
CRiOS: Toward Large-Scale iOS Application Analysis

Damilola Orikogbo
Boston University

Boston, USA
dao@bu.edu

Matthias Büchler
Boston University

Boston, USA
mbuchler@bu.edu

Manuel Egele
Boston University

Boston, USA
megele@bu.edu

ABSTRACT
Mobile applications – or apps – are one of the main reasons
for the unprecedented success smart phones and tablets have
experienced over the last decade. Apps are the main inter-
faces that users deal with when engaging in online banking,
checking travel itineraries, or browsing their social network
profiles while on the go. Previous research has studied var-
ious aspects of mobile application security including data
leakage and privilege escalation through confused deputy
attacks. However, the vast majority of mobile application
research targets Google’s Android platform. Few research
papers analyze iOS applications and those that focus on the
Apple environment perform their analysis on comparatively
small datasets (i.e., thousands in iOS vs. hundreds of thou-
sands in Android). As these smaller datasets call into ques-
tion how representative the gained results are, we propose,
implement, and evaluate CRiOS, a fully-automated system
that allows us to amass comprehensive datasets of iOS appli-
cations which we subject to large-scale analysis. To advance
academic research into the iOS platform and its apps, we
plan on releasing CRiOS as an open source project.

We also use CRiOS to aggregate a dataset of 43,404 iOS
applications. Equipped with this dataset we analyze the
collected apps to identify third-party libraries that are com-
mon among many applications. We also investigate the net-
work communication endpoints referenced by the applica-
tions with respect to the endpoints’ correct use of TLS/SSL
certificates. In summary, we find that the average iOS ap-
plication consists of 60.2% library classes and only 39.8%
developer-authored content. Furthermore, we find that 9.32%
of referenced network connection endpoints either entirely
omit to cryptographically protect network communications
or present untrustworthy SSL certificates.

CCS Concepts
•Security and privacy → Software security engineer-
ing; Software reverse engineering;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPSM’16, October 24 2016, Vienna, Austria
c© 2016 ACM. ISBN 978-1-4503-4564-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2994459.2994473

Keywords
ACM proceedings; iOS, Security

1. INTRODUCTION
The App store model is probably the most significant rea-

son for the unprecedented success of mobile smart devices,
such as those powered by Apple’s iOS or Google’s Android
platforms. App stores allow third-party app developers to
offer their software to customers of the respective ecosystem.
As Apple and Google have a vested interest in protecting
their customers (i.e., end-users) from malicious or misbe-
having applications they have implemented various security
mechanisms. For example, every application available on
Apple’s App Store goes through a vetting process that is de-
signed to identify misbehaving applications. While both Ap-
ple and Google claim significant shares of the overall smart
device market, existing security research predominantly fo-
cuses on the Android platform. While we are unaware of
an authoritative reason that explains this imbalance, anec-
dotal evidence suggests that the comparatively open nature
of the Android platform could have contributed to the cur-
rent state of affairs. Unfortunately, this imbalance directly
impacts the insights gained by the security community with
respect to the two platforms. For example, while existing
Android app analysis research is frequently evaluated with
hundreds of thousands of applications (e.g., [19, 20, 25]),
iOS security publications are commonly evaluated on much
smaller datasets ranging from a few([15]), to hundreds([18]),
to a few thousand([14, 17, 23]).

To start narrowing this gap of insights, this work focuses
on the large-scale analysis of iOS applications. To this end,
we identify the lack of a comprehensive app dataset as one
of the most stringent limitations for iOS app analysis. This
is intuitive considering the relative ease with which one can
download Android applications, as opposed to digital rights
management (DRM) protected delivery of iOS apps. Thus,
previous work analyzing iOS apps relied on ad-hoc methods
to collect applications from the official App Store. Further-
more, the mechanisms or datasets obtained by these works
are not publicly available to others which is not conducive
to advancing security research on the iOS platform.

To address this imbalance in datasets between Android
and iOS we propose and implement a fully automated sys-
tem that allows us to download an arbitrary large number
of iOS applications from the Apple App Store. We use this
capability to aggregate a dataset of 43,404 iOS applications.
On the dataset collected, we perform various large-scale
analysis such as library identification and an analysis of the

SSL-certificates used by the apps’ communication endpoints.
In summary, this paper makes the following contributions:

• We present CRiOS, the implementation of our fully
automated iOS application crawler. This system iden-
tifies iOS apps, downloads them and performs the nec-
essary post-processing (e.g., reverting DRM protec-
tions) to convert the application into a representation
suitable for further analysis.

• We evaluate CRiOS and aggregate a dataset of 43,404
iOS applications. This reflects 4.5% of the U.S. App
Store. The size of the dataset and the fact that it spans
all categories featured on the App Store are strong
indicators that our findings are representative.

• As a first step toward the large-scale analysis of iOS ap-
plications, we perform library analysis on our dataset.
This required us to address and solve challenges that
are unique to the iOS ecosystem. Solving the library
identification problem is necessary to correctly assess
the impact of vulnerabilities and avoid over-counting
in most bug finding analysis.

• As many applications interact with remote network
endpoints, we use our dataset to identify these end-
points. We then analyze the security characteristics of
these endpoints by analyzing the SSL/TLS certificates
they serve.

2. APPROACH
At a high level we enable the large-scale analysis of iOS ap-

plications by providing two components. First, we present
CRiOS, our system to collect a comprehensive dataset of
iOS applications in Section 2.1. As the second step, Sec-
tions 2.2 and 2.3 then discuss the analysis we perform on
the collected dataset.

2.1 Application Collecting Infrastructure
The first step in our large-scale analysis of iOS applica-

tions is the creation of a corresponding dataset. To aggre-
gate this dataset we implemented an automated system com-
prising web crawlers and a set of iOS devices. More precisely,
this automated system consists of three distinct parts:

1. Identify all applications available on the App Store

2. Download applications sequentially

3. Decrypt each application to enable further analysis

Figure 1 illustrates how the individual components of this
system interact. First, the CRiOS controller builds an index
of all applications available on the iTunes App Store. Sub-
sequently, the controller sequentially instructs an instance
of the iTunes client software to download applications from
the App Store. The iTunes client is configured to store the
downloaded applications as an ipa1 file on shared storage.
Each downloaded ipa file contains the application’s binary
executable and all resources needed for execution. Unfortu-
nately, the binary executable is encrypted and thus cannot
be used for static analysis. Thus, to decrypt the executable,

1ipa files are structured ZIP archives and are used to trans-
fer applications from the App Store to an iDevice.

