Oversharing Is Not Caring: How CNAME Cloaking Can Expose
Your Session Cookies

Assel Aliyeva
Boston University
USA
aliyevaa@bu.edu

ABSTRACT

In modern web ecosystem, online businesses often leverage third-
party web analytics services to gain insights into the behavior
of their users. Due to the recent privacy enhancements in major
browsers that restrict third-party cookie usage for tracking, these
businesses were urged to disguise third-party analytics infrastruc-
ture as regular subdomains of their websites [3]. The integration
technique referred to as CNAME cloaking allows the businesses
to continue monitoring user activity on their websites. However,
it also opens up the possibility for severe security infractions as
the businesses often share their session cookies with the analytics
providers, thus putting online user accounts in danger.

Previous work has raised privacy concerns with regards to subdo-
main tracking and extensively studied the drawbacks of widely used
privacy-enhancing browser extensions. In this work, we demon-
strate the impact of deploying CNAME cloaking along with lax
cookie access control settings on web user security. To this end,
we built a system that automatically detects the presence of the
disguised third-party domains as well as the leakage of the first-
party cookies. Using our system, we identified 2,139 web analytics
domains that can be conveniently added to commonly deployed
host-based blacklists. Concerningly, we also found that 27 out of 90
highly sensitive web services (e.g., banks) that we analyzed expose
session cookies to the web analytics services.
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1 INTRODUCTION

The number of active Internet users has been rapidly increasing in
the recent decade and surged from 1.97 billion people in 2010 [11]
to 4.57 billion in July 2020 [10]. Such growth dynamics incentivizes
businesses to move online in order to expand the outreach of their
products. Nowadays, businesses offer a wide range of online ser-
vices, such as shopping, financial transactions, or virtual meeting
platforms through their websites. Many websites also allow users to
create online accounts. These accounts separate authenticated users
from other website visitors and allow registered users to manage
their private information as well as to access additional functional-
ities. Because of the sensitivity of the information stored in user
accounts, the security of these accounts is essential: a successful
account takeover may lead to severe financial losses and the leakage
of sensitive data.

A crucial linchpin in the security of online accounts is the confi-
dentiality of session cookies. In this work, we use the term session
cookies to refer to the cookies used to authenticate a specific user to a
web service. Obviously, these cookies must exclusively be known
to the user and the web service. Any third-party with access to
the cookies can easily impersonate the legitimate user on the web
servicel. As the first line of defense, many businesses deploy the
HTTPS protocol that guarantees the confidentiality and integrity
of HTTP communications (including session cookies) with their
users.

In addition to serving their users, online businesses frequently
also seek to leverage data of their visitors to generate additional
profit (e.g., via advertising) or use analytics (or tracking) insights
to improve their websites. The commoditization of web services
resulted in dedicated companies (which we refer to as T/A (track-
ing or advertising) services or T/As) that provide this functionality.
Until recently, T/As were hosted on third-party domains and used
third-party cookies to re-identify the same user across the different
websites they provided T/A services to. However, recent browser
developments, mostly driven by user privacy concerns, resulted
in default settings that reject third-party cookies [35, 36, 38]. This
proves a decisive blow to the business model of established T/A
services, prompting them to adapt their strategy. In reaction to the
exclusion of third-party cookies, prominent T/As now urge their
customers (i.e., the first-party websites) to configure their DNS
settings to include the T/A service’s infrastructure as a subdomain
of the first-party. This inclusion happens via CNAME cloaking [3]
(see Section 2.2 for details), a technique that relies on CNAME DNS

!While the OWASP recommends to tie session cookies to the client’s IP[21], this
mechanism does not seem to be widely deployed. A potential reason is the negatively
impacted usability as roaming between different networks (e.g., home, public WiFi,
and work) would require to login again.
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records, similar to how content delivery networks have worked for
years.

This approach of embedding T/A services as a first-party opens
up the possibility for severe security infractions. Specifically, if this
mechanism is combined with lax settings of the access controls on
first-party cookies (see Section 2.1 for details), these cookies will
leak to T/A services, and hence breach the confidentiality require-
ment for session cookies.

Prior research that focused on the implications of CNAME cloak-
ing mainly raised privacy concerns after examining the sources
of personal data leakage [25-27] and the (in-)effectiveness of the
existing privacy-enhancing browser extensions [29, 30]. Other re-
lated works are unrelated to CNAME cloaking and shed light on
the scale of data syncing mechanisms within the web analytics and
advertisement ecosystem [31, 41, 45] and investigate how mixed
HTTP/HTTPS content affects the privacy and security of user ac-
counts [39, 43]. To the best of our knowledge, no prior work has
investigated the eradication of vital security protections caused
by the combination of the inclusion of T/A services via CNAME
cloaking and prolifically lax access control of cookies.

In this work, we first identify the negative security outcomes
that follow from using T/A services via CNAMEs combined with lax
access control on cookies. Subsequently, we provide a mechanism
and our system (TAFinder) to automatically detect such (presum-
ably unwanted) leakage. Finally, we evaluate TAFinder to assess
the prevalence of these issues via a large-scale measurement on the
100,000 most popular websites in the Majestic Million [12] rankings.

Our results are concerning, as 1,195 out of 2,271 websites that
rely on T/A services leak their cookies. Moreover, concrete case
studies on banking and financial websites show how these entities
mis-handle the security of their online accounts in the presence
of cloaked T/A providers. We chose these business categories as
they contain the most sensitive information and often allow users
to manage their funds. While our experiments revealed some first-
party services that avoid this problem by setting proper access
control restrictions on their cookies (e.g., discover.com), other
popular institutions (e.g., banks), fail to do so, and continue to do so
even after we reported our findings to them. In a few extreme cases
(437 websites), where T/A content is fetched over plain-text HT TP,
this behavior even obviated the protections afforded by TLS/SSL, as
on-path attackers get access to any first-party cookie that does not
have its Secure attribute set. We manually verified the findings of
TAFinder on the websites of 27 popular e-commerce and financial
institutions (using our own accounts), confirmed the leakage of
session cookies, and verified successful session hijacking for all of
them.

