with the increasing amount of sensitive information
that is now accessible through the web, has brought a corre-
sponding increase in the number and sophistication of web-
based attacks and vulnerabilities.

The same origin policy, first introduced in Netscape Nav-
igator 2.0 [31], is still the keystone around which the entire
security of cross-domain applications is built. The main idea
is to implement a set of mechanisms in the browser that
enforce a strict separation between different sources. This
separation is achieved by preventing the interaction between
pages that are from different origins (where the origin of a
page is usually defined as a combination of the domain name,
the application layer protocol, and the TCP port number).
The same origin policy, hence, can guarantee that cookies
and JavaScript code from different websites can safely co-
exist in the user’s browser.

Unfortunately, attackers, often driven by a flourishing un-
derground economy, are constantly looking for exceptions,
browser bugs, or corner cases to circumvent the same origin
checks with the aim of stealing or modifying sensitive user
information. One of these techniques, previously known as
UI Redress [40], has recently gained increasing attention un-
der the new, appealing name of clickjacking. Since Robert
Hansen and Jeremiah Grossman announced a talk on the
topic at OWASP AppSec 2008 [20], there has been a flood
of news, discussions, and demonstrations on clickjacking.

The idea behind a clickjacking attack is simple: A mali-
cious page is constructed such that it tricks users into click-
ing on an element of a different page that is only barely, or
not at all noticeable. Thus, the victim’s click causes uninten-
tional actions in the context of a legitimate website. Since
it is the victim who actually, but unknowingly, clicks on the

135

element of the legitimate page, the action looks “safe” from
the browser’s point of view; that is, the same origin policy
is not violated.

Clickjacking attacks have been reported to be usable in
practice to trick users into initiating money transfers, click-
ing on banner ads that are part of an advertising click fraud,
posting blog or forum messages, or, in general, to perform
any action that can be triggered by a mouse click.

Beside several proof-of-concept clickjacking examples that
have been posted on security-related blogs, it is not clear to
what extent clickjacking is used by attackers in practice.
To the best of our knowledge, there has only been a single,
large-scale real-world clickjacking attack, where the attack
was used to spread a message on the Twitter network [24].
We describe this attack in more detail in Section 2.

In this paper, we present a novel approach to detect click-
jacking attempts. By using a real browser, we designed and
developed an automated system that is able to analyze web
pages for clickjacking attacks. We conducted an empirical
study on over one million unique Internet web pages. The
experiments we conducted show that our system works well
in practice.

Our solution can be adopted by security experts to au-
tomatically test a large number of websites for clickjacking.
Moreover, the clickjacking plug-in we developed can be in-
tegrated into a standard browser configuration in order to
protect normal users from clickjacking during their daily In-
ternet use.

To the best of our knowledge, we are the first to conduct a
large-scale study of the clickjacking problem, and to propose
a novel system for the automated testing, and detection of
the attack. Our paper provides a first insight into the cur-
rent prevalence of clickjacking attempts on the Internet.

The main contributions of this paper are as follows:

• We present our automated approach to detect click-
jacking attacks.

• We describe the ClickIDS browser plug-in we devel-
oped, and the system we deployed to analyze more
than a million unique Internet web pages.

• We present a first, large-scale attempt to estimate the
prevalence of clickjacking attacks on the Internet.

• We assess to what extent clickjacking defense tech-
niques have been adopted by examining thousands of
popular websites.

The rest of the paper is structured as follows: Section 2
introduces the clickjacking attack, its impact, and discusses
possible countermeasures. Section 3 describes our approach
and the system we designed and implemented to test web
pages for the presence of clickjacking attacks. In Section 4,
we present the experiments we conducted, and discuss
our findings. In Section 5, we provide an overview of the
related work, and finally, we conclude the paper in Section 6.

2. CLICKJACKING
Despite extensive discussions and reports, clickjacking still

lacks a formal and precise definition. Informally, it is a tech-
nique to lure the victim into clicking on a certain element

of a page, while her intention is to interact with the con-
tent of a different site. That is, even though the victim is
under the impression of clicking on a seemingly harmless
page, she is actually clicking on an element of the attacker’s
choice. The typical scenario, as described by Grossman and
Hansen [16], involves two different websites: A target site
T , and a malicious site M .

T is a website accessible to the victim and important for
the attacker. Such sites include, for example, online-banking
portals, auction sites, and web mail services. The goal of the
attacker is to lure the victim into unsuspectingly clicking on
elements of the target page T .

M , on the other hand, is under control of the attacker.
Commonly, this page is created in a way so that a trans-
parent IFRAME containing T overlays the content of M .
Since the victim is not aware of the invisible IFRAME, by
correctly aligning T over M , an attacker can lure the victim
into clicking elements in T , while she is under the impres-
sion of clicking on M . A successful clickjacking attack, for
example, might result in the victim deleting all messages
from her web mail inbox, or generating artificial clicks on
advertisement banners.

Figure 1 shows a real-world clickjacking attack that has
been used to propagate a message among Twitter users [24].
In this attack, the malicious page embeds Twitter.com on a
transparent IFRAME. The status-message field is initialized
with the URL of the malicious page itself. To provoke the
click, which is necessary to publish the entry, the malicious
page displays a button labeled “Don’t Click.” This button is
aligned with the invisible “Update” button of Twitter. Once
the user performs the click, the status message (i.e., a link
to the malicious page itself) is posted to her Twitter profile.

