
An Empirical Study of Cryptographic Misuse
in Android Applications

Manuel Egele, David Brumley
Carnegie Mellon University

{megele,dbrumley}@cmu.edu

Yanick Fratantonio, Christopher Kruegel
University of California, Santa Barbara

{yanick,chris}@cs.ucsb.edu

ABSTRACT
Developers use cryptographic APIs in Android with the intent
of securing data such as passwords and personal information
on mobile devices. In this paper, we ask whether developers
use the cryptographic APIs in a fashion that provides typical
cryptographic notions of security, e.g., IND-CPA security. We
develop program analysis techniques to automatically check
programs on the Google Play marketplace, and find that
10,327 out of 11,748 applications that use cryptographic APIs
– 88% overall – make at least one mistake. These numbers
show that applications do not use cryptographic APIs in a
fashion that maximizes overall security. We then suggest
specific remediations based on our analysis toward improving
overall cryptographic security in Android applications.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

Keywords
Software Security, Program Analysis

1 Introduction
Developers use cryptographic primitives like block ciphers
and message authenticate codes (MACs) to secure data and
communications. Cryptographers know there is a right way
and a wrong way to use these primitives, where the right
way provides strong security guarantees and the wrong way
invariably leads to trouble.

In this paper, we ask whether developers know how to use
cryptographic APIs in a cryptographically correct fashion.
In particular, given code that type-checks and compiles, does
the implemented code use cryptographic primitives correctly
to achieve typical definitions of security? We assume that
developers who use cryptography in their applications make
this choice consciously. After all, a developer would not likely
try to protect data that they did not believe needed securing.
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We focus on two well-known security standards: security
against chosen plaintext attacks (IND-CPA) and cracking
resistance. For each definition of security, there is a generally
accepted right and wrong way to do things. For example,
electronic code book (ECB) mode should only be used by
cryptographic experts. This is because identical plaintext
blocks encrypt to identical ciphertext blocks, thus rendering
ECB non-IND-CPA secure. When creating a password hash,
a unique salt should be chosen to make password cracking
more computationally expensive.

We focus on the Android platform, which is attractive
for three reasons. First, Android applications run on smart
phones, and smart phones manage a tremendous amount of
personal information such as passwords, location, and social
network data. Second, Android is closely related to Java, and
Java’s cryptographic API is stable. For example, the Cipher

API, which provides access to various encryption schemes has
been unmodified since Java 1.4 was released in 2002. Third,
the large number of available Android applications allows
us to perform our analysis on a large dataset, thus gaining
insight into how developers use cryptographic primitives.

One approach for checking cryptographic implementations
would be to adapt verification-based tools like the Microsoft
Crypto Verification Kit [7], Murϕ [22], and others. The
main advantage of verification-based approaches is that they
provide strong guarantees. However, they are also heavy-
weight, require significant expertise, and require manual
effort. The sum of these three limitations make the tools
inappropriate for large-scale experiments, or for use by day-
to-day developers who are not cryptographers.

Instead, we adopt a light-weight static analysis approach
that checks for common flaws. Our tool, called CryptoLint,
is based upon the Androguard Android program analysis
framework [12]. The main new idea in CryptoLint is to
use static program slicing to identify flows between crypto-
graphic keys, initialization vectors, and similar cryptographic
material and the cryptographic operations themselves. Cryp-
toLint takes a raw Android binary, disassembles it, and
checks for typical cryptographic misuses quickly and accu-
rately. These characteristics make CryptoLint appropriate
for use by developers, app store operators, and security-
conscious users.

Using CryptoLint, we performed a study on crypto-
graphic implementations in 11,748 Android applications.
Overall we find that 10,327 programs – 88% in total – use
cryptography inappropriately. The raw scale of misuse indi-
cates a widespread misunderstanding of how to properly use
cryptography in Android development.
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We find there are exacerbating factors, and suggest reme-
diations. First, while current developer tools can check a
number of security properties, using cryptography correctly
is not one of them. Adding light-weight checks, such as
in CryptoLint, would improve security. Second, imple-
mentations abstract away semantic assumptions about the
correct use of cryptographic primitives. For example, the
documentation for CBC encryption does not state that the
initialization vector should not be a constant. Adding a secu-
rity discussion to cryptographic API documentation would
address this problem. Third, the default behavior in crypto-
graphic libraries is often not a recommended practice. For
example, the predominant Android Java security provider
API defaults to using the ECB block cipher mode for AES
encryption. To remedy this problem, we suggest changing
the default behavior to a more secure variant.

Contributions: Overall, our contributions are:

• We propose light-weight static analysis techniques and
tools that can catch common cryptographic misuses
(§5). Application developers and app store maintainers
can use the tools to identify likely misuses in cryptog-
raphy before an end-user uses the application.
• We perform a large-scale experiment to measure cryp-

tographic misuse in Android (§6). To the best of our
knowledge, we are the first to perform such a study at
scale, demonstrate a widespread problem, and identify
the likely culprits.
• We suggest remediation measures to help address the

widespread issues identified (§7).

2 Definitions
This section presents common cryptographic definitions for
symmetric encryption, password-based encryption, and the
respective notions of security. We adopt the notation used
by Bellare and Rogaway [6].