Figure 1: CRiOS system design for app collection

the CRiOS controller first installs the applications one-by-
one on physical iOS devices. Although the file’s content only
ever exists on the file system in its encrypted state, the iOS
loader will decrypt the binary (into memory only) during ap-
plication launch. Similar to related work (e.g., [14, 18, 17]),
CRiOS leverages this insight to attach to a running appli-
cation and dump the decrypted contents to the file system.
In the final step, CRiOS then stores the decrypted binaries
on the shared storage. The result of this procedure is a set
of applications which are suitable for the static analysis of
iOS applications including those proposed in this paper.

2.2 Library Identification on iOS
An application consists of a set of classes it operates on.

These classes come from different sources — they either
originate from frameworks, external third-party libraries,
or are developer-authored. Framework classes are not part
of the application binary itself. Rather the corresponding
framework is pre-installed on the iOS device. Only Apple,
by means of an iOS update, has the capability of chang-
ing which frameworks are installed on a device. In con-
trast, both third-party library classes and developer-written
classes are available in the binary itself. In order to pre-
vent code duplication and profit from already implemented
algorithms, apps usually make extensive use of external li-
braries for parts of their functionality. While only Apple can
distribute and install frameworks, there are no such restric-
tions on regular third-party libraries. While Apple-provided
libraries can be more or less conveniently collected2, collect-
ing third-party iOS libraries is much more difficult. Other
approaches like Centroid [13] and AdRisk [22] make use of
pre-defined lists of libraries. Being dependent on such lists
is non-desirable because the complete list of available third-
party libraries is not known in advance. Due to the lack of
a convenient and centralized way of finding such third-party
libraries, we propose an approach towards identifying such
libraries using huge data sets of applications instead of pre-
compiled lists. For our approach we perform the following
steps to identify libraries used by iOS applications:

1. After the ipa file is downloaded from the Apple’s app

2E.g., https://developer.apple.com/library/ios/navigation

store, we use a tool called class-dump [3] to extract a
header file for every available class in the binary file.
Such a file contains information about the class such as
the class name, inheritance information, defined meth-
ods and categories. Having all class information avail-
able for every app provides us a 1:N relation between
the app and the classes it uses.

2. We then track for every class a list of applications that
contain the given class. Intuitively, developer-written
classes only appear in 1 application whereas classes
belonging to a library are likely to appear in different
applications. Therefore the longer the list of applica-
tions for a given class, the bigger the likelihood that
this class is part of a library.

3. To identify different libraries used by a given appli-
cation, we collect all classes of that application that
are used by at least two different applications. These
classes are then clustered based on the prefix and the
cohesion between classes. Initially, we put each class
in its own cluster by building singleton clusters. Later,
they are potentially merged in two different phases.

4. In phase 1, CRiOS merges two clusters in two cases:

(a) All classes in both clusters share a common pre-
fix of at least a predefined length and the prefix
only consists of upper case letters. We leverage
the fact that third-party library classes very often
start with a prefix. E.g., classes belonging to the
Facebook SDK for iOS very often begin with FB,
classes belonging to the Google Mobile Ads SDK
begin with GAD, PDTSimpleCalendar [12] names
its classes with the prefix PDT, or the GPUImage
library [9] names its classes with the prefix GPU.

(b) All classes in both clusters share a common pre-
fix of at least a predefined length (longer than
in case 1) but may consist of lowercase letters as
well. Intuitively, this case is motivated e.g., by
the Flurry library [6] which names its classes with
the prefix Flurry*. At the same time, classes like
“OpenUDID”and“OperationManager”should not
be merged based on the prefix only.

5. In phase 2, CRiOS considers the cohesion between any
class c1 of a cluster lc1 and any class c2 of a cluster
lc2. CRiOS merges clusters lc1 and lc2 if the average
of the n largest cohesions is bigger than a predefined
threshold value. For this step, CRiOS introduces a
penalty factor for the cohesion depending on the length
of the common prefix between two classes. Intuition
dictates that the cohesion between classes that also
share a common prefix has a higher weight than the
cohesion between classes without a common prefix.

Finally, having a set of library classes for a given applica-
tion allows us to analyze, how many classes of an application
originate from a third-party library in our data set of 43,404
applications. If we further consider method invocations, the
level of granularity can be increased to methods as well.

2.3 Network Communications
Mobile applications frequently communicate with back-

end services over the network. The protocol of choice to

implement these communications remains the HTTP pro-
tocol with its “secure” HTTPS counterpart. Although net-
work communications of applications are interesting in and
by themselves, this analysis is particularly timely consider-
ing Apple’s announcement that they will ban applications if
they use unencrypted (i.e.,HTTP) communications starting
by fall 2016 [1]. Thus our results for apps that communicate
via HTTP provide an insight into the developer efforts re-
quired to update existing applications to conform with these
new requirements.

For our analysis of network connection endpoints, we per-
form the following steps:

1. We use regular expressions to extract all HTTPS and
HTTP URLs in our dataset. This provides us a lower
bound of resources an application references via secure
(HTTPS) or insecure (HTTP) means.

2. We extract the domain names for all URLs in this set
and in the case of HTTPS URLs, we query the corre-
sponding hosts for any SSL certificates.

3. We analyze the host and certificate information ob-
tained by the previous step to identify potential secu-
rity issues.

As Apple will force developers in the future to abandon
HTTP communications, we simply analyze how many ap-
plications rely on resources referenced via HTTP.