While clickjacking attacks can be performed in plain
HTML, the use of JavaScript can be used to create more
sophisticated attacks. For instance, JavaScript allows the
attacker to dynamically align the framed content with the
user’s mouse cursor, thus making it possible to perform at-
tacks that require multiple clicks.

Note that manipulating the frame’s opacity level (e.g.,
making it transparent) is not the only way to mount a click-
jacking attack. A click can also be “stolen” by covering the
frame containing the victim page with opaque elements, and
then leaving a small hole aligned with the target element on
the underlying page. Another possible approach consists of
resizing and/or moving the IFRAME in front of the mouse
just before the user performs a click.

Unlike other common web vulnerabilities such as cross-
site scripting and SQL injection, clickjacking is not a con-
sequence of a bug in a web application (e.g., a failure to
properly sanitize the user input). In contrast, it is a conse-
quence of a misuse of some HTML/CSS features (e.g., the
ability to create transparent IFRAMEs), combined with the
way in which the browser allows the user to interact with
invisible, or barely visible, elements.

A number of techniques to mitigate the clickjacking prob-
lem have been discussed on security-related blogs [41]. One
approach proposes to extend the HTTP protocol with an
optional, proprietary X-FRAME-OPTIONS header. This
header, if evaluated by the browser, prevents the content to
be rendered in a frame in cross-domain situations. A sim-
ilar approach was proposed to enhance the CSS or HTML
languages to allow a page to display different content when
loaded inside a frame.

136

<IFRAME style={

width: 550px; height: 228px;

top: -170px; left: -400px;

position: absolute; z-index: 2;

opacity: 0; filter: alpha(opacity=0);

}

scrolling="no"

src="http://twitter.com/home?status=

Don’t Click: http://tinyurl.com/amgzs6">

</IFRAME>

<BUTTON style={

width: 120px; top: 10px; left: 10px;

position: absolute; z-index: 1;

}>

Don’t Click

</BUTTON>

Figure 1: Clickjacking attack against Twitter: (a) Page ren-
dering showing the two frames (b) HTML code of the mali-
cious page

Some of the mentioned defenses are already implemented
by browser vendors. For example, Microsoft’s Internet Ex-
plorer 8 honors the X-FRAME-OPTIONS HTTP header
and replaces a page whose header is set to deny with a
warning message [27]. Additionally, the NoScript plug-in
for Firefox [25] also evaluates this header and behaves ac-
cordingly [26].

In the meanwhile, web developers who do not wish their
content to be displayed as frames in other pages have been
adopting so-called frame-busting techniques. An example of
frame-busting is the JavaScript snippet shown in Figure 2.
The code compares the origin of the content with the cur-
rently displayed resource in the browser and, upon a mis-
match, it redirects the browser, thus, “busting” the frame.

Interestingly, an attacker who specifies the IFRAME’s at-
tribute security="restricted" [28] can force the Internet
Explorer to treat the frame’s content in the security con-
text of restricted sites, where, by default, active scripting is
turned off. Therefore, if the embedded page does not make
use of JavaScript beyond frame-busting, this protection can

<script type="text/javascript">

if (top.location.hostname !=

self.location.hostname)

top.location.replace(self.location.href);

</script>

Figure 2: Example of JavaScript Frame-busting code

be thwarted by an attacker.
An alternative solution, not relying on JavaScript, re-

quires the user to re-authenticate (e.g., by re-typing the
password or by solving a CAPTCHA) in order to perform
any sensitive actions. However, frequent re-authentications
degrade the user experience, and thus, cannot be used ex-
tensively.

Finally, a possible way to mitigate the problem consists of
detecting and stopping clickjacking attempts in the browser.
The ClearClick extension, recently introduced into the No-
Script plug-in, offers some degree of protection. To this end,
ClearClick attempts to detect if a mouse click event reaches
an invisible, or partially obstructed element. The click event
is put on hold, and the user is informed about the true
origin of the clicked element. Only if the user agrees, the
event propagation continues as usual. Note that NoScript’s
ClearClick exhibited a large number of false positives in our
experiments (i.e., see Section 4).

3. OUR CLICKJACKING DETECTION

APPROACH
In this section, we present our approach to simulate user

clicks on all the elements of the page under analysis, and to
detect the consequences of these clicks in terms of clickjack-
ing attacks. Our technique relies on a real browser to load
and render a web page. When the page has been rendered,
we extract the coordinates of all the clickable elements. In
addition, we programmatically control the mouse and the
keyboard to properly scroll the web page and click on each
of those elements.

Figure 3 shows the architecture of our system, which con-
sists of two main parts: A testing unit is in charge of per-
forming the clicks, and a detection unit is responsible for
identifying possible clickjacking attempts on the web page
under analysis.

The detection unit combines two browser plug-ins that op-
erate in parallel to analyze the automated clicks. The first
plug-in consists of code that we developed in order to detect
overlapping clickable elements. To complement this solu-
tion, we also adopted the NoScript tool, that has recently
introduced an anti-clickjacking feature. Our experimental
results (see Section 4) show that the combination of the two
different detection techniques greatly reduces the number of
false positives.

The testing unit contains a plug-in that extracts the coor-
dinates of the clickable elements rendered on the page, and
a browser-independent component that moves the mouse to
the coordinates, and simulates the user’s clicks. In addition,
the testing unit is responsible for navigating the browser by
typing into the address bar the address of the web page to
visit.