Block Ciphers and Symmetric Encryption Schemes A
block cipher is a function:

E : {0, 1}k × {0, 1}n → {0, 1}n

where k is the key size and n is the block size. We call
the input the plaintext, and the output the ciphertext. For
each K ∈ {0, 1}k, let EK : {0, 1}n → {0, 1}n be defined as
EK(M) = E(K,M). A block cipher Ek(·) is a permutation,
with E−1

k as its inverse. Thus, E−1
K (EK(M)) = M and

EK(E−1
K (C)) = C for all M,C ∈ {0, 1}n.

While block ciphers encrypt fixed-length messages, an
encryption scheme encrypts messages of arbitrary length. A
symmetric encryption scheme SE is a triple of algorithms
SE = (K, E ,D), where:

• K is a key generation algorithm producing a key K.
We denote picking a key uniformly at random from the

key space KEY S(SE) as K
$← K.

• An encryption algorithm E , which might be random-
ized or stateful, takes a plaintext {0, 1}∗, a key K
returned by the key generation algorithm, and outputs
a ciphertext C ∈ {0, 1}∗ ∪ {⊥}.
• A deterministic decryption algorithm D, which takes

a ciphertext C ∈ {0, 1}∗, a key K, and outputs M ∈
{0, 1}∗ ∪ {⊥}. That is, M ← DK(C).
• For correctness, we should be able to decrypt messages:

Dk(Ek(M)) = M

We give two examples of encryption schemes built from
block ciphers: ECB mode and CBC mode encryption.

Electronic codebook (ECB) mode is a stateless, determin-
istic encryption scheme defined over a block cipher. The
encryption function (ECB) is:

1 ECBK(M)
2 M [1] . . .M [m]←M
3 for i← 1 to m do

4 C[i]← EK(M [i])
5 C ← C[1] . . . C[m]
6 return C

Algorithm 1: ECB Mode

Ciphertext Block Chaining (CBC) is an encryption algo-
rithm built from a block cipher where each block of plaintext
is XORed with the previous block of ciphertext. The first
block of plaintext is XORed with an initialization vector (IV).
As we will see, one insecure way to initialize the IV is by
using a constant. A secure version, called CBC$, initializes
the IV with a random number upon each invocation of the
algorithm, as shown below:

1 CBC$K(M)
2 M [1] . . .M [m]←M

3 C[0]
$← {0, 1}n

4 for i← 1 to m do

5 C[i]← EK(M [i]⊕ C[i− 1])
6 C ← C[0] . . . C[m]
7 return C

Algorithm 2: CBC$ Mode

Encryption and IND-CPA Security The goal of an en-
cryption scheme is to provide privacy. Informally, privacy
means that an adversary should have a hard time discerning
even a single bit of information about the plaintext given
the ciphertext. This intuition is formalized in the notion of
indistinguishability under a chosen plaintext attack (IND-
CPA). We should only consider an encryption scheme to be
secure if and only if it is IND-CPA secure.

IND-CPA security can be formalized in a game where:

1. An oracle flips a fair coin b = {0, 1}.
2. The adversary picks a pair of messages of equal length

(M0,M1). The adversary, who does not have access to
the secret key, gives the pair to the encryption oracle

3. The oracle for all encryption calls returns Cb = EK(Mb)
to the attacker.

4. The attacker executes steps 2 and 3 q times.
5. The attacker outputs a guess b′. The attacker wins if

b′ = b, else the attacker looses.

An encryption scheme is considered IND-CPA secure if the
probability that the attacker, after seeing the encryption of
q messages, cannot do better than guessing b.

We state as fact a well-known theorem (proven in [6]):

Theorem 1. An encryption scheme must be either proba-
bilistic or stateful to be indistinguishable under chosen plain-
text attacks (IND-CPA).

For instance, by Theorem 1 ECB mode cannot be IND-
CPA secure. In particular, the attacker can learn b using
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only two queries to the oracle. Let the underlying block
cipher length be n. The attacker constructs M1 = 02n and
M0 = 0n1n. The attacker receives back a 2n-bit ciphertext
consisting of blocks C[0] and C[1]. If C[0] = C[1], then
message M1 was encrypted, else message M0 was encrypted.
Thus, the attacker can tell whether b = 1 or b = 0. CBC$,
on the other hand, can be proven IND-CPA secure [6].

Password-based Encryption User-chosen passwords are
often vulnerable to dictionary brute-force attacks. Password-
based encryption schemes make such brute force attacks more
expensive. RFC 2898 (PKCS#5) [19] defines PBE, where
encrypting a message M using a password pw and salt sa is
defined as (as described in [5]):

1 PBE(pw,M)

2 sa
$← {0, 1}s

3 L← KD(pw||sa)
4 return Ek(L,M)||sa

Algorithm 3: Password-based encryption

In PBE, E should be a IND-CPA secure encryption scheme,
and KD is the key derivation algorithm. The key derivation
algorithm is a c-fold iteration of a cryptographically secure
hash function H.