To broaden TAFinder’s knowledge of T/A services beyond com-
monly known actors (e.g., those found on blacklists), TAFinder
includes a supervised machine learning approach which in turn
uses nine features extracted from the HTTP communications a
browser triggers when visiting a website. The results from this
classification are independently valuable as the newly identified
T/A services can be conveniently added to host-based blacklists
which are frequently used by privacy-enhancing browser plugins.
In summary, this paper makes the following contributions.

e We identify the necessary conditions that will result in the
leaking of first-party cookies to T/A service providers.

e Based on that insight, we build a system (TAFinder) that
automatically identifies the presence of cloaked domains in
a website and detects whether the website’s cookies leak to
these domains.

e We also propose an HTTP-based web analytics domain de-
tection mechanism for hidden domains that achieves the
accuracy of 96 %.

o We identified 2,139 subdomains that disguise web analyt-
ics services that were not present in the hostname-based
community blacklists.

e We evaluated TAFinder on the 100,000 most popular websites
according to the Majestic Million dataset and found that
2,271 websites embed third-party analytics providers as their
subdomains using the CNAME cloaking technique.

o Concerningly, even highly sensitive web services (e.g., banks)
share their session cookies with the used T/A services, open-
ing the door to trivial account takeover.

e We disclosed our findings to the affected vendors and re-
ceived mixed responses including denial of the problem and
silently fixing the reported issues.

2 BACKGROUND AND THREAT MODEL

In this section, we discuss commonly used web technologies rele-
vant to our work. We also cover the basics of third-party tracking
and advertising and details of the CNAME cloaking technique. Fi-
nally, we provide a threat model that captures the impact of CNAME
cloaking and cookie access control settings on web user security
and privacy.

2.1 Web essentials

HTTP cookies. Cookies are small chunks of data that websites
store on a user’s machine. This data typically contains various
meta-information about the user, including her session identifiers,
authentication tokens, location, etc. Websites pass cookies to the
user in the HTTP response via the Set-Cookie header. Browsers
store the received cookies in a cookie jar and attach them on every
subsequent HTTP request to the website. In this way, the website
can retain information about the user’s session across multiple
HTTP requests, even though the HTTP protocol is stateless. This
makes cookies the prime choice to function as authentication tokens.
Once the user authenticated herself against the web service, the
service sets a secret session cookie that the browser will transpar-
ently include in subsequent requests to the website. Note that the
security of the user’s account crucially relies on the confidentiality
of this session cookie (i.e., no third party beyond the user and the
website should ever learn this value).

Cookies are characterized by their name, value, and a series of
attributes. The cookie’s name uniquely identifies it to the website
while the value stores arbitrary information specified by the web-
site. Each cookie also contains a series of attributes. The attributes
most relevant to this paper are Domain, HTTPOnly, and Secure.
The Domain attribute defines the so-called “scope” of the cookie. A
cookie’s scope is the set of hosts to which the browser will submit
the cookie with any HTTP request. Essentially, the scope is an



access-control mechanism that dictates for each cookie whether it
is included in an HTTP request. By default, the Domain property
is empty, indicating that the cookie should only be included in
requests targeting the precise host that set the cookie. However,
website developers can choose to broaden the scope of the cookie by
setting the Domain attribute to any ancestor-domain of the origin.
In that case, the cookie will be included in requests to any domain
or subdomain of the value specified in the Domain attribute. For
example, by default a cookie received from www. cnn. com, will only
be included in requests targeting www. cnn. com. However, to trans-
mit the cookies to other cnn properties, the Domain attribute can
be set to cnn. com. This will instruct browsers to include the cookie
in all requests to any host under the cnn.com domain, including
Www.cnn.com, mms.cnn.com, and others.

Furthermore, the HTTPOnly attribute instructs the browser to
exclusively include cookies in HTTP(S) requests while at the same
time preventing scripts from accessing the cookie (e.g., through
JavaScript’s document . cookie). Finally, the Secure attribute in-
structs browsers to only include the such cookies in requests that
are made through encrypted HTTPS connections, and omit the
cookie otherwise.

Domain Name System. The most important responsibility of the
Domain Name System (DNS) is to resolve human-readable domain
names to numeric IP addresses. The DNS is organized as a dis-
tributed database, and its data entries, also known as Resource
Records, are commonly defined by three attributes. A type attribute
identifies the type of a given record. The name and value attributes
are used in a key-value fashion. To associate a domain name O with
an IP address, a DNS administrator simply adds the appropriate
resource record of type (A) (Address Mapping) or AAAA (IP Version
6 Address), populates the name with D, and the value attribute with
the corresponding IP address. Of specific importance to this paper
are resource records of type CNAME (Canonical Name). CNAME records
introduce aliases into the DNS system and use domain names for
both its name and value attributes. Essentially, a CNAME record cre-
ates an alias that instructs DNS resolvers (i.e., the clients of the
DNS system) to resolve the domain listed as name as a different
domain (i.e., value) instead. It is important to note that the domains
provided in name and value need not be in the same administrative
domain, or Zone in DNS terminology. Note that the same-origin
policy and access controls via cookie’s Domain attributes always
rely on the domain that is used to refer to a resource. That is, if a
resource is fetched from a host (i.e., the value attribute) which is an
alias established via a DNS CNAME record, browsers will treat the
resource as if it was obtained from the domain specified in the name
attribute of the CNAME record. For example, in Figure 1 the web-
site at bank.com embeds an image from omns.bank.com (e.g., as
<img src=‘‘https://omns.bank.com/logo.gif’’> tag). The
DNS server for bank.com, however, contains a CNAME record for
the name omns . bank . com which aliases to the valueb.omtrdc. com.
Thus, the browser will fetch 1ogo. gif from the hostb.omtrdc. com
but treat the response for the purposes of the same- origin pol-
icy and cookie access control as if the image were fetched from
omns.bank. com.

Note that Content Delivery Networks (CDNs) use the same mech-
anism to provide their services. A CDN customer simply registers a
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Figure 1: Sample DNS resolution example

CNAME for the domain under which their website should be available
and points the value at the DNS infrastructure of the CDN provider.
The CDN’s DNS server will then (e.g., based on the location of a
visiting client) respond with the IP of an edge server that is “closest”
to the client.