2.3.1 Analyzing Certificates
To establish a secure HTTPS connection, the server sends

a certificate to the client to authenticate itself to the client.
However, the connection can only be considered secure if the
client verifies the authenticity of the certificate. For certifi-
cates signed by a trusted certification authority (CA), the
iOS networking libraries will perform the necessary verifica-
tion. While we optimistically assume that this verification
logic is implemented correctly [8], we are mostly interested
in certificates that are not signed by trusted CAs. It is
common practice for development teams to develop against
a back-end server that is only equipped with a self-signed
certificate or signed by a CA that is not globally trusted.
In these cases, the developer has to implement the verifi-
cation logic themselves. An interesting study on Android
found that these verification routines are “The most dan-
gerous code in the world” [21]. As there is no reason to
believe that iOS developers are better equipped to make se-
curity decisions than Android developers, we analyze the
SSL certificates served by the network connection endpoints
referenced by the applications in our dataset. To this end,
we evaluate the following characteristics for each application
and certificate we could retrieve:

• If the certificate is signed by a globally trusted CA, we
assume the reference to the corresponding resource is
secure.

• If the certificate cannot be verified by a trusted CA,
we conjecture that the use might be insecure.

• Methods, such as certificate pinning allow develop-
ers to use self-signed certificates securely and thus the
above characterization might be overly aggressive. Thus,
we analyze the corresponding applications for known-
insecure coding patterns that undermine the security
offered by HTTPS connections.

3. IMPLEMENTATION
In this section we provide details about our implementa-

tion of the iOS app collecting system and the implemented
evaluation strategies. In Section 4 we discuss experiments,
results and implications based on these implementations.

3.1 The CRiOS System
As discussed in Section 2.1, the first component in CRiOS

collects a large number of iOS applications in a manner suit-
able for static analysis. We discuss the implementation of
the three necessary steps, (1.) identify, (2.) download and
(3.) decrypt, in the following paragraphs. The full imple-
mentation of CRiOS will be made available under an open
source license.

Identify Applications.
The primary interface to the App Store is the iTunes client

software. Unfortunately, iTunes does not provide a list of all
applications available in the store and only lists up to 200
apps for any of the 24 different categories. Apple’s public
figures indicate that the App Store contains over one million
applications and thus the iTunes based approach is unfortu-
nately insufficient. While the iTunes software remains the
only way to install an application on an iOS device, Apple
maintains web sites for all applications in the App Store.
Thus, we created a simple crawler that enumerates these
web resources and aggregates a list of all applications avail-
able on the App Store.

Download Applications.
Once we identify all applications on the App Store, we can

iterate over all apps and download them locally. To the best
of our knowledge, the only software that can download appli-
cations from Apple’s App Store is iTunes. Thus, we config-
ured a Windows virtual machine where we installed iTunes
and logged into the App Store with a valid Apple ID. Fur-
thermore, we equipped the virtual machine with the neces-
sary functionality to automatically download an application
via iTunes provided the application’s identifier. This was
simplified by the observation that iTunes registers a protocol
handler for the itms URL scheme with the operating system.
Any URL that references a location via the itms scheme
will trigger iTunes to open at the corresponding location.
As applications can be addressed as itms URLs, CRiOS
can navigate iTunes to the corresponding app by opening
the respective URL. For example, itms://itunes.apple.com/
WebObjects/MZStore.woa/wa/viewSoftware?id=1094591345
will navigate to the Pokemon Go app in iTunes.

Once CRiOS navigates iTunes to the corresponding app
page, CRiOS relies on the AutoIT [2] suite of GUI au-
tomation tools to click the install button. Note that click-
ing the button via proper Windows APIs (e.g., SendMes-

sage(hButton, BM_CLICK, ...)) is unfortunately not an
option. The reason is that the iTunes content pane is a
webview rendered with webkit and thus the button is not a
full-fledged GUI element. This additional layer of abstrac-
tion prevents the Windows APIs from directly accessing or
clicking the button.

Once the AutoIT component clicks the button, iTunes will
commence the download and store the application in the
ipa format in the user’s iTunes folder. The ipa format is a
regular zip archive that bundles the application’s executable
with all required resources and meta-information.

Decrypting Application.
As mentioned previously, the executable contents of iOS

applications are encrypted. Thus, before CRiOS can per-
form any meaningful analysis, it has to decrypt these con-
tents. However, the only way we are aware of to decrypt
an application requires that application to be installed on
a real iOS device and then dump the memory contents of
the running application. To integrate this functionality into
the fully automated workflow implemented by CRiOS, we
leveraged the libimobiledevice [10] library and the Clutch
iOS application decryption utility [4]. More precisely, we
leverage the capability of libimobiledevice to install appli-
cations in the ipa format on a USB-connected iOS device
without further user intervention. Once the application is
installed, Clutch is used to dump the decrypted executable
contents of the application. Clutch achieves this functional-
ity by first launching the application on the device. Upon
program launch, the iOS kernel decrypts the application’s
content into memory. Clutch then attaches to the running
process and dumps the now decrypted content to disk.

CRiOS implements this sequence of steps to automati-
cally build a repository of iOS applications that can be sub-
jected to further static analysis.

The Apple App Store and iDevices implement a stringent
digital rights management (DRM) regiment. This DRM
scheme ensures that Apple has full control over the iOS
ecosystem including the devices, market place and appli-
cations. To implement these restrictions, Apple leveraged
various cryptographic techniques and algorithms. More pre-
cisely, Apple uses cryptographic signatures to ensure in-
tegrity of the applications distributed through its App Store.
Furthermore, the binary contents of each application are
symmetrically encrypted. While the cryptographic signa-
tures can be seen as a security mechanism for the user, the
encryption of the executable serves no security purpose other
than obfuscation. Despite no apparent security benefit, the
encryption stops any attempts of statically analyzing iOS
applications in its tracks.