While the c-fold iteration makes brute force attacks more
expensive a random salt sa effectively thwarts brute force
attacks that rely on pre-computed information, such as rain-
bow tables. Without any salt, a brute force attack with a
dictionary of size N using PBE takes at least an additional
cN iterations of H. Assuming s = |sa| is sufficiently large
that salts are unique, the complexity rises to scN . RFC
2898 recommends using no less than 1,000 iterations and
a 64-bit salt. For example, Apple’s iOS Data Protection
Layer choses an iteration count so that generating a single
key from a password takes roughly 80ms [3]. This delay is
hardly noticeable by the user, but significantly slows down
brute-forcing attacks.

Abadi and Warinschi [2] provide a computational analysis
of password based encryption schemes. Bellare et al. [5]
propose a theory of multi-instance security, where they show
the key-derivation functions proposed in PKCS#5 and prove
that per password salts amplify multi-instance security.

3 Common Rules in Cryptography
While cryptographic security is precisely defined, this paper
asks the question whether developers who use cryptographic
APIs achieve this notion of security. Using cryptographic
primitives correctly can be challenging. In particular, any
application that violates one of the following six rules cannot
be secure.

Rule 1: Do not use ECB mode for encryption. [6]
Rule 2: Do not use a non-random IV for CBC encryption. [6,

23]
Rule 3: Do not use constant encryption keys.
Rule 4: Do not use constant salts for PBE. [2, 5]
Rule 5: Do not use fewer than 1,000 iterations for PBE. [2,

5]
Rule 6: Do not use static seeds to seed SecureRandom(·).

Rule 1 forbids the use of ECB mode because a symmetric
encryption scheme in ECB mode does not provide a general
notion of privacy (i.e., it is not IND-CPA secure). Recall that

ECB mode is deterministic and not stateful, thus cannot be
IND-CPA secure by Theorem 1. A significant problem with
ECB mode is that identical messages encrypt to identical
ciphertexts. Such a leak of information is often intolerable.
One commonly stated exception is that ECB mode is secure
if the message is smaller than the underlying block cipher
block size and all messages are unique. However, even in
such cases an IND-CPA secure scheme would also work while
providing greater theoretic security, and would thus be a
more robust choice.

Rule 2 states that the CBC-mode construction (in Alg. 2)
should always use a random IV. In essence, CBC$ should
always be used. Unfortunately, it is common to initialize
the IV with a constant, e.g., all zeros (i.e., setting line 3
of Algorithm 2 to a constant). A constant IV results in a
deterministic, stateless cipher, which by Theorem 1 cannot
be IND-CPA secure. One can fix the situation by requiring
that the first message block is a random number (essentially
taking on the role of a randomized IV). We note that such
exceptions to CBC$ are often historically a band-aide patch
for implementations that do not follow Rule 2 initially, e.g.,
as in TLS [23] and SSH [4].

Rule 3 states that an encryption scheme should not use a
constant key. Intuitively, a constant key hard-coded in pub-
licly available software is not a secret key, thus the resulting
encryption does not provide privacy. Symmetric encryption
schemes commonly include a notion of a randomized key
generation algorithm K (see Section 2).

Rule 4 and Rule 5 are both recommended best practices
for PBE schemes. Recall from §2 that the iteration count
and salt entail a multiplicative increase in work for a brute
force dictionary attack. An application that does not fol-
low Rule 4 and uses a constant salt reduces to a program,
for cryptographic purposes, with no salt at all. We chose
the threshold for the iteration count at 1,000 because this
minimum value is suggested in PKCS#5.

Finally, Rule 6 states that the Android SecureRandom(·)
function should not be seeded with a constant. Android’s
SecureRandom is a pseudo-random number generator (PRNG)
that is seeded. A PRNG seeded with a constant seed will pro-
duce a constant, known output across all implementations.
Since PRNG’s are often used to create key material, the
resulting keys are not random thus not secure. As the name
of the API – SecureRandom – suggests its use for security rel-
evant tasks, we flag applications that seed the SecureRandom

PRNG with static values.

4 Crypto in Android
Android applications are authored as Java source code and
then compiled to Dalvik bytecode. This bytecode is packaged
with additional resources, such as images and configuration
files into an application package (apk) file. When the user
installs an application from Google Play, the apk file is
downloaded and installed on the device. Although, the ap-
plication’s source is Java, the Dalvik virtual machine (DVM)
considerably differs from the Java virtual machine. For ex-
ample, while the Oracle Java virtual machine is stack-based,
the DVM is register based. Furthermore, Android provides
a rich execution framework. This framework offers access
to a variety of subsystems such as graphical user interfaces,
networking, or the telephony and messaging sub-systems.

The sub-system relevant to this paper is the Java Cryp-
tography Architecture (JCA). This architecture standardizes
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how application developers can make use of cryptographic
algorithms. To this end, so-called cryptographic service
providers (CSP) are registered with the JCA. A CSP is a
package providing implementations of cryptographic algo-
rithms, such as message authentication codes, encryption
schemes, or key generation algorithms. This modularized
architecture enables distributors and developers to seamlessly
install and use different CSPs in parallel, or substitute one
for the other, as long as they provide implementations for the
same algorithms. For example, while Oracle Java contains
the SunJCE as the default CSP, Android (since version 2.1)
uses BouncyCastle [1] as its default cryptographic service
provider.