In the following, we explain the two units in more detail.

137

Figure 3: System architecture

3.1 Detection unit
This unit is responsible for detecting and logging any click-

jacking attacks that are contained in the web page under
analysis.

The detection is handled by two browser plug-ins. The
first component is a solution that we developed to detect
when multiple clickable elements co-exist and overlay in the
region of the page where the user has clicked. We call our
detection solution ClickIDS. The second plug-in is the mod-
ified version of the NoScript open-source tool that saves the
generated alerts into a database instead of displaying pop-
ups to the user. In the following, we describe ClickIDS and
NoScript in more detail.

3.1.1 ClickIDS

ClickIDS is the browser plug-in that we implemented. It
intercepts the mouse click events, checks the interactions
with the elements of a web page, and detects clickjacking
attacks.

The basic idea behind ClickIDS is simple. A suspicious
behavior is reported when two or more clickable elements of
different pages overlap at the coordinates of the mouse click.
As clickable elements, we consider links (or, more precisely,
the area enclosed between HTML <A> tags), buttons, and
form inputs fields such as checkboxes, radio buttons, menu,
and text fields. In addition, we also take into account Adobe
Flash content, embedded in HTML with <EMBED> tags and
associated with the application-type x-shockwave-flash.

We motivate the consideration of Flash content in two
ways. First, when clickjacking was first reported in October
2008, it gained interest fast mainly because a clickjacking
exploitation technique against the Adobe Flash Player Set-
ting Manager would have permitted to modify the web-cam
and microphone security settings [34]. Basically this exploit
allowed an attacker to remotely turn the user’s computer
into an eavesdropping device. Second, for some advanced
attacks to be successful, an attacker would need to steal
multiple user-clicks, and therefore, would prefer to overlay
the clickjacked site with flash content (e.g., a game) that
persuades the user to perform several clicks.

When our plug-in is loaded, it registers to the document
event load. Each time a new page is loaded, the page-handler
routine is executed. This routine registers the loaded page

and attaches a second click-handler to it. At this point,
every click of the user in the context of the web page is
intercepted, and handled by the click-handler routine.

If the clicked element is clickable (according to our previ-
ous definition), we register the current mouse coordinates.
Then, we scan the main page and the contained FRAMEs
and IFRAMEs to check if they contain clickable elements at
the same position. If there exists at least one element that
overlays the clicked one, we generate an alert. ClickIDS is
more precise in identifying attacks based on overlapping el-
ements. However, unlike NoScript, it is not able to detect
attacks based on partially obstructed pages. Nevertheless,
the combination of the two different techniques can effec-
tively reduce the number of false positives generated by the
tools individually.

Note that we also developed a third component that we
call Stopper, which drops mouse events after all the regis-
tered listeners have been successfully executed. This pre-
vents the browser from actually opening a new page, sub-
mitting a form, or downloading a file in response to the
mouse clicks.

3.1.2 NoScript

NoScript is a Firefox add-on that provides protection
against common security vulnerabilities such as cross-site
scripting. It also features a URL access-control mechanism
that filters browser-side executable contents such as Java,
Adobe Flash, and Microsoft Silverlight.

In October 2008, an anti-clickjacking feature was inte-
grated into NoScript. This feature protects users against
transparent IFRAME-based attacks. Starting from version
1.8.2, the protection has been extended to cover also par-
tially obstructed and disguised elements. The implemented
technique, denoted ClearClick, resembles one proposed by
Zalewski [41], and is based on the analysis of the click’s
neighborhood region. An alert is triggered when a mouse
click is detected in a region where elements from different
origins overlap.

For our prototype, we modified NoScript version 1.9.0.5
and we replace the visual alerts that are normally gener-
ated for the user with a logging capability toward an ex-
ternal SQL database. Our customized version produces an
entry for each clickjacking attempt, containing a reference
to the website that has generated the alert, the URL of the
(I)FRAME that has been clickjacked, and the element of
the page that has been clicked (tag name, type, href, and
coordinates).

3.2 Testing unit
The testing unit simulates the behavior of a human user

that interacts with the content of a web page. It is respon-
sible for instructing the browser to visit a certain URL, and
then to iteratively click on the clickable elements contained
on the page.

We designed our testing unit to overcome the limitations
of existing systems for web application testing. Solutions
such as Selenium [7] and Watir [8] simulate the mouse ac-
tions from inside the browser, sending events to the element
that should be clicked. Although this approach is convenient
for testing the functional requirements of web applications
(such as the correctness of links and form references), it is
not suitable for our purposes. The reason is that we do not
know on which element the user intended to click on (this

138

is, in fact, the premise for a clickjacking attack). Hence, we
did not wish to “simulate” a user click inside the browser,
but to control the mouse at the window level, and to actu-
ally move it over the interesting element, and click the left
button on it. By doing this, we can also be sure that every
JavaScript code in the page (such as the ones registered to
OnMouseOver or OnMouseUp events) are executed exactly in
the same way as they would if the user was controlling the
mouse herself.

Our tool utilizes xdotool [9], a wrapper around the X11
testing library, to move the mouse on the screen and to
generate keyboard and mouse events. The testing unit can
place the mouse cursor at the screen coordinates where the
web page’s clickable elements are rendered. Since the clicks
are generated from the graphical interface itself, from the
browser’s point of view, they are identical to those of a real
user.