3.2 Library Identification
A prominent feature of the mobile application environ-

ment is the prolific use of third-party libraries. The use of
libraries itself is not unique to the mobile environment, that
is to say commodity applications and systems also provide
and use a plethora of libraries. However, what is charac-
teristic for the mobile environment is the almost exclusive
use of statically linked libraries while commodity applica-
tions predominantly link against dynamic libraries at run-
time. The reason for this stark difference between mobile
and commodity systems is that Apple does not allow ap-
plications to dynamically link against any libraries, other
than the system-provided libraries (i.e., frameworks). Thus,
two distribution models for third-party libraries exist for the
iOS platform. That is, libraries can be distributed in source,
or as static libraries in binary form. Developers then ei-
ther add the library’s source to their project, or instruct the
linker to link the static binary blob into the resulting appli-
cation. Irrespective of what approach the developer follows,
the resulting binary mixes code that is authored by the de-
veloper and by the library author at the same time. How-
ever, this intermingling of provenance poses a challenge for
the attribution of any findings an analysis system produces.
For example, we need to ask for each detected vulnerability,

whether it is the result of a third party developer or whether
the vulnerability affects thousands of applications because it
is contained in a library. Furthermore, if we simply sum up
the occurrences of vulnerabilities, results are prone to over-
counting if they originate from frequently used libraries. To
accurately reflect the impact of results from any analysis
performed on mobile applications, we first need to identify
which parts of an application’s code are developer-authored
and which parts are present due to third party libraries.

To identify libraries we follow a two step approach. First,
we identify classes that appear in multiple applications. The
rationale behind this step is the assumption that a library
should occur in at least two applications. In the second step,
we calculate how closely the classes from the first step in-
teract with each other. The rationale for this step is that
classes from any given library will interact more frequently
than classes from different libraries. In fact, we would ex-
pect that classes from different libraries do not interact with
each other as it is the developer’s discretion that determines
which libraries are linked with the application.

Same Class Multiple Apps.
To identify which classes occur in multiple applications

we extract the class signatures of all classes in our data set.
We define the class signature of a class analogously to the
type signature for individual methods. A method’s type sig-
nature contains the method’s name, number, order, types of
all arguments and return values. We define a class signature
to contain the method signatures for all methods which are
implemented by the class, as well as the names and types of
all fields which are members of the class. CRiOS extracts
the class signatures for all classes in an application with the
help of the class-dump [3] utility. class-dump parses an iOS
application for the class, method and field meta information
of all classes in the app. This information is sufficient to
extract the class signature for all classes in an application.
However, to improve performance when comparing signa-
tures of classes we first topologically sort methods and fields
by their name and hash the result. We can then compare
the hashes of the class signatures to quickly assess which
classes occur in multiple applications and ignore the rest
for the library identification as these are, by definition, not
libraries.

A logical next step would be to identify groups of classes
that always occur together in an application and declare
those groups as libraries. Unfortunately, this approach is
not sufficient as individual groups can easily contain classes
from more than one library. For example, applications could
include a Google library for advertising and the Flurry li-
brary for analytics. The above approach would incorrectly
consider the union of classes of these libraries as a single
entity. Also, if we consider two versions of the same library,
the above scheme alone will fail due to the fact that the
common classes between the versions will be considered a
library and the parts that are unique to either version will
be considered a library as well.

Ideally, however, we would like to identify individual ver-
sions of libraries in their entirety. The reason for identifying
different versions of the same library is different versions can
result in different findings in an analysis. For example, the
library authors might fix bugs and vulnerabilities in newer
versions of their code.

Class Cohesion.
In the above step we identified classes that are contained

in multiple applications. However, to identify libraries them-
selves, we have to address the correct combination of differ-
ent libraries and their versions. To this end, calculate a
class cohesion metric between any of the identified groups
of classes. We define class cohesion between two classes as
the number of method calls between methods of these two
classes. More formally, we denote the methods of class C1

as M1 and the methods of C2 as M2. We then define a bi-
nary relation calls as () 7→M1×M2 over M1 and M2 that
indicates whether a method from M1 can invoke a method
from M2. Finally, class cohesion (CC) is the number of calls
between any methods in M1 and M2 respectively. That is,

CC(C1, C2) = |mi
1 mj

2|+|m
j
2 mi

1| : mi
1 ∈M1,m

j
2 ∈M2

Practically speaking we can easily identify method calls in
an iOS application. However, identifying the callee (i.e., the
target of a call or the mj

2 above) is a challenge. Solving this
challenge would amount to re-constructing the applications’
super control flow graph.

Instead of precisely solving for the calls relation we cal-
culate a conservative over-approximation. To this end, we
first extract the class hierarchy for all classes contained in
an application. The class hierarchy captures inheritance re-
lationships between classes, as well as the method signatures
for all methods implemented in a class.

The message passing system in Objective-C requires that
the selectors are passed as an argument to the dynamic dis-
patch routines in the runtime. A selector is the name used
to select a method to be executed by an object and is a
unique identifier that replaces the developer given method
name when the source code is compiled. To pass a selec-
tor as an argument, it must be referenced prior to the call.
Thus, our analysis first builds a relation that identifies for
all methods the set of selectors used within the body of that
method. In a second step, our analysis matches the inferred
selectors with the information in the class hierarchy. More
precisely, it identifies all methods whose name corresponds
to the selector. This procedure is similar to the class hi-
erarchy analysis proposed in [16]. With the calls relation
evaluated for all methods in an application, we could simply
calculate CC(C1, C2) for all pairs of classes per application.
However, our analysis is only concerned with library identifi-
cation, thus we only need to compute CC for pairs of classes
identified in the first step of the analysis.

Finally, we identify libraries as sets of classes whose class
signatures occur in multiple applications and the class cohe-
sion between pairs of such exceeds a threshold τ .

3.3 Network Communication
As mentioned in Section 2.3, we identify and analyze net-

work resources that applications explicitly reference.

Extracting URLs.
To identify which network resources an application ref-

erences we relied on regular expressions that match HTTP
and HTTPS URLs. Due to its heuristic nature, this ap-
proach is prone to false positives and false negatives. As the
regular expression matches strings in the application in a
context-insensitive manner, references to an identified URL
could be confined to dead code in the program. As dead
code will never execute, the URL would never be requested

at runtime. False negatives arise when an application uses,
for example, string concatenation to construct a URL at
runtime, instead of statically storing the URL in the binary.
However, false negatives of this kind only arise if the protocol
scheme and the domain name are combined at runtime. In
most cases we observed, the application stores the protocol
and domain name as a prefix and then creates the remaining
parts (e.g., path, query parameters and anchor) of the URL
dynamically. In all these cases, the regular expression will
identify the correct value.

After identifying the URLs contained in our dataset, we
grouped them with respect to scheme and domain name.