Block ciphers, symmetric, and asymmetric encryption
schemes are accessible to an application through the Cipher

API. To obtain an instance of a specific encryption scheme,
the developer calls the Cipher.getInstance factory method
and provides a transformation as the argument. A transfor-
mation is a string that specifies the name of the algorithm,
the cipher mode, and padding scheme to use. For example,
to obtain a cipher object that uses AES in CBC mode with
PKCS5 padding the developer would specify the transforma-
tion as: AES/CBC/PKCS5Padding. Only the algorithm part is
mandatory. The security provider maintains default values
for the cipher mode as well as the padding scheme should
the developer choose to omit these values. Unfortunately,
Java as well as Android chose ECB and PKCS7Padding as
default values in case only the AES encryption algorithm is
specified. Thus, a developer who only specifies the arguably
secure AES block cipher ends up in a potentially insecure
situation where the ECB block cipher mode is used.

5 System Design and Implementation
At a high level we observe that the rules specified in Sec-
tion 3 are temporal properties. We have built an automated
analysis tool to evaluate these rules on real-world Android
applications. More precisely, we compute static program
slices that terminate in calls to cryptographic APIs, and
then extract the necessary information from these slices.

In this section we first discuss how we extract the control
flow and super control flow graphs from real-world Android
applications. We then detail our static program slicing ap-
proach, and how we evaluate the rules from Section 3 based
on a program slice.

Control flow graphs Our approach targets the Dalvik byte-
code of Android applications directly. We build our analysis
on top of the Androguard [12] Android application analy-
sis platform. Androguard disassembles an application into
classes, methods, basic blocks, and individual instructions.
CryptoLint then first translates this low-level represen-

tation into an intermediate representation (IR). In this IR
we combine the more than 200 Dalvik instructions into 19
semantically similar instruction groups (e.g., arithmetic in-
structions, invoke instructions). CryptoLint also extracts
the intra-procedural control flow graphs for all methods in
the application.

An application’s use of cryptographic functionality might
not be limited to a single method. For example, a cipher ob-
ject could be instantiated in an object constructor and then
used in two different methods (e.g., encrypt and decrypt)
to encrypt or decrypt data respectively. If these two meth-
ods are analyzed in isolation, we would not be able to ex-
tract the encryption scheme that was used when the cipher

object was instantiated. Thus, our approach implements
inter-procedural analysis based on the application’s super
control flow graph to correlate the use of the cipher object
for encryption and decryption with the cipher’s instantiation.
However, before CryptoLint reconstructs the super control
flow graph two additional steps are performed.

First, CryptoLint translates all methods into single static
assignment (SSA) form as described in [10]. Second, Cryp-
toLint also extracts the class hierarchy of all classes imple-
mented in the Application. Because in Android it is common
and often necessary to extend classes that are defined in
the Android framework, we also include all classes that are
defined by the Android framework into this analysis. For
example, any class implementing a user interface component
has to extend the class View, which is defined in the Android
framework. This analysis yields the class hierarchy tree
rooted at the Object class, and contains all inheritance rela-
tionships between classes in the application and the Android
framework. Furthermore, this data structure also contains
information pertaining to Java interfaces and the classes
that implement them. In our current implementation Cryp-
toLint targets API version 16 of the Android framework
(i.e., Android Jelly Bean). Of course, CryptoLint can be
used with any other version of the framework too.

5.1 Extracting the super control flow graph
A super control flow graph (sCFG) consists of the call graph
of an application superimposed over the control flow graphs
of the individual functions. Call edges are added between
call instructions and function entry points, and function exit
points are connected with exit edges back to the call site.
CryptoLint reconstructs an over-approximation the sCFG
of an application by executing the following steps.

First, CryptoLint computes the possible types each reg-
ister can hold at each program point. Initially, CryptoLint
assumes that each register can hold values of any type. Cryp-
toLint then analyzes how registers are used and refines the
set of possible types of values accordingly. CryptoLint
leverages the static type information that is present in the
application’s byte code. For example, the types of argu-
ments and return values are listed in the datastructures that
describe methods. CryptoLint propagates types to regis-
ters that receive arguments or return values from method
calls. CryptoLint also leverages additional type informa-
tion, such as check-cast instructions that assure that a
register contains (a subtype of) the specified static type.
The new-instance instruction is used to instantiate a new
objects of the given type.

Dalvik bytecode only contains information regarding the
static type of the objects used. However, the dynamic type
of an object at runtime can be any subtype of the static
type. An exception to this rule is the new-instance in-
struction, the dynamic and static type for operands used
with a new-instance instruction are always identical. Thus,
a new-instance instruction precisely defines what type of
object the operand register contains. This refinement is
performed until a fixed-point is reached.

Second, CryptoLint leverages the information from the
type refinement step to resolve targets of the invoke family of
instructions. These instructions consist of invoke-virtual,
-super, -direct, -static, -interface, and their respective
-range variants. To this end, we follow the approach pre-
sented by Dean et al. [11], and combine the information
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from the class hierarchy analysis with the possible types
of the registers to identify the possible targets of invoke
instructions.