The main component of the testing unit is the Xclick

script. It receives the list of URLs to visit, and it feeds
them, one by one, to the browser. Once the page is suc-
cessfully loaded, the script positions the mouse over each
element, and clicks on them. If the element coordinates are
outside the browser window, Xclick properly scrolls down
the page to show the required content. In addition, Xclick
properly manages special elements such as form drop down
boxes which can be rolled up pressing the escape button. For
large elements (e.g., images and flash contents), it is more
difficult to predict the exact position where the clickjack-
ing may occur. Therefore, Xclick performs multiple clicks
at fixed intervals to cover the entire element area, in such
a way to raise any possible clickjacking attacks. Finally, to
improve the reliability of the system, Xclick is able to de-
tect and close any windows, popups, or browser tabs that
are opened by the web page as a consequence of the mouse
clicks. A pseudocode of the script is detailed in Figure 4.

The coordinates of the web page’s clickable elements are
received from the element extractor, a custom extension
that we installed in the browser. This component is reg-
istered to the page-open event such that each time a page
is loaded, a callback function is called to parse the page’s
DOM, and to extract all the information about the clickable
elements. The plug-in also extracts information concerning
all the FRAMEs and IFRAMEs included in the visited page,
including their URL and opacity values. The opacity is a
CSS3 property that specifies the transparency of an HTML
element to a value varying from 0.0 (fully transparent) to
1.0 (completely opaque).

3.3 Limitations
The main limitation of our current implementation to de-

tect clickjacking attempts is that the testing unit interacts
only with the clickable elements of the page. In general,
this is not a requirement for mounting a clickjacking attack
because, at least in theory, it is possible for an attacker to
build a page in which a transparent IFRAME containing
the target site is placed on top of an area containing normal
text.

In order to cope with this additional set of attacks, we
combine the alerts produced by our plug-ins with the warn-
ings generated by the Xclick tool for the web pages that
contain cross-domain transparent IFRAMEs. In particular,
our approach generates a final report containing both the
alert messages for the pages where a clickjacking attempt

start browser

for url in input:

check the browser functionalities, else:

restart it

feed the browser with the url and instruct it

to load the page

wait for the page to be loaded

if a timeout occurs:

continue

check the elements extractor’s logfile, else:

continue

parse the logfile for the list_of_elements and

the page statistics

record the page statistics in the database

for element in list_of_elements:

if element > 50x50px:

crop it (multi click)

if element.coordinates are in the next page:

scroll the browser page

check the element.coordinates validity else:

continue

move the mouse on the element.coordinates

click

if element.type == select:

press ’esc’ to close the menu

Figure 4: Xclick Pseudocode

is detected, and the warning messages that are raised when
no attacks are detected, but the page contains transparent
IFRAMEs that partially overlap the rest of the page content.
As explained in the Section 4, by analyzing the warning mes-
sages, it is possible to detect the clickjacking attacks that do
not make use of clickable elements.

4. EVALUATION
To test the effectiveness of our prototype tool in detect-

ing clickjacking attacks, we first created five different test
pages, based on the examples published on the Internet,
that contained clickjacking attacks,. In all cases, the system
correctly raised an alert message to report the attack.

Having initially validated our approach on these test
pages, we set out to test the effectiveness of our sys-
tem in identifying real-world websites containing similar,
previously-unknown clickjacking attacks. We combined dif-
ferent sources to obtain an initial list of URLs that is rep-
resentative of what an average user may encounter in her
everyday web browsing experience. More precisely, we in-
cluded the top 1000 most popular websites published by
Alexa [2], over 20,000 profiles of the MySpace [4] social net-
work, and the results of ad-hoc queries on popular search
engines. In particular, we queried Google and Yahoo with
various combinations of terms such as “porn,” “free down-
load,” “warez,” “online game,” “ringtones,” and “torrents.”
We ran each query in different languages including English,
German, French, Italian, and Turkish.

To increase the chances of finding attacks, we also in-
cluded sources that were more likely to contain malicious
content. For this purpose, we included domains from
malwaredomains.com [3], lists of phishing URLs published

139

by PhishTank [6], and domains that were queried by mal-
ware samples analyzed by the Anubis [19] online malware
analysis tool.

Combining all these sources, we generated an initial seed
list of around 70,000 URLs. Our crawler then visited these
URLs, and continued to crawl through the links embedded
in the pages. Overall, we visited 1,065,482 pages on 830,000
unique domains.

For our crawling experiments, we installed our tool on ten
virtual machines executed in parallel on VMWare Server 3.
Since a clickjacking attack is likely to exploit a transparent
IFRAME, to speedup the analysis, we decided to dedicate
half of the machines to click only on pages containing trans-
parent IFRAMEs. Each machine was running Debian Linux
Squeeze and Mozilla Firefox 3, equipped with our detection
and testing plug-ins. The browser was customized for being
suitable for running in the background, and enabling au-
tomated access to its interface. We also disabled any user
interfaces that required user interaction, blocked pop-ups
and video content, and disabled document caching.

4.1 Results
We ran our experiments for about two months, visiting a

total of 1,065,482 unique web pages. We analyzed those
pages in ”online mode” and we performed an average of
15,000 pages per day. Around 7% of the pages did not con-
tain any clickable element – usually a sign that a page has
been taken down, or it is still under construction. The re-
maining pages contained a total of 143.7 million clickable
elements (i.e., an average of 146.8 elements per page).