Using the results from the previous step, we determined
the fraction of apps that connected to each external resource.
As 100% of the applications refer to Apple’s servers to ob-
tain certificates used to verify signed application content,
we removed references to any Apple domains from further
processing.

HTTPS and HTTP Accesses.
Based on the above results we classified each application

into one of three groups:

• Application exclusively references HTTPS resources

• Application exclusively references HTTP resources

• Application uses both protocols

3.3.1 HTTPS Certificates
The use of HTTPS provides the facilities to establish se-

cure connections. However, this requires that the server
sends a certificate to the client for authentication. We as-
sume an application correctly verifies a server’s certificate if
the certificate is signed by a trusted CA. The reason for this
trust is based on the observation that for such certificates,
the validation is performed by the iOS network libraries and
the developer does not have to interfere. Thus, for all ex-
tracted HTTPS URLs we perform the following steps.

1. Extract and visit the domain from the URL

2. Obtain server-provided certificate

3. Attempt to validate the certificate

To fetch the certificate chains from domains referenced
via HTTPS URLs we used OpenSSL’s s_client SSL/TLS
client program [11]. At the same time, we attempted to
verify the certificate chains and recorded any errors if the
certificate chains could not be fully validated.

4. EVALUATION
In this section we first provide details about the collected

iOS applications. Subsequently, we discuss the results we
obtained by applying our analysis to the dataset.

4.1 Application Dataset
We continuously ran CRiOS for a period of roughly 4

weeks on the U.S. App Store. During this time, we identi-
fied a total of 957,237 applications and downloaded 88,480
or 9.2%. CRiOS attempted to decrypt the executable con-
tent of all these apps, and succeeded for 45,482 to provide us

with a dataset that spans 4.8% of the U.S. App Store. Un-
fortunately, CRiOS was not able to decrypt all of the appli-
cations we downloaded. This is due to various reasons, such
as device incompatibility, or iOS version requirements our
setup does not fulfill. More specifically, our current setup
of CRiOS is equipped with two iPod Touch devices. Thus,
applications that require iPhone or iPad devices cannot be
installed or analyzed on our infrastructure. However, we
can easily alleviate this restriction by adding devices from
these categories to our setup. Furthermore, there is no iPod
application out of the 88,480 apps that does not run on an
iPhone. Furthermore, the latest iOS version installed on
the devices in our current environment is iOS 8.1.1. Thus,
applications that require newer versions of iOS cannot be
analyzed with our current setup either. Recall that CRiOS
requires that the iOS devices it uses are jailbroken. We can
address the iOS version limitation similarly to the device
limitation stated above. Provided a jailbreak for newer iOS
versions, we can simply add devices that run these newer
versions of iOS to CRiOS without further changes. Table 1
details these numbers broken down by categories, how many
applications we could download, how many we analyzed, and
how many applications can be obtained free of charge.

4.2 HTTPS vs. HTTP
Of the 43,404 applications we analyzed, we found that 96%

referenced a total of 69,504 unique domains. As shown in Ta-
ble 2, 14,265 of the 69,504 references were to HTTPS URLs,
while 55,239 were to URLs via the HTTP scheme. Upon
further inspection of the 41,713 applications that referenced
external resources, 31,055 applications made connections to
secure HTTPS services while 40,866 applications made con-
nections to insecure HTTP domains.

Table 3 shows the classification of the applications and
their use of the different transfer protocols. 25.6% of the
applications reference external resources strictly via HTTP,
while only 2.80% rely strictly on HTTPS.

4.3 SSL Certificates
As part of the analysis, CRiOS attempts to determine

how many HTTPS servers present valid certificates issued
by well-known CAs. Beyond certificates that can be easily
verified, we wanted to determine the prevalence of self-signed
certificates among the network connection endpoints refer-
enced by the apps in our dataset. As described in Section 4,
we requested the certificates from all domains referenced via
HTTPS URLs. While validating the resulting certificates,
we encountered eight different error codes. Figure 2 shows
the distribution of domains that returned the different errors
and Table 4 explains the cause of the errors.

Of the 14,265 HTTPS servers requested, we were able to
connect to 80% (11,996) of them and examine the certifi-
cates. A closer inspection revealed that about 2% (218) of
the domains had expired certificates (one in particular dat-
ing back to 2006) and 1.75% (210) of the domains had a self-
signed certificate anywhere in the certificate chain. Figure 3
shows the range of expiration dates on the certificates from
the HTTPS servers. From the range of expiration dates,
we can see that some developers are accessing servers with
expired certificates and are not validating the HTTPS cer-
tificates properly.

For applications within our dataset that referenced HTTPS
resources (31,055) shown in Table 3, we queried the appli-

Category on iTunes Free (%) Downloaded (%) Analyzed (%)
Games 262,176 187,353 (71.5) 18,964 (7.2) 8,691 (3.3)
Entertainment 99,576 72,523 (72.8) 13,066 (13.1) 6,705 (6.7)
Education 95,945 60,614 (63.2) 8,372 (8.7) 3,942 (4.1)
Lifestyle 81,899 67,906 (82.9) 8,434 (10.3) 4,326 (5.3)
Productivity 52,667 39,129 (74.3) 5,059 (9.6) 2,678 (5.1)
Business 33,295 32,299 (97.0) 2,200 (6.6) 1,180 (3.5)
Books 32,259 15,815 (49.0) 3,290 (10.2) 1,428 (4.4)
Finance 30,405 26,423 (86.9) 3,406 (11.2) 2,024 (6.7)
Health & Fitness 29,187 20,994 (71.9) 2,007 (6.9) 1,100 (3.8)
Food & Drink 28,568 24,335 (85.2) 1,555 (5.4) 907 (3.2)
Medical 28,200 20,170 (71.5) 2,588 (9.2) 1,380 (4.9)
Utilities 26,557 21,813 (82.1) 2,954 (11.1) 1,591 (6.0)
Navigation 23,030 12,371 (53.7) 2,482 (10.8) 1,650 (7.2)
Travel 18,468 15,045 (81.5) 1,744 (9.4) 1,010 (5.5)
News 18,429 17,014 (92.3) 3,312 (18.0) 1,980 (10.7)
Reference 18,358 13,307 (72.5) 2,419 (13.2) 1,143 (6.2)
Photo & Video 17,714 11,541 (65.2) 1,235 (7.0) 624 (3.5)
Social Networking 12,166 10,932 (89.9) 1,168 (9.6) 645 (5.3)
Music 11,692 8,476 (72.5) 1,315 (11.2) 743 (6.4)
Magazines & Newspapers 11,386 11,185 (98.2) 1,219 (10.7) 731 (6.4)
Sports 10,986 8,438 (76.8) 934 (8.5) 536 (4.9)
Catalogs 10,445 9,374 (89.7) 338 (3.2) 207 (2.0)
Shopping 3,296 3,218 (97.6) 354 (10.7) 217 (6.6)
Weather 533 373 (70.0) 65 (12.2) 44 (8.3)
Total 957,237 710,648 (74.2) 88,480 (9.2) 45,482 (4.8)