5.2 Static program slicing
Static program slicing [27] is specified with respect to a slicing
criterion. A slicing criterion is defined as a program point
p and a variable x. The slicing algorithm then determines
all program instructions that might affect the value of x at
point p.

The slicing algorithm iteratively traverses the program
backward starting at program point p. During execution, the
algorithm keeps a working set of registers whose definitions
need to be determined. Initially, this working set contains
the registers from the slicing criterion (i.e., x). A register is
removed from the working set if the algorithm encounters
an instruction that statically defines that register. For an
instruction that defines a register in the working set but uses
other registers, the algorithm performs the following two
steps: First, the defined register is removed from the working
set. Second, all registers used by the instruction are added
to the working set.

The slicing algorithm terminates successfully, once the
working set is empty. This means that all operands in the
working set were statically defined. The slicing algorithm
terminates unsuccessfully, if it reaches the beginning of a
method, but the sCFG does not contain any incoming edges
to the currently analyzed method.

Additionally, our implementation of the slicing algorithm
is also field sensitive. To this end, we keep a list of fields that
are accessed by instructions in the get family of instructions
(i.e., iget, aget, sget) during the execution of the slicing
algorithm. The slicing algorithm is then recursively applied
at each program location where the corresponding fields are
defined, with the slicing criterion set to the location and the
register that defines the field.

5.3 Evaluating security properties
We now describe how CryptoLint evaluates the security
rules outlined above on real-world Android applications.

Rule 1: Do not use ECB mode for encryption. An appli-
cation will use the ECB block cipher mode under one of two
conditions. First, if the developer explicitly specifies that
she wants to use ECB this is reflected in the transformation
string (e.g., AES/ECB). The second, and arguably more subtle
instance of using ECB, occurs if the developer only specifies
a block cipher to use in the transformation. For example,
if the developer only specifies AES as the transformation,
BouncyCastle will automatically choose ECB as the default
block cipher mode.

Thus, to identify applications that make use of the ECB
block cipher mode, CryptoLint resolves for each call to the
Cipher.getInstance factory method what transformation
string is specified by the developer. To this end, Cryp-
toLint calculates the backward slice for the slicing criterion
consisting of the invoke statement to the factory method
and the register that specifies the encryption scheme to be
used. CryptoLint raises a warning if either only a block
cipher is used as the transformation string or, the transfor-
mation explicitly lists a block cipher and the ECB mode.

Rule 2: Do not use a non-random IV for CBC encryp-
tion. Block ciphers in feedback mode (e.g., AES/CBC) re-
quire an initialization vector. While the CBC$ algorithm

(see Algorithm 2) specifies the random selection of a fresh
IV for each invocation of the algorithm, the Java API allows
the developer to override this random selection and spec-
ify an IV herself. If the developer does not specify an IV,
the BouncyCastle implementation of CBC will follow the
CBC$ algorithm and generate an IV at random using the
SecureRandom API.

To evaluate this property CryptoLint computes the
backward slice for all calls to the Cipher.init method
and uses as the slicing criterion the ParameterSpec argu-
ment of the method call. CryptoLint will flag an applica-
tion as using constant initialization vectors if the following
two conditions hold: (1) The slice includes an object of
type IvParameterSpec, and (2) all values that are used for
the constructor for that IvParameterSpec are static. The
first condition is necessary because the ParameterSpec argu-
ment can hold types other than IvParameterSpec, such as
PBEParameterSpec or DSAParameterSpec.

The second requirement allows us to identify whether the
used IV consists of constant values. That is, if the slice does
only depend on constant values, this implies that the IV is
constant too.

Although the security prerequisites for IVs in block cipher
modes require non-predictable and unique IVs, CryptoLint
only identifies the use of static IV values. Static IVs are a
subset of predictable IVs (i.e., they are trivially predictable).
More precisely, for IVs that are not static, CryptoLint can-
not distinguish between predictable and unpredictable IVs.
The reason is that a non-static IV might still be predictable
due to information that is not available to our analysis.

Rule 3: Do not use constant encryption keys. To iden-
tify the use of static symmetric encryption keys, CryptoLint
calculates backward slices for the key argument to all invoca-
tions of the SecretKeySpec constructors. Because the Java
security provider API is generic for symmetric and asymmet-
ric encryption, CryptoLint only reports the violation of
this property if a static key is used in a symmetric encryption
scheme. In an asymmetric encryption scheme it is perfectly
legitimate that an encryption key (e.g., the public key of a
keypair) is statically included in the application.

Rule 4: Do not use constant salts for PBE. CryptoLint
identifies applications that use static salt values for password
based encryption by computing the backward slice for all calls
to constructors of the PBEParameterSpec and PBEKeySpec

APIs. The slicing criterion is specified as the call-site of the
API call and the register that specifies the salt. If all instruc-
tions in the slice exclusively depend on static values, the salt
has to be static too, and CryptoLint alerts respectively.