37.3% of the visited pages contained at least one
IFRAME, while only 3.3% of the pages included a FRAME.
However, only 930 pages contained completely transparent
IFRAMEs, and 627 pages contained IFRAMEs that were
partially transparent. This suggests that while IFRAMEs
are commonly used in a large fraction of Internet sites, the
use of transparency is still quite rare, accounting for only
0.16% of the visited pages. Table 1 summarizes these statis-
tics.

Value Rate
Visited Pages 1,065,482 100%
Unreachable or Empty 86,799 8.15%
Valid Pages 978,683 91.85%
With IFRAMEs 368,963 37.70%
With FRAMES 32,296 3.30%
Transparent (I)FRAMEs 1,557 0.16%
Clickable Elements 143,701,194 146.83 el./page
Speed Performance 71 days 15,006 pages/day

Table 1: Statistics on the visited pages

Table 2 shows the number of pages on which our tool gen-
erated an alert. The results indicate that the two plug-ins
raised a total of 672 (137 for ClickIDS and 535 for NoScript)
alerts. That is, on average, one alert was raised every 1,470
pages. This value drops down to a mere 6 alerts (one ev-
ery 163,000 pages) if we only consider the cases where both
plug-ins reported a clickjacking attack. Note that NoScript
was responsible for most of the alerts, and, interestingly,
97% of these alerts were raised on websites containing no
transparent elements at all.

To better understand which alerts corresponded to real

attacks, and which ones were false positives, we manually
analyzed all alerts by visiting the corresponding web pages.
The results of our analysis are reported in the last three
columns of Table 2, and are discussed in the following sec-
tion.

Total True Borderlines False
Positives Positives

ClickIDS 137 2 5 130
NoScript 535 2 31 502
Both 6 2 0 4

Table 2: Results

4.2 Discussion
Around 5% of the alerts raised during our experiments

involved a frame pointing to the same domain of the main
page. Since it is very unlikely that websites would try to
trick the user into clicking on a hidden element of the site
itself, we marked all these messages as being false positives.
However, we decided to manually visit some of these pages
to have an insight into what kind of conditions tend to cause
a false positive in the two plug-ins.

We then carefully analyzed the pages containing cross-
domain frames. In this set, we identified a number of
interesting cases that, even though not corresponding to
real attacks, matched our definition of clickjacking. We
decided to divide these cases in two categories: The true
positives contain real clickjacking attempts, while the
borderline cases contain pages that were difficult to classify
as being clickjacking.

4.2.1 Analysis of false positives

Most of the false alarms were generated by pop-ups that
dynamically appear in response to particular events, or by
banners that are placed on top of a scrollable page. In both
cases, the content of the advertisement was visible to the
user, but it confuses both NoScript (because the area around
the mouse click is not the one that NoScript is expecting),
and ClickIDS (because the banner can contain clickable el-
ements that overlap other clickable elements on the main
page). For similar reasons, the use of dynamic drop down
menus can sometimes confuse both plug-ins.

NoScript also reported an alert when a page contained
a transparent IFRAME positioned completely outside of
the page margins. A manual examination of some of these
cases revealed that they corresponded, most of the time, to
compromised websites where an attacker included a hidden
IFRAME pointing to a malicious page that attempts to in-
fect the user’s computer with malware. Even though these
were obvious attacks, no attempts were done to intercept,
or steal the user’s clicks. Another common scenario that in-
duced NoScript to generate false alarms are sites that con-
tain IFRAMEs overlapping the page content in proximity,
but not on top of, a clicked element. While ClickIDS did
not report these pages, it raised several false alarms due to
harmless overlapping of clickable elements even though the
page and IFRAME contents were perfectly visible to the
user.

Nevertheless, note that by combining together the two

140

techniques (i.e., ClickIDS and NoScript), only four false pos-
itive messages were generated.

4.2.2 Analysis of true positive and borderline cases

In our experiments, we were able to identify two real-
world clickjacking attacks. The first one used the transpar-
ent IFRAME technique to trick the user into clicking on
a concealed advertisement banner in order to generate rev-
enue for the attacker (i.e., click fraud). Both plug-ins raised
an alert for this attack. The second attack contained an
instance of the Twitter attack we already discussed in Sec-
tion 2. We were able to detect this second case by analyzing
the warnings generated by our system for the web pages that
contain cross-domain transparent IFRAMEs. In fact, by the
time we visited the page, Twitter had already implemented
an anti-clickjacking defense (i.e., A javascript frame-busting
code now substitutes the framed page with empty content).

Even though the pages containing these clickjacking at-
tacks turned out to be examples posted on security-related
websites, they were true positives and we detected them au-
tomatically. Hence, our system was able to detect these
pages by automated analysis of real-world Internet pages.

Moreover, we also found a number of interesting cases
that are difficult to accurately classify as either being real
attacks, or false positives.

A first example of these borderline cases occurred when
an IFRAME was encapsulated in a link tag. In this case, a
cross-domain IFRAME was included in a page as link con-
tent (i.e., between <A> tags). We found that on certain
browsers, such as the Internet Explorer, the user can in-
teract with the framed page normally, but when she clicks
somewhere on the content that is not a clickable element,
the click is caught by the encapsulating link. The result is
a kind of “reversed” clickjacking in the sense that the user
believes that she is clicking on the framed page, but is in-
stead clicking on a link in the main page. Even though it
matches our attack definition, this setup cannot be used to
deceive the user into interacting with a different web page.
It is unclear to us why the developers of the site chose to
use this technique, but we believe that it might have a us-
ability purpose – no matter where the user would click on
the page, she would be directed to a single URL chosen by
the developer.