Table 1: Breakdown of applications by category on iTunes and in our dataset

Unique Domains
HTTP 55,239
HTTPS 14,265
Total 69,504

Table 2: Number of unique domains referenced by
HTTP and HTTPS URLs

Protocol Scheme # of Applications
HTTP 10,658
HTTPS 847
Both 30,208
Total 41,713

Table 3: HTTP(S) resources referenced in apps

245
233

218
209

173

37

1
0

50

100

150

200

250

300

Error 20 Error 21 Error 10 Error 27 Error 18 Error 19 Error 26

N
um

be
r o

f O
cc

ur
re

nc
es

Certificate Error Codes

OpenSSL Certificate Errors

Figure 2: Number of domains that output SSL er-
rors during certificate validation

Error Code Description
0 Verification OK
10 Certificate has expired
18 Self signed certificate
19 Self signed certificate in certificate chain
20 Unable to get local issuer certificate
21 Unable to verify the first certificate
26 Unsupported certificate purpose
27 Certificate not trusted

Table 4: Description of OpenSSL error codes

cation for known insecure certificate validation method calls
to see whether the certificate validation is actively bypassed
by the developer. More specifically, we analyzed whether
the corresponding applications invoke allowsAnyHTTPSCer-

tificateForHost or setAllowsAnyHTTPSCertificate. We
examined our dataset and discovered that 1% (344) appli-
cations made use of the iOS methods.

4.4 Third-party Libraries
As described in Section 1 we initially downloaded 43,404

applications from the app store. Out of these applications,
43,059 application binaries can be successfully processed by
class-dump [3] and therefore can be used for identifying li-
braries. For this evaluation, we considered four different
libraries: GPUImage [9], PDTSimpleCalendar [12], Flurry
Analytics [6] and Google Analytics [7]. The GPUImage li-
brary [9] is open source. We downloaded two different ver-
sions of this library. Core-v1 refers to the GIT commit ID
167b038 on May 26, 2016, whereas Core-v2 refers to the GIT
commit ID 56300d1 on Feb 23, 2015. Open source libraries
very often contain example applications and test cases as
well. It is likely that a developer removes such additional
resources before releasing the app, so we evaluate our ap-
proach on the core library if possible. The GPUImage core

0

50

100

150

200

250

300

350

400

5/28/05 2/22/08 11/18/10 8/14/13 5/10/16 2/4/19

N
um

be
r o

f C
er

tif
ica

te
s

Expiration Dates

Certificate Expiration Dates

July 2016

Figure 3: Aggregate expiration dates of SSL certifi-
cates

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#
 l
ib

ra
ry

 c
la

ss
e
s

/
#

 t
o
ta

l
cl

a
ss

e
s

Percentage of applications

Figure 4: CDF of Library Classes over Applications

library (Core-v1) contains 173 classes, while Core-v2 con-
tains 165 classes. The PDTSimpleCalendar library [12] is
open source as well. The core library with the GIT commit
ID d79e4ce contains 5 classes. In contrast, Flurry [6] and
Google Analytics [7] are closed source libraries. To eval-
uate our approach on closed code libraries, we need a list
of classnames that belong to these libraries. Since class-

dump does not support analyzing static libraries directly, we
compiled two standard sample applications which include
Flurry and Google Analytics respectively. In the next step,
we used class-dump to analyze these sample applications.
Using this approach, Flurry (version 7.6.6) consists of 73
classes, whereas Google Analytics (version 3.16.0) consists
of 250 classes.

As described in Section 2.2, CRiOS identifies libraries by
generating sets of classes (called library footprints), that rep-
resent these libraries. To evaluate the quality of these library
footprints, we randomly selected for each library an iOS ap-
plication from which we know by manual inspection, that
the application makes use of the given library. CRiOS then
generates the library footprints for these applications and
we compare them to the list of library classes.

For each application, we generate four different sets. TP
is the set intersection between the classes determined by
CRiOS and the downloaded library. FP is the set difference

between the classes determined by CRiOS and the down-
loaded library. These classes are reported by CRiOS but
are not part of the downloaded library. FN is the set dif-
ference between classes belonging to the downloaded library
and classes reported by CRiOS. These classes are missed by
CRiOS, although they belong to the library. Finally, TN is
the set of classes of the application that belong to neither
the library nor are reported by CRiOS. With these sets, we

calculate the True Positive Rate as TPR = |TP |
|TP |+|FN| and

the False Positive Rate as FPR = |FP |
|FP |+|TN| . Table 5 lists

the selected applications and the corresponding results.
For app2, CRiOS generates a library footprint that is

identical to the set of classes of the PDTSimpleCalendar
library. For app1, the TPR is 97.2% with a FPR of 0.0%.
Manually inspecting the false negative classes, CRiOS misses
two classes with the prefix PodsDummy. These classes are as-
sumed to be library classes, because our approach to gen-
erate a list of classes from closed code libraries uses co-
coapods [5], while we assume that app1 does not. For app3,
CRiOS reports a TPR of 96.96% because the false negative
set contains 5 classes all starting with the prefix GPUIm-

age* that are all missed. Therefore, app3 most likely use
a different version of the GPUImage library than we con-
sidered for this evaluation because class-dump does not re-
port them in the first step. Nevertheless, if class-dump had
reported them, CRiOS would have included them in the
footprint, since they share an uppercase prefix of length 4.
For app4, CRiOS reports a TPR of 91.9% with a FPR
of 0.46%. App4 contains a class called GPUimageDirec-