Rule 5: Do not use fewer than 1,000 iterations for PBE.
To identify applications that violate this rule, CryptoLint
computes a backward slice for the register that specifies the
iteration count at each call to the PBEParameterSpec and
PBEKeySpec constructors. If CryptoLint identifies that the
iteration count is below 1,000 this use of password-based
encryption is flagged as insecure. We chose this threshold
value of 1,000 because RFC 2898 recommends using at least
an iteration count of 1,000.

Rule 6: Do not use static seeds to seed SecureRandom(·).
CryptoLint flags applications that do seed SecureRandom

with static values. To this end, CryptoLint computes
a backward slice from all call-sites to the constructor of
SecureRandom for the seed value specified. We were positively
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surprised to see that the documentation on SecureRandom

does include a discussion about its secure usage1 and possible
pitfalls when seeding SecureRandom. This is the only crypto
related API investigated in this work whose documentation
contains such useful security relevant discussions.

To identify applications that do seed SecureRandom with
static values, CryptoLint computes a backward slice from
all constructors of SecureRandom that accept a seed argument.
If all instructions in the slice depend exclusively on static
values, the seed is considered to be static too.

6 Evaluation
Dataset The goal of this evaluation is twofold. First, we
want to demonstrate that CryptoLint is indeed useful to
identify violations of the specified rules. Second, by apply-
ing CryptoLint on a large number of real-world applica-
tions, we gain an insight into the prevalence of the misuse of
cryptographic functionality in Android applications.

For this evaluation we downloaded 145,095 applications
from the official Google Play marketplace. This dataset
was collected between May and July 2012. The security
rules that CryptoLint evaluates are related to functionality
that resides in the javax/crypto and java/security name-
spaces. Thus, CryptoLint first assesses whether an applica-
tion makes use of functionality in these name-spaces. 15,134
or 10.4% of all applications in our dataset use crypto func-
tionality.

Name Description
scoreloop Cross platform social gaming
vending Google License verification library
urbanairship Mobile marketing solutions
openfeint Social gaming platform
google/ads Google Advertising
phonegap Cross platform application development
vpon Mobile advertising
unity3d Mobile game engine
apache/james Internet messaging
microad Advertising
amazonaws Libraries for Amazon AWS

Table 1: White-listed libraries

Similar to existing research (e.g., [25]), we observed the
pervasive use of third-party libraries for advertisement and
statistics purposes. In order to prevent over-counting, we
whitelisted common libraries that use cryptography, as listed
in Table 1. CryptoLint discards applications if their
only use of cryptographic functionality is confined to these
libraries. We assume that the applications we analyze do not
actively try to disguise the use of these libraries, and thus,
identify these libraries by matching their package names.

6.1 Results
In total, CryptoLint successfully analyzed 11,748 appli-
cations. The analysis of the remaining applications was
unsuccessful for one of two reasons. First, the analysis of
2,614 applications did not terminate within a timeout of
30 minutes. Second, the analysis infrastructure ran out of

1Seeding SecureRandom may be insecure at http:
//developer.android.com/reference/java/security/
SecureRandom.html

# apps violated rule
5,656 Uses ECB (BouncyCastle default) (R1)
3,644 Uses constant symmetric key (R3)
2,000 Uses ECB (Explicit use) (R1)
1,932 Uses constant IV (R2)
1,636 Used iteration count < 1,000 for PBE(R5)
1,629 Seeds SecureRandom with static (R6)
1,574 Uses static salt for PBE (R4)
1,421 No violation

Table 2: Violations of cryptographic security rules

memory during the analysis of 765 applications. All num-
bers reported from here on are in reference to the 11,748
successfully analyzed applications.

Table 2 lists the number of distinct applications that vio-
lated the rules from §3. Only 1,421 applications in our data
set did not violate any of the rules. We discuss the remaining
rule violations in order of prevalence below.

Rule 1: Do not use ECB mode for encryption. This was
the most frequent rule violated, with 7,656 total apps violat-
ing this rule at least once. The primary cause of ECB mode
was developers using the default values in the BouncyCastle
security provider. More precisely, in 5,656 applications the
developer only specifies a block cipher (e.g., AES, DES, DESede)
and the BouncyCastle provider configures the resulting ci-
pher in ECB mode. These results indicate that developers
are not aware that the API default does not provide the
IND-CPA strong notion of privacy.

Additionally, 2,000 applications explicitly request a block
cipher in ECB mode from the security provider. While there
are legitimate uses for ECB mode (see §3), we manually
inspected several applications and verified that they a) were
trying to achieve privacy, and b) were using ECB mode on
data that was over a block length or non-random. Examples
of misuse of ECB mode include:

• One game uses DES/ECB to encrypt personal identi-
fiers. The identifiers exceed the DES block size, thus
an adversary can learn which parts of the encrypted
ID are the same.
• One anti-virus product encrypts the MD5 hash of

viruses found in DES3/ECB mode. An adversary can
learn if multiple instances of the same virus are found
on the device.
• One password manager stores passwords encrypted

using AES in ECB mode. A more detailed discussion
of this application will be presented in the case studies
(below).