Another interesting case that we observed in our experi-
ments occurs when the page to be included into an IFRAME
is not available anymore, or has been heavily modified since
the page was created. If the IFRAME is set with the CSS at-
tributes allowtransparency:true and background-color:

transparent, the content of the IFRAME is visible to the
user, but the area that does not contain anything (e.g., the
page background) is not. The obvious intention of the page
authors was to display some content from another page (e.g.,
a small horizontal bar containing some news messages), but
since the destination page was not found, and therefore re-
turned a mostly empty page, the IFRAME was rendered as
a transparent bar. If the area overlaps with clickable ele-
ments, the user could end up clicking on the transparent
empty layer (containing a page from a different domain) in-
stead of the main page elements.

4.2.3 False negatives

In order to estimate the false negative rate of our tool,
we analyzed all pages for which warning messages were

raised (i.e., the pages containing cross-domain transparent
IFRAMEs, but in which no attack was reported by our plug-
ins). Most of the 140 pages for which our tool raised a
warning were pages that included the Blogger [10] naviga-
tion bar on the top of the page. This bar is implemented
as a transparent IFRAME that is automatically set to be
opaque when the mouse is moved to the top of the page.
In this case, the transparency is used as a means to easily
control the appearance and disappearance of the navigation
bar.

4.3 Pages implementing frame-busting tech-
niques

In our study, we conducted the following experiment to
assess the prevalence of web sites that implement the so-
called frame-busting technique (see Section 2).

First, we prepared a web page that accepts a single
parameter denoting a URL that should be embedded in
an IFRAME. Once the page and all contents (i.e., the
IFRAME) finished loading and rendering, we verified that
the IFRAME was still present. Pages that perform frame-
busting would substitute the whole content in the browser
window, thus removing the IFRAME. To automate this ex-
periment, we implemented a Firefox extension that takes a
list of URLs to be visited. Once a page is loaded, the exten-
sion waits for a few seconds and then verifies the presence of
the IFRAME. If the IFRAME is not part of the document’s
DOM-tree anymore, we conclude that the embedded page
performed frame-busting.

Simultaneously, we analyzed the HTTP headers of the vis-
ited websites. The optional X-FRAME-OPTIONS header is
intended to control whether a resource can be embedded in
a frame or not. While it is known that Internet Explorer 8
and the NoScript plug-in for Firefox honor this header, we
also wanted to find out how common the use of this header
is among the sites on the Internet.

We constructed a list of popular URLs to visit by down-
loading the top 200 entries of each of the 17 Alexa cate-
gories [11]. Furthermore, we added the top 10,000 pages
from the Alexa rankings to the list. Due to many pages
that are present in both lists, we visited a total of 11,005
unique URLs. 1,967 pages did not finish rendering within a
30 seconds timeout, and were, thus, not evaluated.

Our experiment revealed that out of the remaining 9,038
pages, 352 websites (3,8%) already implement frame-busting
techniques to prevent being loaded in a frame. Furthermore,
only one of the visited pages1 was using the X-FRAME-
OPTIONS header.

5. RELATED WORK
The first report of a possible negative impact of transpar-

ent IFRAMEs is a bug report for the Mozilla Firefox browser
from 2002 [30]. However, the term clickjacking, commonly
referring to this behavior, was coined by Hansen and Gross-
man much later in 2008 [15]. While Hansen and Grossman
elaborated on the involved techniques, we are, to the best
of our knowledge, the first to conduct an empirical study on
this topic.

The protection of web browsers from clickjacking attacks
is the focus of the ClearClick component in the NoScript [25]
Firefox plug-in. Additionally, Zalewski [41] suggests a se-

1http://flashgot.net/

141

ries of techniques that should help mitigate the clickjacking
threat. These include, for example, an obstruction algo-
rithm similar to the one adopted by NoScript, and a HTTP
protocol enhancement to prevent a web page from being dis-
played in a frame. Note that the recently released Microsoft
Internet Explorer 8 and NoScript already implement this
approach.

Closely related to our automatic approach on detecting
clickjacking attacks are existing automatic web application
security scanners (e.g., [1, 5, 17, 23]). Although these scan-
ners automatically test web applications just as we do, they
do not focus on detecting clickjacking attempts.

SecuBat [23] by Kals et al. automatically detects SQL in-
jection and cross-site scripting vulnerabilities on web pages.
SecuBat crawls the web, and launches attacks against any
HTML forms it encounters. By analyzing the server re-
sponse, successful attacks can be detected. A similar ap-
proach is followed by Huang et al. [17]. In their work, the
authors perform black box testing of web applications to de-
tect possible SQL injection and XSS flaws. As the success
of such security scanners relies on the test input that is pro-
vided to the tested web applications, Wassermann et al. [38]
propose a system to automatically generate such inputs.

Jovanovic et al. [22] introduce Pixy to automatically de-
tect web application vulnerabilities through static analysis.
Pixy is able to identify flaws that lead to SQL injection,
cross-site scripting, or command injection vulnerabilities.
Huang et al. [18] also perform static source code analysis to
automatically add runtime protection mechanisms to web
applications. Similarly, Wassermann et al. [37] propose a
static string analysis-based approach to automatically de-
tect injection vulnerabilities in web applications. Detecting
SQL injection vulnerabilities by statically analyzing a web
application’s source code is performed by Xie et al. in [39].
Egele et al. [13] infer the data types and possible value sets
of input parameters to web applications by applying static
analysis. This information can be leveraged to fine-tune ap-
plication level firewalls and help protect web applications
from injection attacks.