tionalSobelEdgeDetectionFilter, which is reported as a
false positive. This classname contains a typo (char 4 is a
lowercase i instead of an uppercase i) and is corrected in
Core-v1, but not in Core-v2. Since Objective-C inherits the
case sensitivity from C, CRiOS considers these as differ-
ent classes. Therefore, this class is not reported as a false
positive using Core-v2. Finally, CRiOS reports a TPR of
97.6% and a FPR of 0.34% for app5. This app is partic-
ularly interesting because it demonstrates the necessity of
combining the two strategies based on prefixes and cohe-
sion. For the Google Analytics library, CRiOS combines
several classes with no shared prefix at all to the same li-
brary footprint (e.g., GSD*, FIR*, ACP* and GAI*). For this
app, CRiOS reports a false positive because it includes a
class named FIRInstanceID-FIRApp in the library footprint,
which is not part of the downloaded version of Google An-
alytics. Based on the classname, it is very likely this class
is part of the Google Analytics library, but probably in a
different version. In terms of false negatives, CRiOS re-
ports 6 classes (FIRAAudienceComparisonValues, FIRANet-
workLogger, GGLConfiguration, GMRConfiguration, Pods-
Dummy_Pods_test, GGLContext). Three classes (FIR*) are
not reported by class-dump in the first step. The other
three classes are missed in the phase where the cohesion is
used to merge different sets of classes.

Finally, we calculated the fraction of library classes out of
all identified classes for each of the 43,059 applications. Fig-
ure 4 shows the cumulative distribution function of library
classes over applications. The figure illustrates that about
half of the applications consist of up to 71.2% library classes,
while the average of library classes over all 43,059 iOS ap-
plications is 60.2%. Furthermore, 70.9% of all apps consist
of more library classes than developer-written classes. Our

AppName Version ID Category Library TPR FPR
1 Fertilizer Removal by Crop 1.4.2 520209986 Reference Flurry 0.9726 0.0
2 WVCCU Mobile Banking 3.0.0 500495547 Finance PDTSimpleCalendar 1.0 0.0
3 Live Kaleidoscope Free 2.1 364924172 Photo & Video GPUImage (v2) 0.9696 0.0
4 Live Kaleidoscope Free 2.1 364924172 Photo & Video GPUImage (v1) 0.919 0.0046
5 Radio1 - La première FM de Tahiti 3.1 368606346 Music Google Analytics 0.976 0.0034

Table 5: iOS Applications for Library Evaluation

analysis further shows that about 569 applications consist
of more than 90% library classes and 107 applications are
reported to consist of library classes only. An explanation
for this number could be that all developer-authored code is
provided in the skeleton class(es) that XCode generates or
the application logic is written in C or C++.

5. DISCUSSION
As our CRiOS operates on real-world large-scale iOS apps,

it is subject to internal and external threats to validity.
Internal Threats to Validity. Of particular concern

regarding threats to the internal validity of our analysis is
the calls relation we use to determine the class cohesion met-
ric described in Section 3.2. Our approximation for the calls
relation is based exclusively on the method’s name and a
name collision could lead to the incorrect grouping of an un-
related class in a library cluster. For this to occur, the name
collision must occur with the methods of a legitimate class
in the cluster and thus, libraries are identified to contain
spurious member classes.

External Threats to Validity. Our dataset and there-
fore analysis exclusively consists of applications that can be
downloaded from the App Store for free. It is thus possi-
ble that the same analysis we conducted on these free apps
could result in different results if the dataset consisted of
paid applications. For example, developers of paid appli-
cations might be more diligent when encrypting network
communications or paid applications might contain differ-
ent amounts of developer-authored or library code. While
the constitution of the dataset can have such effects, the
methods we presented should be equally applicable to paid
applications too.

6. RELATED WORK
Viennot et al. [25] performed an analysis of Android appli-

cations available in the Google Play store. They developed a
crawler that downloaded over 1.1M applications. The anal-
ysis mainly focuses on the evolution of these apps over time,
the library usage and its impact on application portability,
duplications of apps and the ineffectiveness of authentica-
tion mechanisms. While Viennot et al. [25] focus on An-
droid Java applications, our work considers iOS applications.
Thus, our approach needs to decrypt the .text segment of
an iOS application binary with the user’s private key. In
terms of security tokens, we do not rely on known formats
of such tokens but tried to identify tokens where the syntax
is not known a priori. Furthermore, we analyzed the appli-
cations with respect to HTTP vs. HTTPS connections and
inspected the corresponding certificates for potential secu-
rity breaches.

Egele et al. [18] analyzed iOS applications specifically for
privacy leaks. As part of their contribution, they developed
a novel approach and a tool called PiOS. Their approach

is based on a static data flow analysis and the authors ap-
plied it on a data set of 1,400 iPhone applications. Egele
et al. [18]’s approach differs in regard to CRiOS in that we
contribute with a scalable crawler for iOS applications that
allowed us to download and decrypt more than 40k applica-
tions. Therefore the applied evaluation metrics are based on
a much bigger set of apps and allows us to consider multiple
security aspects.

Ma et al. [24] published a third-party library detection
approach for Android applications. LibRadar uses static
analysis techniques to detect such libraries. Both LibRadar
and our approach consider binaries and do not consider pre-
compiled lists of known third-party libraries. Furthermore,
both approaches are clustering- and hashing-based. Nev-
ertheless, identifying libraries fundamentally differs for An-
droid and iOS applications because iOS applications do not
know the concept of package hierarchies and Objective-C
applications are message-based. The latter is crucial for pre-
cisely determining cohesion between classes. Since our ap-
proach for iOS applications can not leverage hierarchies, we
consider class cohesion information. Finally, while Ma et al.
[24] use hashing of so called static code features, character-
istics that cannot be obfuscated, our approach uses hashing
not on the basis of class interactions but to identify unique
class signatures, including method, property and interface
signatures.