2.2 Third-party tracking and advertising

Third-party T/A services often aggregate information (so-called
user profiles) about web users and their activity across multiple web-
sites or subdomains of a website. Since such profiles may contain
personal and sensitive information, users often rely on blacklist-
based browser extensions such as AdBlock [1] and Ghostery [8] to
protect their privacy. These extensions prevent the browser from
establishing connections with the blacklisted third-party domains.
Moreover, in a push for privacy, Firefox and Safari recently started
to block all third-party cookies by default.

CNAME Cloaking. To be able to continue to provide their ser-
vices, T/A providers started to pivot to CNAME Cloaking as a mech-
anism to circumvent third-party cookie restrictions and privacy-
preserving browser extensions. To this end, customers (i.e., web-
sites) of T/A services are asked to establish a CNAME record in their
DNS configuration that aliases a subdomain of the first-party to the
infrastructure of the T/A service. Throughout this paper we refer
to the established subdomain (i.e., the name attribute of the CNAME
resource record, cf. omns.bank.com in Figure 1) as the cloaking
domain, and the target of the alias (i.e., the value attribute of the
CNAME resource record, cf. b.omtrdc. comin Figure 1) as the cloaked
domain. This setup allows T/A services to deliver their resources to
browsers thereby side-stepping any privacy-enhancing extensions
that would prevent communication with the cloaked domain 2, and
cookies set from these resources are considered first-party by the
browser.

2.3 Threat Model

Scenario Setup. In our threat model, a victim interacts with an
HTTPS website that cloaks a third-party T/A service as shown
in Figure 2. As a first step, the victim successfully establishes an
authenticated session on the website (e.g., by logging into their
account). To maintain the session, the website replies by setting
session cookies. As is common practice, the website owner sets the
cookies’ Domain attribute to the domain of the website. The user’s

2Note that recent versions of Firefox make the whole DNS resolution process available
to extensions, allowing them to detect and block T/A services from abusing this
CNAME cloaking mechanism.
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Figure 2: Cookie Leakage Scenario

browser then shares these cookies with all subdomains under the
website’s umbrella, including any cloaked third-parties.

Attacker’s Capabilities. The “attacker” in our scenario is a T/A
service that aims to hijack user sessions. That is, they seek to im-
personate the user by seizing control of the user’s active session
using session cookies. Pursuant to business practices, our adver-
sarial T/A service convinces a website to create CNAMEs pointing
to its infrastructure. In our scenario, this implies that the T/A ser-
vice receives qualifying first-party cookies (i.e. cookies where the
Domain attribute represents a substring of the cloaking domain).
These cookies are sent as a part of the HTTPS requests from the
user’s browser.

We acknowledge that website owners may willingly share user
data and cookies with a T/A service for better targeting. It is also
highly unlikely that a T/A service would perform such attacks
in an official capacity. However, an administrator at the T/A has
sufficient access to server logs which enables him to independently
hijack user sessions. As it is entirely unnecessary for T/A services
to receive session cookies in the bundle with the rest of first-party
cookies, we argue that this security threat deserves attention and
should be addressed promptly.

3 APPROACH OVERVIEW

In this section, we provide a high-level overview of our system
(TAFinder) to assess the leakage of cookies to cloaked third parties.
Specifically, to identify whether cookie leakage happens on a given
website W, TAFinder has to answer three questions: (i) Does ‘W
contain resources loaded from domains Cqy that are CNAMEs
to third-parties? (ii) As explained in Section 2, CNAMEs have
broader applicability than T/A services alone (e.g., for CDNs). Thus,
TAFinder has to establish for each domain D € Cqy whether D
points a T/A service or not (e.g., if it is a CDN). (iii) Finally, TAFinder
has to assess whether ‘W sets cookies with lax access control mani-
fested through Domain or Secure attributes. If TAFinder can assert

o "
g £
] ©
= £
a
-
g°3 £
g 3
3 ki
. -U

List Of Websites

........................

Figure 3: TAFinder Overview

all three aspects discussed above, visiting W with a browser will
result in the automatic transmission of cookies to the T/A service.

3.1 Analysis Flow

Identify cloaking domains. Recall from Section 2 that a domain
is cloaked if a DNS CNAME entry’s name and value attributes are
in different DNS zones (frequently different second-level domains).
Thus to identify whether a website W includes resources from
cloaked domains, TAFinder visits ‘W in a browser and records all
DNS traffic that results from this visit. Subsequently, TAFinder
analyzes this DNS traffic and any DNS resolution that involves a
CNAME record where the Name belongs to the domain of ‘W and
the value belongs to a different domain, is considered a cloaking
domain and hence added to the set Cyy .

Distinguish T/A services from other CNAME uses. TAFinder first
labels cloaking domains in C«y, as T/As if they or their cloaked
counterparts are present in widely used blacklists (e.g., EasyList)
or categorized as such by Virus Total. However, in all likelihood,
this categorization is incomplete and misses domains that are T/A
services. Moreover, unlabeled domains in Cqy may also include
CDNs s that serve T/A content.

To detect T/A services among the remaining domains in Cqy,
TAFinder deploys supervised machine learning. In this case, the
system examines only the cloaking domains instead of the cloaked
domains since it allows to distinguish cases when T/As deliver their
services through CDNs. TAFinder classifies previously unlabeled
cloaking domains in Cy, as T/A or non-T/A by extracting features
from the characteristics of the services provided by T/A domains.

Identify lax access control on cookies. TAFinder extracts cookie
attributes from the HTTP traffic generated when loading a website
‘W 1t specifically monitors W’s cookies where Domain attribute
is set to any ancestor-domain of “W’s host that sent the cookies.
Subsequently, TAFinder verifies cookie leakage iff these cookies are
included in the HTTP requests to the cloaked T/A domains. Finally,
the system also tracks Secure cookies sent by “W.

3.2 TAFinder

Our data collection system consists of the Task Distributor module,
several Workers, DNS processing, and ML-based Detection Units
as shown in Figure 3.

Data to Collect. TAFinder captures DNS and HTTP(S) requests
and responses sent or received by the browser when loading ‘W



and its resources. To examine the traffic, we record all HTTP com-
munications in plaintext.