By combining dynamic data tainting with static analy-
sis, Vogts et al. [35] created a system that effectively de-
tects websites that perform cross-site scripting attacks. In
contrast, Balzarotti et al. [12] leverage static and dynamic
analysis techniques to automatically validate sanitization in
web applications.

Software engineering researchers suggest new methodolo-
gies and tools for assess the quality of web applications.
Ricca and Tonella in [33] proposes an UML model that help
to understand the static structure of web application and to
exploit semi-automatic white-box testing. Huang et al. [17]
describes and deploys in real-world applications a number
of software-testing techniques that addresses frequent cod-
ing faults that lays to unwanted vulnerabilities. Their work
has produced the vulnerability assessment tool WAVES.

Different research projects have examined the prevalence
of malicious websites on the Internet. Moshchuk et al. [29]
crawled over 18 million URLs and looked for web pages that
host spyware. In a later study, Provos et al. [32] discover
websites that perform drive-by download attacks. This mal-
ware detection approach relies on virtual machine introspec-
tion [14] where a web browser in a VM visits potentially ma-
licious pages. If the subsequent analysis of the VM’s state
indicates that an additional process was created during the

page visit, the site is regarded as being malicious.
Wang et al. present Strider HoneyMonkey [36] where they

visit known malware hosting pages with web browsers run-
ning on operating systems with different patch levels. The
idea is that, by observing the successful infections, it is pos-
sible to learn the vulnerability that was exploited. In addi-
tion, a zero-day exploit can be detected if a fully patched
system is infected.

In contrast to the approaches that examine the preva-
lence of malicious websites that host malware, the focus of
our work is on the detection of those web pages that host
clickjacking attacks. To the best of our knowledge, we are
the first to investigate on the clickjacking problem, and to
propose an efficient solution for the automatic detection of
clickjacking attacks.

Note that our study provides a first insight into the cur-
rent prevalence of clickjacking attempts on the Internet.

6. CONCLUSION
Clickjacking is a web attack that has recently received

wide media coverage. There have been many news items,
discussions, and blog postings on the topic. However, it is
currently unclear to what extent clickjacking is being used
by attackers in the wild, and how significant the attack is for
the security of Internet users. In this paper, we presented
our system that is able to automatically detect clickjacking
attempts on web pages. We validated our tool and we con-
ducted empirical experiments to estimate the prevalence of
such attacks on the Internet by automatically testing more
than one million web pages that are likely to contain mali-
cious content and to be visited by Internet users. By dis-
tributing the analysis on multiple virtual machines we were
able to scan up to 15,000 web pages per day. Furthermore,
we developed a new detection technique, called ClickIDS,
that complements the ClearClick defense provided by the
NoScript plug-in. We integrated all components into an au-
tomated, web application testing system.

Of the web pages we visited, we could confirm two proof-
of-concept instances of clickjacking attacks used for click
fraud and message spamming. Even though the pages con-
taining these clickjacking attacks have been posted as ex-
amples on security-related websites, we found them auto-
matically. Furthermore, in our analysis, we also detected
several other interesting cases that we call ”borderline at-
tacks”. Such attacks are difficult to accurately classify as
either being real attacks, or false positives.

Our findings suggest that clickjacking is currently not the
preferred attack vector adopted by attackers on the Internet.
In fact, after we had finished our study, Jeremiah Grossman
posted in his blog that he only expects clickjacking to be-
come a real problem in 5 to 6 years from now [21].

7. ACKNOWLEDGMENTS
This work has been supported by the European Commis-

sion through project FP7-ICT-216026-WOMBAT and FP7-
ICT-216331-FORWARD, by FIT-IT through the Pathfinder
project, by FWF through the Web-Defense project (No.
P18764) and by Secure Business Austria.

8. REFERENCES
[1] Acutenix web security scanner.

http://www.acunetix.com/.

142

[2] Alexa top sites. http://www.alexa.com/topsites.

[3] Malware domain blocklist.
http://www.malwaredomains.com/.

[4] Myspace. http://www.myspace.com.

[5] Nikto. http://www.cirt.net/nikto2.

[6] Phishtank: Join the fight against phishing.
http://www.phishtank.com/.

[7] Selenium web application testing system.
http://seleniumhq.org/.

[8] Watir automated webbrowsers.
http://wtr.rubyforge.org/.

[9] xdotool.
http://www.semicomplete.com/projects/xdotool/.

[10] http://www.blogger.com, 2009.

[11] Alexa Internet, Inc. Alexa - top sites by category.
http://www.alexa.com/topsites/category/Top/,
2009.

[12] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,
E. Kirda, C. Kruegel, and G. Vigna. Saner:
Composing static and dynamic analysis to validate
sanitization in web applications. In IEEE Symposium

on Security and Privacy, pages 387–401, 2008.

[13] M. Egele, M. Szydlowski, E. Kirda, and C. Kruegel.
Using static program analysis to aid intrusion
detection. In Detection of Intrusions and Malware &

Vulnerability Assessment, Third International

Conference, DIMVA 2006, Berlin, Germany, July

13-14, 2006, Proceedings, pages 17–36, 2006.