Rule 3: Do not use constant encryption keys. The sec-
ond most violated cryptographic security property in our
dataset is the use of a constant symmetric encryption key.
As mentioned in Section 2, the security of symmetric en-
cryption schemes depends on the secrecy of the shared key.
Thus, embedding such secret keys into an application negates
the security benefits of symmetric encryption. For example,
AdMob encrypts the phone’s location data using a constant
key and sends it over the network. Another example is an
application that stores the user’s Google credentials on disk
encrypted using a static key.

Rule 2: Do not use a non-random IV for CBC encryp-
tion. CryptoLint identified 1,932 applications that make
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Figure 1: Number of applications violating 0, 1, 2,
. . . 6 rules.

use of constant initialization vectors in CBC mode encryp-
tion.

Rule 4: Do not use constant salts for PBE. Cryp-
toLint identified 1,574 applications that use a static value
for the salt used with the key derivation function in PBE.
Using a static salt allows an attacker to pre-compute a dictio-
nary based on the known salt, negating much of the benefit of
using a salt at all. While the use of a static salt is better than
using the password directly as encryption key, this choice
negates the advantages in multi-instance security [5].

Rule 5: Do not use fewer than 1,000 iterations for PBE.
The Java PBEKeySpec API implements password based en-
cryption based on the PKCS#5 standard. The RFC for
PKCS#5 recommends an iteration count of at least 1,000.
CryptoLint identified 1,636 applications that use fewer
iterations. Applications that use a low iteration count and
a static salt for password-based encryption are exposed to
trivial dictionary-based off-line attacks, exactly the type of at-
tacks that password-based encryption schemes were designed
to protect against.

Applications violating multiple rules We next investi-
gated the number of applications that violate multiple rules.
These results are illustrated in Figure 1. Interestingly, it
was more common for applications to violate two rules than
only violating a single rule. Of the applications violating a
single rule, rule 1 was violated the most (3,033 times). 511
applications violated rule 2 and used constant IVs. For 246
applications CryptoLint identified the use of a static sym-
metric encryption key (violation of rule 3). 29 applications
were flagged for using a low iteration count, and 13 appli-
cations use static salt values for password-based encryption
schemes. CryptoLint identified 6 applications that only
violated rule 6 by seeding SecureRandom with a static seed.

The numbers of applications that violated exactly two
rules are listed in Table 3. Additionally, our dataset con-
tained exactly one application that violated all six rules
that CryptoLint evaluates.

6.2 Case Studies
Social gaming platform To estimate the impact of apply-
ing cryptographic primitives incorrectly, we manually exam-

# apps rules violated
1,905 Rule 1 & Rule 3
1,588 Rule 1 & Rule 6
1,247 Rule 4 & Rule 5
866 Rule 2 & Rule 3
109 Rule 1 & Rule 2
24 Rule 1 & Rule 5
11 Rule 3 & Rule 5
5 Rule 2 & Rule 5
2 Rule 1 & Rule 4
2 Rule 3 & Rule 4

Table 3: Applications violating two rules

ined a popular game that CryptoLint reported as misusing
crypto. This game is from a development studio that released
a series of popular games, all containing a social platform for
connecting and interacting with friends. This social platform
is used to track high-scores on a leader board. According
to Google play, the application we analyzed has between
50,000,000 and 100,000,000 installations. The application
communicates with the back-end servers of the social compo-
nents over http. However, data that is transmitted between
the server and the client is encrypted. This application got
flagged by CryptoLint for two reasons. First, it uses the
DES blockcipher in ECB mode. The developers explicitly
specified the ECB block cipher mode as the used transfor-
mation string is DES/ECB). Furthermore, CryptoLint also
complains that the application uses a static key with this
encryption scheme. We evaluated the correctness of these
results by interacting with the game and exercising the social
network functionality while at the same time recording all
network traffic sent by the application. With the key ma-
terial retrieved by CryptoLint, it was trivially possible to
decrypt the encrypted network traffic.

Bookmark Manager We also investigated a bookmark man-
ager application in more detail (install base between 1,000,000
and 5,000,000). This application allows the user to synchro-
nize bookmarks between different browsers installed on the
mobile device. Furthermore, it provides the functionality to
synchronize browser bookmarks with Google’s web services.
To make use of this functionality, the user has to provide her
Google credentials. The application stores these credentials
in a regular Java property file. While the Google user-name is
stored in the clear, the password is encrypted. CryptoLint
flagged this application because it uses the DES blockcipher
in ECB mode to store that information in the property file.
Furthermore, the application also uses a constant key for
the encryption. Again we verified that decryption of the
password is trivially possible. We agree that safe storage of
access credentials is challenging to get right. To this end, An-
droid provides a KeyStore facility that is designed for exactly
the purpose of storing access credentials and is accessible
through the API.

Password management application Users entrust their
passwords to password manager applications for safe keeping
and easy management. Because password information is
important to protect securely, we investigated one application
in this category closer. Although this application only has
between 100,000 and 500,000 installations, the fact that the
application is open source with a publicly available GIT
repository warrants a closer analysis. In the earliest versions
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of the application the developer used the AES block cipher
in ECB mode. However, before encryption, the application
prepends two bytes of random data to the password. After
decryption the initial two bytes are discarded. Furthermore,
the application derives the key by calculating an HMAC over
the master password the user supplies.