3.2.1 Data Collection Design Overview. TAFinder is designed in
a pipeline fashion. It accepts a list of websites as input which is
then distributed by the Task Distributor among Workers. Upon
receiving a new ‘W from the Task Distributor, a Worker spawns a
new instance of a crawler. The crawler visits the ‘W while logging
both network packets and plaintext HTTP requests/responses and
eventually transfers the captured data to the DNS Processing Unit.
Notably, Workers run in separate containers, as it allows TAFinder
to easily separate the network traffic from different websites.

3.22 DNS Processing Unit. TAFinder extracts a set of cloaking
domains Cy from any given W as described in Section 3.1. To re-
cap, DNS Processing Unit traverses DNS resolution chains for each
subdomain of a ‘W that involves CNAME aliasing. If a resolution
chain ends with a CNAME that belongs to a third-party, the DNS
Processing Unit marks the corresponding subdomain as a cloaking
domain D.

3.2.3 ML-based Detection Unit. TAFinder starts by identifying do-
mains in Cqy as T/A services using blacklists and Virus Total.
To classify the remaining unlabeled cloaking domains in Cqy as
T/A or non-T/A, TAFinder deploys a supervised machine learning
approach. To this end, we engineered a set of nine features that
capture the behavioral patterns inherent to T/A services as opposed
to other domains. The features are extracted from the HTTP com-
munications with the cloaking domains that arise when visiting
W.In essence, the classifier has to decide for each cloaking domain
D € Cqy whether it is a T/A service or not. We describe our nine
features below.

Feature 1: Number of HTTP requests destined to D over the number
of all HTTP requests when loading ‘W with all included resources.
TAFinder’s first feature originates from the observation that cloaked
CDNs or other non-T/A domains aim at serving the website's con-
tent to a user. Thus, the data transferred from these domains in-
volves a high number of HTTP requests from the user's browser. On
the contrary, websites embed a limited number of resources (e.g.,
beacons) belonging to the T/A domains, which, in turn, requires
only a limited number of the HTTP requests to be generated.

Feature 2: Total size of HTTP responses from D over the sum of
all HTTP response sizes when loading ‘W with all included resources.
T/A domains supply web resources that may vary in size, but cumu-
latively constitute a small part of all data received during a website
visit. Therefore, similar to the first feature, TAFinder compares the
total sizes of HTTP responses from D to the size of all received
HTTP responses.

To illustrate the distribution of HTTP request/response sizes
across cloaked CDNs that serve website content and T/As, we ex-
amined the HTTP traffic generated from visiting cnn.com, the most
popular website that cloaks T/As. As seen in Figure 4, the number
of requests targeting the CDNss is significantly higher than of those
directed to the T/A domains. Similarly, the content delivered by the
CDN:s is significantly bigger in size than the content supplied by
the T/As.

Feature 3: Total number of cookies set by D. TAFinder integrates
this feature since T/A domains often store various user information
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Figure 4: Distribution of requests and response sizes across
cloaking domains for cnn.com

in cookies. Moreover, as shown in previous work by Cozza et.al.
[28] the number of cookies set T/As can be significantly larger in
comparison with other domains.

Feature 4: Number of long cookies over the number of all cookies
set by D. According to TrackAdvisor [44], the number of cookies
where the length of the value field is higher than 35 characters is
also a distinctive feature of T/A domains. Hence, TAFinder extracts
the ratio of long cookies over all cookies observed in the HTTP
responses from D.

Feature 5: Number of traditionally non-targeting cookies set by D.
Regular websites are often powered by various web platforms and
frameworks that require cookies to operate correctly. For exam-
ple, websites created using Asp.Net, frequently use cookies called
ASPSESSIONID to maintain a user’s session. We refer to such cook-
ies as default cookies.

TAFinder’s feature is based on the observation that these plat-
forms and frameworks use recognizable cookie names which may
allow it to identify websites with non-tracking functionality. To
this end, we compiled a set of default cookies that are most fre-
quently sent by non-T/A domains as described in detail in Section
4.2. TAFinder then counts how many times O sends cookies that
belong to the set.

Feature 6: Number of traditionally targeting cookies set by D. T/As
use distinct cookies to store various information about a user across
multiple domains. For instance, a cookie named SIDCC carries
information about a user’s browser history [5]. Therefore, similar
to the previous feature, TAFinder establishes a set of cookies (more
details in Section 4.2) that are traditionally set by T/A domains and
counts how many of these cookies appear in the HTTP responses
from D.

Feature 7: Number of parameters used in a URL query string over
the number of HTTP requests destined to D. Previous work [28]
shows that the number of URL parameters in the request URL is an
indicator of a D pointing to T/A provider. TAFinder incorporates
this signal into its classifier as the average number of parameters
per HTTP request to D.

Feature 8: Number of times when a URL query string to D includes
‘W’s domain as one of the parameter values. This feature is based on
the observation that HT TP requests targeting T/As often contain
information (e.g., the domain name and currently loaded webpage)



about ‘W. Frequently, this information is transferred as a part of
the URL query string, in the form of a parameter value. Therefore,
TAFinder introduces a feature that indicates how many times the
domain of ‘W occurs in URL query strings submitted to D.

Feature 9: The Content-Type feature. T/As often send invisible
images, Javascripts, etc., as shown by Fouad et.al. [33]. Following
this finding, we compiled a list of the corresponding HTTP con-
tent types that resemble those distributed by the T/A services as
described in Section 4.2. TAFinder embeds this feature as a number
(0) and increments it depending on whether the content type in an
HTTP response from D belongs to the list of pre-compiled content
types.

We use these features and train a random forest classifier as
explained in more detail in Section 4.2.

4 IMPLEMENTATION

In this section, we describe the implementation of TAFinder. We
first briefly discuss Data Collection and DNS Processing Units and
then provide relevant data analysis details and decisions for the
ML-based Detection Unit of the system.