Chen et al. [14] published an approach for identifying po-
tentially harmful libraries both on Android and iOS. It is
based on the fact that many libraries are offered for both
systems. The approach first builds clusters of similar pack-
ages in Android applications since library identification is
very simple for Android applications. These libraries are
then analyzed with the help of anti-virus services to iden-
tify harmful ones. By considering invariant features between
Android and iOS libraries, the corresponding iOS version of
the harmful Android library is identified. To conclude that
the iOS library is harmful, the approach maps suspicious
behavior in the iOS library to corresponding behavior in
the Android variant. Our work substantially differs by the
fact that our approach identifies libraries directly from the
iOS binary, without the detour to corresponding Android
libraries.

Chen et al. [13] also published an approach to detect clones
in Android applications. The approach determines the sim-
ilarity between methods leveraging geometry characteristics
of dependency graphs. Both our and Chen et al. [13]‘s ap-
proach share the task to identify third-party libraries, but
differ because Chen et al. [13] address Android applications,
and uses library whitelists. Our approach does not depend
on such pre-defined lists.

Finally, Grace et al. [22] published an approach which
requires the identification of third-party libraries as well. For
this approach, our work differs almost in the same way as for

Chen et al. [13]. Grace et al. [22] approach is again based on
a pre-defined list of 100 distinct ad libraries. Furthermore,
the approach is dedicated to Android applications.

7. CONCLUSION
Large-scale mobile application analysis is mainly confined

to the Android ecosystem. We observe that one of the rea-
sons might be that collecting a representative dataset of iOS
applications is significantly more challenging to achieve. To
narrow this gap, we present CRiOS, a system which lets
us aggregate large datasets of iOS applications suitable for
subsequent analysis. With the help of CRiOS we collect a
dataset of 43,404 iOS applications and subject them to two
large-scale analysis. First, we perform library identification,
and find that an average iOS application consists of 60.2%
library classes. We also analyze the network connection end-
points that applications reference to identify which applica-
tions need to be updated to conform to Apple’s upcoming
HTTPS-only requirements. Furthermore, we analyze how
these endpoints use SSL certificates to secure communica-
tions with their mobile applications, and detect apps that
might validate SSL certificates incorrectly. By making our
implementation of CRiOS available to the community, we
hope to positively affect the research into iOS applications.

References
[1] https://techcrunch.com/2016/06/14/apple-will-

require-https-connections-for-ios-apps-by-the-end-of-
2016.

[2] https://www.autoitscript.com/site/autoit.

[3] http://stevenygard.com/projects/class-dump.

[4] https://github.com/KJCracks/Clutch.

[5] https://cocoapods.org.

[6] https://developer.yahoo.com/flurry/docs/analytics.

[7] https://www.google.com/analytics.

[8]
https://nakedsecurity.sophos.com/2014/02/24/anatomy-
of-a-goto-fail-apples-ssl-bug-explained-plus-an-
unofficial-patch.

[9] https://github.com/BradLarson/GPUImage.

[10] http://www.libimobiledevice.org.

[11] https://www.openssl.org/docs/manmaster/apps/s
client.html.

[12] https://github.com/jivesoftware/PDTSimpleCalendar.

[13] K. Chen, P. Liu, and Y. Zhang. Achieving Accuracy
and Scalability Simultaneously in Detecting
Application Clones on Android Markets. In
Proceedings of the 36th International Conference on
Software Engineering, ICSE. ACM, 2014.

[14] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee,
X. Wang, B. Ma, A. Wang, Y. Zhang, and W. Zou.
Following Devil’s Footprints: Cross-Platform Analysis
of Potentially Harmful Libraries on Android and iOS.
In 37th IEEE Symposium on Security and Privacy,
IEEE S&P, 2016.

[15] L. Davi, R. Dmitrienko, M. Egele, T. Fischer, T. Holz,
R. Hund, S. Nürnberger, and A.-r. Sadeghi. MoCFI: A
framework to mitigate control-flow attacks on
smartphones. In 19th Annual Network and Distributed
System Security Symposium, NDSS. The Internet
Society, 2012.

[16] J. Dean, D. Grove, and C. Chambers. Optimization of
Object-Oriented Programs Using Static Class
Hierarchy Analysis. In Proceedings of the 9th
European Conference on Object-Oriented
Programming, ECOOP. Springer-Verlag, 1995.

[17] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu.
iRiS: Vetting Private API Abuse in iOS Applications.
In Proceedings of the 22Nd ACM SIGSAC Conference
on Computer and Communications Security, CCS.
ACM, 2015.

[18] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS:
Detecting Privacy Leaks in iOS Applications. In
Proceedings of the Network and Distributed System
Security Symposium, NDSS. The Internet Society,
2011.

[19] M. Egele, D. Brumley, Y. Fratantonio, and
C. Kruegel. An Empirical Study of Cryptographic
Misuse in Android Applications. In Proceedings of the
2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS. ACM, 2013.

[20] Y. Fratantonio, A. Machiry, A. Bianchi, C. Kruegel,
and G. Vigna. CLAPP: Characterizing Loops in
Android Applications. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software
Engineering, ESEC/FSE. ACM, 2015.

[21] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai,
D. Boneh, and V. Shmatikov. The Most Dangerous
Code in the World: Validating SSL Certificates in
Non-browser Software. In Proceedings of the 2012
ACM Conference on Computer and Communications
Security, CCS. ACM, 2012.

[22] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi.
Unsafe Exposure Analysis of Mobile In-app
Advertisements. In Proceedings of the Fifth ACM
Conference on Security and Privacy in Wireless and
Mobile Networks, WISEC. ACM, 2012.

[23] J. Han, Q. Yan, D. Gao, J. Zhou, and R. H. Deng.
Comparing Mobile Privacy Protection through
Cross-Platform Applications. In 20th Annual Network
and Distributed System Security Symposium, NDSS.
The Internet Society, 2013.

[24] Z. Ma, H. Wang, Y. Guo, and X. Chen. LibRadar:
Fast and Accurate Detection of Third-party Libraries
in Android Apps. In Proceedings of the 38th
International Conference on Software Engineering
Companion, ICSE. ACM, 2016.

[25] N. Viennot, E. Garcia, and J. Nieh. A Measurement
Study of Google Play. In The 2014 ACM International
Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS. ACM, 2014.