[14] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion
detection. In Proceedings of the Network and

Distributed System Security Symposium, NDSS 2003,

San Diego, California, USA, 2003.

[15] R. Hansen. Clickjacking details. http://ha.ckers.
org/blog/20081007/clickjacking-details/, 2008.

[16] R. Hansen and J. Grossman. Clickjacking.
http://www.sectheory.com/clickjacking.htm, 09
2008.

[17] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai.
Web application security assessment by fault injection
and behavior monitoring. In WWW ’03: Proceedings

of the 12th international conference on World Wide

Web, pages 148–159, New York, NY, USA, 2003.
ACM.

[18] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee,
and S.-Y. Kuo. Securing web application code by
static analysis and runtime protection. In WWW ’04:

Proceedings of the 13th international conference on

World Wide Web, pages 40–52, New York, NY, USA,
2004. ACM.

[19] International Secure Systems Lab.
http://anubis.iseclab.org, 2009.

[20] Jeremiah Grossman. (Cancelled) Clickjacking -
OWASP AppSec Talk. http://jeremiahgrossman.
blogspot.com/2009/06/clickjacking-2017.html,
September 2008.

[21] Jeremiah Grossman. Clickjacking 2017.
http://jeremiahgrossman.blogspot.com/2009/06/

clickjacking-2017.html, June 2009.

[22] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A
static analysis tool for detecting web application

vulnerabilities (short paper). In IEEE Symposium on

Security and Privacy, pages 258–263, 2006.

[23] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic.
Secubat: a web vulnerability scanner. In WWW ’06:

Proceedings of the 15th international conference on

World Wide Web, pages 247–256, New York, NY,
USA, 2006. ACM.

[24] M. Mahemoff. Explaining the “Don’t Click”
Clickjacking Tweetbomb. http://softwareas.com/
explaining-the-dont-click-clickjacking-tweetbomb,
2 2009.

[25] G. Maone. Hello ClearClick, Goodbye Clickjacking!
http://hackademix.net/2008/10/08/

hello-clearclick-goodbye-clickjacking/, 10 2008.

[26] G. Maone. X-frame-options in firefox.
http://hackademix.net/2009/01/29/

x-frame-options-in-firefox/, 2009.

[27] Microsoft. IE8 Clickjacking Defense.
http://blogs.msdn.com/ie/archive/2009/01/27/

ie8-security-part-vii-clickjacking-defenses.

aspx, 01 2009.

[28] Microsoft Corporation. Security attribute (frame,
iframe, htmldocument constructor).
http://msdn.microsoft.com/en-us/library/

ms534622(VS.85).aspx.

[29] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M.
Levy. A crawler-based study of spyware in the web. In
Proceedings of the Network and Distributed System

Security Symposium, NDSS 2006, San Diego,

California, USA, 2006.

[30] Mozilla Foundation. https:
//bugzilla.mozilla.org/show_bug.cgi?id=154957,
2002.

[31] J. Nielsen. The same origin policy.
http://www.mozilla.org/projects/security/

components/same-origin.html, 2001.

[32] N. Provos, D. McNamee, P. Mavrommatis, K. Wang,
and N. Modadugu. The ghost in the browser analysis
of web-based malware. In HotBots’07: Proceedings of

the first conference on First Workshop on Hot Topics

in Understanding Botnets, pages 4–4, Berkeley, CA,
USA, 2007. USENIX Association.

[33] F. Ricca and P. Tonella. Analysis and testing of web
applications. In ICSE ’01: Proceedings of the 23rd

International Conference on Software Engineering,
pages 25–34, Washington, DC, USA, 2001. IEEE
Computer Society.

[34] US-CERT. CVE-2008-4503: Adobe Flash Player
Clickjacking Vulnerability. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2008-4503, 10 2008.

[35] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Cross site scripting
prevention with dynamic data tainting and static
analysis. In Proceedings of the Network and

Distributed System Security Symposium, NDSS 2007,

San Diego, California, USA, 28th February - 2nd

March 2007, 2007.

[36] Y.-M. Wang, D. Beck, X. Jiang, and R. Roussev.
Automated web patrol with strider honeymonkeys:
Finding web sites that exploit browser vulnerabilities.
In IN NDSS, 2006.

[37] G. Wassermann and Z. Su. Sound and precise analysis

143

of web applications for injection vulnerabilities.
SIGPLAN Not., 42(6):32–41, 2007.

[38] G. Wassermann, D. Yu, A. Chander, D. Dhurjati,
H. Inamura, and Z. Su. Dynamic test input generation
for web applications. In ISSTA ’08: Proceedings of the

2008 international symposium on Software testing and

analysis, pages 249–260, New York, NY, USA, 2008.
ACM.

[39] Y. Xie and A. Aiken. Static detection of security
vulnerabilities in scripting languages. In
USENIX-SS’06: Proceedings of the 15th conference on

USENIX Security Symposium, Berkeley, CA, USA,
2006. USENIX Association.

[40] M. Zalewski. Browser security handbook, part 2.
http://code.google.com/p/browsersec/wiki/

Part2#Arbitrary_page_mashups_(UI_redressing),
2008.

[41] M. Zalewski. Dealing with UI redress vulnerabilities
inherent to the current web.
http://lists.whatwg.org/htdig.cgi/

whatwg-whatwg.org/2008-September/016284.html,
09 2008.

144