4.1 Data Collection and DNS Processing

We realize TAFinder’s first two Units in the following way. To
implement the Task Distributor we leverage RabbitMQ [15], an
open-source message-broker software, that allowed us to scale and
run ten Workers in parallel. The Workers, in turn, are represented by
the independently running Linux containers that include Tcpdump
[22] and MitmProxy [13] (both in default settings)to log both net-
work packets and pain text HT TP requests/responses. Each Worker
uses a crawler powered by Selenium [20], an automated testing tool
for web applications, to start a browser instance (Firefox 71.0) for
each website. After a 15 seconds timeout, the crawler destroys the
browser instance, compresses, and transfers the captured data to
central storage. Finally, the DNS Processing Unit extracts cloaking
domains along with the corresponding cloaked third-party domains
for each website using Python’s Scapy library [17].

4.2 ML-based Detection Unit

Domain Labeling. To label the extracted cloaked domains, TAFinder
relies on multiple sources comprising commonly featured blacklists
and Virus Total [24]. More specifically, TAFinder first deploys no-
tracking’s community-curated blacklist [9] which integrates a vari-
ety of blacklist sources (e.g., EasyList[7] and EasyPrivacy[6]). Based
on this list, TAFinder labels known T/As. Furthermore, TAFinder
labels cloaked domains that are themselves listed in the Majestic
Million dataset but not present on the blacklist, as non-T/A. The
intuition behind this decision is that popular T/A domains would be
included in the blacklist already, and hence flagged appropriately.

To label the cloaked domains in the dataset that were not cov-
ered by either list, TAFinder relies on the categories provided Virus
Total. However, Virus Total consolidates information from several
different sources. As a result, there is no uniform category name
that describes T/A domains. For example, opentracker.net, a domain
that provides T/A services, belongs to ‘premium’, ‘computer and
software’, ‘web analytics’, and ‘computers internet, business econ-
omy’ categories simultaneously. Thus, we empirically established

several category names which Virus Total may use to characterize
T/As including “web analytics”, “web and email marketing”, “ads”
and “advertisements”. It is worth mentioning that both T/As and
CDNss are frequently marked as “information technology”. There-
fore, TAFinder only labels a domain in the “information technology”

category as T/A if it simultaneously is in the “marketing” category.

Feature Extraction. TAFinder extracts all features from Mitm-
proxy’s captures that contain plain text HTTP communications.
The system parses this data using Mitmproxy’s Python module [13].
Two of TAFinder’s features reflect on the presence of traditionally
targeting and non-targeting cookies. Given a large pool of distinct
cookie names to classify, TAFinder only uses the most popular cook-
ies. To this end, we extracted the names of the cookies contained
in HTTP responses from all cloaking domains. We then ranked
the cookies by the number of cloaking domains that sent them. In
the same way, we created two more popularity rankings that are
specific to cookies set by non-T/A and T/A services.

We used the most popular 25 cookies from the general cookie
ranking derived above and 60 cookie names affiliated with the
T/A and non-T/A domains. We categorized these cookies as tar-
geting/advertising cookies in accordance with One Trust’s cookie
classification that is accessible via Cookiepedia [5] or T/A’s own
description, when possible. Based on this approach, we found 27 tra-
ditionally tracking-related and 28 default web application cookies
featured in Table 3 in the Appendix.

In addition, TAFinder also uses a set of 24 pre-compiled content
types for Feature 9 that is provided in Table 4 in the Appendix.
Content types included in this set match the filetypes of resources
that are often supplied by T/A services according to the prior work
[33]. We manually derived this set from IANA’s Common MIME
Types list [4].

Classifier. To classify the cloaking domains TAFinder uses Scikit
Learn’s [18] random forest implementation.

5 EVALUATION

In this section, we present the results acquired using TAFinder and
we discuss the composition of the CNAME cloaking ecosystem.
Moreover, we describe the classification results of TAFinder for
previously unknown cloaking domains. Finally, we demonstrate
how the inclusion of CNAME cloaking combined with the lax access
control settings for cookies impacts the security of web services.

Table 1: Distribution of the cloaked and cloaking domains

Category/# # on Cloaked #of Clogkmg # of Websites
omains Domains
T/A 78 2756 2,271
Others 2,062 29,656 20,504
Total distinct 2,140 32,412 21,184°

We evaluate TAFinder on the 100,000 most popular websites
according to the Majestic Million [12] dataset. We run our experi-
ments in January 2020 and found 93.6 % of our 100,000 dataset to

31s not the sum of the column, because a single website can cloak multiple third-parties
at the same time.



be reachable #. A detailed breakdown of these results is provided
in Table 5 in the Appendix.

5.1 The ecosystem of the cloaked T/A services

Here we provide the overall statistics when evaluating our system
on 100,000 most popular websites.

Websites and web analytics. 21.2 % (21,184) of the websites in
our dataset use CNAME DNS records to alias at least one third-
party domain. Based on the ground-truth labels obtained from the
blacklist and Virus Total (see Section 4.2), 10.7 % (2,271) websites
cloak one or more T/A services. Surprisingly, Virus Total often
categorizes the websites that cloak these services as business and
business and economy. This finding is concerning as websites in
these categories often contain both a user’s financial and private
information. We also found that use of cloaked T/A services heavily
skews towards popular websites as the most popular 10,000 websites
disguise the highest number of T/A services (see Figure 5) which
implies significant cookie leakage risks for a large number of users.

900
800
700
600
500

400

300

200 I

100

’ B | EEE =
1 2 3 4 5 9

6 7 8 10

Websites in Descending Popularity Order
(e.g., 1-> most popular 10k websites)

Number of Cloaked T/As
(per 10k websites)

o

Figure 5: Distribution of T/A domains across websites (by
popularity)

Cloaked Domains. Table 1 shows that 20,504 out of 21,184 web-
sites that use CNAME aliasing integrate domains that provide non-
T/A services. According to Virus Total, these non-T/As are mostly in
the information technology, business and computerandsoftware cate-
gories which include CDN and web hosting services. Among them,
akamaiedge.net is the most popular CDN as shown in Figure 6b
(see Appendix).

The remaining 78 out of 2,140 cloaked domains represent T/A
services. These domains are not equally distributed among the
websites as shown in Figure 6a in the Appendix. For example, Om-
niture alone tracks user activities across 33.9 % (829 out of 2,271)
of the websites. This result confirms the trend presented in prior
work [27, 30] which also shows that a small number of trackers
provide subdomain tracking services for the majority of the web.

4We also excluded websites that redirect their visitors to third-party domains from
our analysis.

5.2 Classification results for cloaking domains

After the labeling procedure detailed in Section 4.2, TAFinder pro-
duced an imbalanced dataset that consists of 29,656 domains point-
ing to non-T/A hosts and 2756 cloaking domains that mask T/A
services as shown in Table 1. Given the high prevalence of non-
T/A, TAFinder uses a random forest (RF) classifier which performs
well in the unbalanced datasets as shown in a prior work [37]. We
assessed the performance of TAFinder’s classifier through 10-fold
cross-validation and report the classification metrics for TAFinder
in Table 6 in the Appendix. Since our dataset is imbalanced, we
include the macro-averaged F1 score that assigns equal weight to
each class, thereby emphasizing well on rare classes (i.e., cloaking
domains) as suggested by Narasimhan et.al. [32].

5.2.1 Newly identified cloaking domains. Overall, using blacklists
and Virus Total, TAFinder discovered 2,128 subdomains that point
to T/A services. The system also classified 29,363 cloaking domains
which were not assigned labels based on the procedure described
in Section 4.2. Among them, we label 20,910 domains that start
with ‘World Wide Web’ (i.e.,www.) as non-T/A as the homepage of
every site will not be hosted on T/A servers °. Out of the remaining
8,453 domains, the classifier labeled 123 as T/A. To verify the clas-
sification results, we manually analyze the HTTP communications
with randomly selected 27 out of 123 domains.

More specifically, we examined the contents fetched from these
domains and manually compared any JavaScript resource with
those from known T/A services. To this end, we compared func-
tions, variable names, and comments. Furthermore, we examined
cookies and the static (i.e., non-script) content received. In this
way, we discovered 11 domains that exhibit clear tracking behavior.
As a prominent example, we found that a website that belongs to
TD bank tracks its visitors through smetrics. td.com (hosted on
taucdn.net). Similarly, CDW Corporation, a leading technology
solutions provider, also deploys Omniture’s analytics services dis-
guised as smetrics.cdw.com (points to akamaiedge.net). While
we were unable to check if TD bank leaks session cookies to the em-
bedded trackers (i.e., we had no customer accounts with the bank),
we found that at least regular cookies that store user preferences
are leaked to its” analytics provider (i.e., Omniture). In the case of
CDW, we were able to register an account. We verified that session
cookies were indeed shared with the analytics provider following
the procedure described in Section 5.3.

Out of the remaining 16 cloaking domains, 3 were falsely classi-
fied. We found that requests to the four domains were either gener-
ated using jQuery scripts that are often used for dynamic content
generation or simply supply statically embedded images. Finally, 4
results were inconclusive (e.g., the corresponding JavaScript files
were either highly obfuscated) and 9 subdomains and websites no
longer existed.

5.2.2  Feature Sensitivity. We also performed Recursive Feature
Elimination (RFE) analysis [16] that allows us to evaluate the rela-
tive contributions, i.e., importance, of the features in our classifier.
RFE calculates the importance of each feature by removing one

5The Firefox browser that we used in our experiments prepends ‘www. to complete
an otherwise naked domain [14, 19]. Therefore, every URL that starts with ‘www. is
likely to point to a homepage of a website.



feature at a time and recalculating the accuracy of our classifier.
As shown in Figure 7, the two features with the most discrimina-
tive power are Feature 2 (ratio of the HTTP response sizes from
a cloaking domain) and Feature 7 (average number of URL query
parameters). This correlates with our expectation of T/A services
that do not supply any of a website’s content. At the same time, the
trackers require meta-information about a page where the HTTP
requests originate from. In the current realm where third-party
cookies are or about to be blocked by the major browsers ([36]
[35], [38]), T/A providers often rely on URL parameters. Notably,
although we only included 27 traditionally targeting cookie names
as one of our features (Feature 6), its significance is higher than the
significance of the long cookies feature (Feature 4), used in previous
work [28], thereby emphasizing its potential.

5.3 Leaking Cookies

In our threat model, cloaked T/A domains receive first-party cookies
via HTTP requests if the first-party explicitly shares the cookies
with all its subdomains. We observed that 1,195 out of 2,271 websites
that cloak T/A services, leak the first-party cookies to one or more
T/A domains. Based on the fact that we have evidence of the above
cookie leakage from web browsing sessions, these results are a
lower-bound estimate. One reason why the true number of affected
cookie-leaking websites can be higher is the impact of the European
General Data Privacy Regulation (GDPR). The GDPR requires user-
consent before any cookies can be sent to a user’s browser. Since
our crawler does not interact with any opt-in mechanisms to accept
cookies, a GDPR-compliant site would not send any cookies to the
crawler and TAFinder cannot analyze whether these cookies would
be leaked. However, we also do not expect the number of websites
that leak their cookies to be drastically higher either: Sanchez-Rola
et.al. [34] discovered that only 2.5% of 2,000 most popular websites
adhere to a user’s tracking opt-out preference.

The impact of cookie leakage is two-fold. First, the T/A services
may acquire session identifiers, authentication tokens, and other
sensitive information. Second, we found that 437 out of 2,271 web-
sites in our dataset communicated with cloaked T/As using plain
text HTTP. Seven websites among these set the Secure attribute
for their cookies, thus ensuring the cookies do not get exposed on
the plain text HTTP channel. However, the remaining 430 sites do
not set the Secure attribute and hence expose their users’ accounts
to an additional threat posed by an on-path network attacker. To
make matters worse, this leak and vulnerability even exists if the
entire first-party site forces HTTPS [39, 43].

5.3.1 Leaked Cookies and Online Accounts. The above discussion
considers a website as vulnerable if any of its cookies are leaked
to a cloaked T/A. However, it is possible that websites configure
their session cookies with appropriate access restrictions via the
Domain attribute. Thus, to investigate how cookie leakage affects
the security of the online user accounts we check whether websites
leak session cookies to the T/As. This, however, is not a trivial
task. There is no comprehensive way to identify cookies that carry
session identifiers. Moreover, establishing an authenticated session
with a website requires logging in or signing up — a highly diverse
activity considering that the majority of the websites in our dataset

do not use common authentication schemes. As such, we were only
able to partially automate this task.

For this assessment, we compiled a set of websites that cloak a
T/A domain and provide “banking”, “financ”, or “shopping” services
according to Virus Total. We consider these categories to be the
most security-sensitive since accounts on such websites usually
collect financial and personal information including billing and
shipping addresses, credit card information, purchase histories, etc.

We then examined whether the cookies shared with the T/A ser-
vices allow access to the user accounts, i.e. contain session cookies.
For every website in our list, we either used an existing account or
created a new one to establish an authenticated session when pos-
sible. We were not able to acquire accounts with several banks and
payment agencies that require financial and personal information
(e.g., a Social Security Number) to register. In this experiment, we
tested every site where we successfully obtained online accounts
as follows. We first manually logged in into our account, recorded
a string that is only shown for an authenticated user (e.g., ‘Account
Balance’) and passed it to a crawling script. The script then ex-
tracted the cookies that were shared with all subdomains of the
tested site during our session. As the next step, in a separate browser
instance running on a device with a different IP address, the script
navigated to the site and injected the collected cookies. Using the
previously recorded string the script finally checked whether our
account could successfully be accessed in the second browser in-
stance. In that case, we marked the tested website as vulnerable
since it leaked session cookies along with others first-party cookies
to a T/A service.

Since this procedure requires manual effort for each analyzed
site, we limited the experiment to 10,000 most popular domains.
After filtering financial service and shopping websites, we ended
up with 119 domains to analyze. We were able to create accounts on
90 of these sites. Concerningly, 27 (see Table 2) of these 90 websites
leak their session cookies, which we confirmed to provide access
to the user’s account, to cloaked T/A services. The majority of the
affected websites are online shopping retailers which often provide
their authenticated users with the ability to manage or save their
store or regular credit cards for further purchases. The situation is
particularly dire in the case of walgreens.com where a malicious
actor was able to obtain the refill prescription and order history
of the user. Note that Walgreens fixed this vulnerability after we
informed them. However, given that they never responded to our
reports, we cannot conclusively claim that the fix was deployed as
a consequence of our reporting. Finally, we found that two major
US banks also expose session cookies to the T/As, granting them
the capability to make payments and obtain the account balance,
rewards, and other financially sensitive information. As mentioned
in the discussion on the threat model, while it is unlikely that well
established T/A providers such as Adobe or TechSolutions will
attempt to illegitimately access user accounts, the accounts still
remain at risk. This is due to the fact that anyone (e.g., disgruntled
or ill-intended T/A administrator) with access to request logs may
takeover the accounts.

Session Respring Vulnerabilities. If implemented properly, server-
side session management should invalidate the session if the au-
thenticated user logs out of the service. Failure to do so opens up



Table 2: Vulnerable vendors from Majestic top 10,000 sites

Domain Majestic Session Session
Name Ranking Hijacking | Respring

walmart.com 478 yes yes
nike.com 551 yes yes
sky.com 602 yes no
bestbuy.com 1,014 yes no
homedepot.com 1,210 yes no
newegg.com 1,546 yes no
walgreens.com 2,305 yes no
overstock.com 2,539 yes yes
victoriassecret.com 3,306 yes yes
staples.com 3,339 yes yes
fnac.com 3,694 yes no
fandango.com 3,953 yes yes
jcpenney.com 4,006 yes no
moodys.com 4,690 yes yes
chegg.com 4,750 yes no
kroger.com 5,538 yes no
indigo.ca 6,097 yes yes
realestate.com.au 6,921 yes yes
hallmark.com 7,194 yes no
carfax.com 7,501 yes no
harborfreight.com 7,766 yes no
westelm.com 7,967 yes no
landsend.com 8,615 yes no
stubhub.com 8,876 yes no
bestbuy.ca 9,664 yes no
bank1.com (undisclosed) | (undisclosed) yes yes
bank2.com (undisclosed) | (undisclosed) yes no

so-called session respiring attacks where the attacker replays stale
session cookies to revive a session that should have been terminated.
In this evaluation, we assessed the 27 sites that leak session cookies
for their vulnerability to session respring attacks. Adding insult
to injury, we discovered that 10 (37 %) websites that leak session
cookies are also vulnerable to session respring attacks, exposing
their users’ accounts to increased risk of take over.

Responsible Disclosure. We disclosed our findings to all of the
affected vendors in the beginning of April 2020. Unfortunately, most
merely provide generic contact forms or regular customer service
contacts. As such, to date, we only received six responses. Among
them is the response from the team that manages a bug bounty
program for one of the US largest banks. ®. The message expressed
indifference towards violating the confidentiality of the session
cookies by exposing them to third-party domains. According to
the team, third-party Javascript served from the cloaking domain
would be treated as first-party code and hence has full access to
all first-party cookies. However, this argument is fallacious since
session cookies can be protected from Javascript access via the
HTTPONly attribute. Unfortunately, several other vendors, including
walgreens.com, have not replied to us, but patched the vulnerabilities
after we informed them.

6 DISCUSSION

In this section, we briefly discuss the limitations of our work and po-
tential mitigations against cookie leakage due to CNAME cloaking
and lax cookie access control.

®Unfortunately, the conditions of the bug bounty program prevent us from publicly
disclosing the identity of the bank.

Limitations. Our work has several limitations. The scope of our
CNAME cloaking analysis is limited to the third-parties included
in the first-party’s homepage. It also excludes cases where websites
sublease one of their subdomains (e.g., coupons.cnn.com). Moreover,
TAFinder monitors cookies received via HTTP responses and can-
not determine the exact origin of the cookies set from Javascript.
The system also uses the default settings for Tcpdump ring buffer
which may result in the packets loss. Therefore, the number of first-
party domains whose cookies are potentially leaked to T/As may
actually be higher than what we reported, as well as the number of
the domains that deploy CNAME cloaking.

Finally, our system uses community-based blacklists to label
domains in our dataset, making its accuracy depend on the accuracy
of the blacklists.

Mitigation mechanisms. To mitigate the security implications of
CNAME cloaking, website owners can simply adjust the cookie
attributes. In particular, websites can restrict the scope of the first-
party cookies by omitting the Domain attribute, in which case cook-
ies will only be shared with the precise host that sets them. More-
over, websites should use the Secure attribute, which will force
user browsers to include the cookies only over HTTPS connections.
Finally, if websites execute third-party Javascript in the first-party
context, they should set their cookies as HTTPOnly to prevent access
to the first-party cookies.

Another approach to handle security concerns related to CNAME
cloaking is to populate blacklists deployed by browser extensions,
such as AdBlock [1] with a list of cloaking domains. However, a
more robust mechanism would allow such extensions to tap into the
DNS resolution process to identify cloaked domains directly. Cur-
rently, this is only possible for extensions on the Firefox browser,
and uBlock Origin [23] already makes use of this functionality.
Once other browsers follow suit, the privacy-enhancing extensions
on these platforms will also be able to block cloaked domains and
restore user security and privacy. However, extensions are always
bandaid solutions and we hence advocate for the more robust solu-
tion of properly configuring access control of session cookies by
the first-party website owner.

7 RELATED WORK

In this section, we briefly summarize existing research on CNAME
cloaking as well as online tracking. We then discuss relevant cookie
leakage scenarios covered presented in the prior work.

7.0.1  CNAME cloaking and other web tracking studies. To the best
of our knowledge, the first work that reported the inclusion of third-
party T/A domains as the first-party is dating back to 2006 [25]. The
paper analyzes how information about a user is gathered across
a wide variety of websites including both visible, i.e. first-party
and hidden, i.e. cloaked domains. In a follow-up paper in 2009 [27],
Krishnamurthy et.al. described a longitudinal study of the 1200
most popular websites with respect to the embedded third-party
domains. The results of the study showed the growth in the use
of the CNAME cloaking technique by 30% in the span of 3 years.
Another work conducted by Wills et.al. [29] found the presence of
316 cloaked T/A domains in at least 1% of popular websites. Wills



et.al. [29] also discuss the limitations of the T/A blocking browser
extensions from the perspective of CNAME cloaking.

Several works have also been dedicated to measuring tracking on
a large sample of the most popular websites. Limbert [45] analyzed
HTTP requests generated by visiting 1 million Alexa websites to
understand the scale and the nature of third-party domains. Later
work by Englehardt et.al. [41] presented the distribution of T/As
among websites, as well as the statistics on the cookie syncing
performed by the T/A domains. Merzdovnik et.al. [31] examined
the efficiency and effectiveness of several popular tracking defenses
on 100,000 popular websites and 10,000 Android applications. The
paper [31] also acknowledges the challenge of blocking tracking
attempts from domains hosted on CDNs.

Dao et.al. [30] concurrently and independently conducted a
measurement of the CNAME cloaking ecosystem of Alexa’s top
300K websites [2]. Our study reports similar results in the general
CNAME cloaking trends such as the distribution of the T/A services
across websites by popularity, category (business and business and
economy), etc. Since we used the Majestic Million [12] dataset that
significantly differs from Alexa’s list [2] as previously shown by
Scheitle et.al. [40], only 31,020 websites were analyzed by both
studies. Moreover, due to the difference in community-supported
blacklists (varying blacklist sources and, potentially, access dates),
the results of both studies cannot be directly compared. In the spirit
of giving back to the community, we will make a list of newly found
subdomains that disguise analytics services based on the most up-
to-date blacklist[9] publicly available. We will also open-source the
list of websites that we found to use CNAME cloaking in this paper.

Generally, as opposed to the privacy-only focus of prior work,
we demonstrate how the combination of CNAME cloaking and
misconfigured cookie access controls lead to serious security issues
where the confidentiality of session cookies is ‘destroyed’.

7.0.2  Cookie Leakage Scenarios.

via CNAME cloaking. Krishnamurthy et.al. [26] described the
potential privacy risks linked to Online Social Networks (OSNs)
embedding third-party T/A domains. In particular, the authors
described how personally identifiable information stored with the
OSNs can be leaked to the trackers through CNAME cloaking.
Krishnamurthy et.al. [26] also observed that 2 out of 12 OSNs leak
the OSN id to the Omniture domain. In our paper, we expand the
analysis of CNAME cloaking deployment to a large number of
websites and reveal the leakage of session cookies to T/A providers.

via HTTP/ mixed content. Several works focus on the cookie ex-
posure due to the use of unencrypted HTTP protocol [39], [42],
[43]. In particular, Englehardt et.al. [42] examine cases when web-
sites connect to T/A domains over HTTP. The paper concluded that
by passively eavesdropping on network traffic, an adversary may
profile users with higher accuracy than conventional methods such
as by comparing IP addresses. Sivakorn et.al. [43] found that 284K
user accounts in their 30 days experiment are susceptible to HTTP
cookie hijacking attack due to the mixed HTTP and HTTPS content.
They detailed the capabilities that an adversary can obtain in major
websites, and also explained how HTTP cookie exposure can be
applied in deanonymizing Tor users. Similarly to these works, we
are also concerned with the use of the HTTP protocol. However, in

our scenario, the adversary can be represented as both a network
attacker and an adversarial T/A service.

8 CONCLUSION

In the web ecosystem where websites often leverage user data to
generate additional revenue or use analytics insights, online user
accounts may be endangered by incorrect use of subdomain track-
ing. In this work, we demonstrated how using CNAME cloaking to
realize the tracking along with the lax access control on first-party
cookies leads to the breach in confidentiality of user session cookies
(i.e., anyone with HTTP request logs can access user accounts). We
also developed a system that is capable of automatically detecting
the presence of cloaked T/A services, and the first-party cookie
leakage. We found that = 10.7 % of the most popular websites deploy
subdomain tracking with nearly Half of them leaking first-party
cookies to the T/As. Given the potential spread of this form of
tracking, we hope that our work brings attention to the issue of the
security of online accounts.
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A.2 Results

Table 5: Overview of the visited 100,000 websites

Number of Websites/ %

No Cloaking 72,409/ 72.4 %
Cloaking a Third-Party 21,184/ 212 %
Unreachable 6,407/ 6.4%

Table 6: Random forest classifier metrics

Metric Random Forest
Accuracy 96 %
Precision 95 %

F1-Score 88 %
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