Several design decisions reduce the security of this imple-
mentation and render it non IND-CPA secure. Although
prepending the password with two random bytes prevents
two identical passwords from being encrypted to identical
ciphertexts, this measure only protects the first 14 bytes of a
password. Because individual blocks are encrypted indepen-
dently, all plaintext blocks after the initial 14 bytes would be
encrypted to the same ciphertext blocks. Furthermore, the
developer chose to use a single HMAC operation with a static
key to derive key material from the master password. Instead,
the author should have used existing password-based encryp-
tion schemes to protect the key database against dictionary
attacks.

In a subsequent version the author substituted the ECB
mode for an encryption scheme based on AES/CBC. However,
the author also hard-coded a static IV into the application.
Similar to before, the author prepended the password to
store in the database with two random bytes of data before
performing the encryption. While the use of CBC and the two
random bytes constitute a significant security improvement
over earlier versions of the application, the application is still
not IND-CPA secure. The reason is that two random bytes at
the beginning of the plain text is not enough to preserve the
IND-CPA security of the CBC$ algorithm. More precisely,
two passwords are encrypted into the same cipher texts
with probability of 1/216 = 1/65536, which is considered
non-negligible.

Finally, in more recent versions of the app the author re-
lies on AES/CBC and generates IVs at random. However,
the author uses the regular random number generator in-
stead of the SecureRandom API, which should be used in
cryptographic contexts.

This development history spans two years of development
on a system that is arguably designed to keep personal data
secure. Our analysis shows that it is non-trivial even for
well-intended developers to apply cryptographic primitives
correctly. Thus, we propose a series of mitigations in Sec-
tion 7 to make it easier for developers to use cryptographic
algorithms correctly.

Popular libraries In the following we discuss our findings
regarding how popular libraries apply cryptographic algo-
rithms.

AdMob2. Google’s AdMob advertising library is one
of the most popular libraries included in Android applica-
tions. In fact we found that 36 % of the applications in
our dataset make use of this library. AdMob uses the AES
block cipher in CBC$ mode to encrypt device location and
identifiers before transmitting that information to the ad-
server. This library correctly uses the default behavior of the
BouncyCastle provider to generate a random IV through the
SecureRandom API. Thus, AdMob makes correct use of the
cryptographic functionality provided in Android. However,
AdMob also uses a constant encryption key for this operation.
Thus, the security provided by the symmetric encryption
scheme is undermined.

2http://www.google.com/ads/admob/

Scoreloop3. The Scoreloop library provides functionality
to integrate social capabilities to mobile applications. The
platform allows the developer to add virtual currencies and
game items to her application and supports multiple payment
options. When analyzing an example application that makes
use of the Scoreloop library, CryptoLint correctly alerts that
the library is using AES/CBC with constant initialization
vectors. More precisely, the library derives the used IVs
deterministically from the hard-coded URL endpoints of the
Scoreloop backend servers. This result illustrates that not
all developers of high profile libraries are capable of using
cryptography correctly.

Android License Verification Library4. The LVL pro-
vides the developer with the necessary functionality to enforce
a licensing policy on her applications. The documentation
states that to keep licensing information persistent, this in-
formation has to be stored in an obfuscated manner on the
device. To this end, the LVL provides an obfuscation scheme
that is based on the AES block cipher in CBC mode. This
default implementation however uses a constant initializa-
tion vector5. As the name of this API (i.e., AESObfuscator)
suggests, the intended purpose here is to obfuscate instead of
achieving IND-CPA security. However, modifying the source
code to at least choose an IV at random would be straight
forward, as the AdMob library illustrates.

6.3 Limitations
Our current system has a number of limitations. For exam-
ple, Android applications can make use of native code. How-
ever, CryptoLint currently only targets Dalvik bytecode.
Therefore, applications that invoke cryptographic primitives
from native code cannot be analyzed. Furthermore, the
property that initialization vectors have to be unique is not
globally valid. For example, the Kerberos protocol uses a
static initialization vector with the CBC block cipher mode.
However, the protocol also specifies that the first block of a
message is filled with random data and discarded at decryp-
tion. This basically transforms the first block into fulfilling
the role of the initialization vector instead. Thus, the IV does
not need to be transmitted along with cipher-text message.
Inferring this valid use of a static IV in CBC mode would
require CryptoLint to infer the implicit knowledge of the
protocol designer, which is clearly beyond the scope of this
work.

CryptoLint only detects the use and misuse of cryp-
tographic primitives if they are properly exposed through
the intended interfaces (e.g., security providers, ciphers, and
MACs). CryptoLint cannot reason about applications that
implement cryptographic primitives ad-hoc. To do so, Cryp-
toLint would have to infer whether a particular piece of code
implements cryptographic functionality. This is outside the
scope of this work. Furthermore, history has shown that de-
velopers are rarely better off rolling their own cryptographic
implementations as opposed to using well-tested library func-
tionality. Thus, any such implementation is most likely less
secure than the OS provided cryptographic algorithms.

3http://www.scoreloop.com/
4http://developer.android.com/google/play/
licensing/index.html
5The source for the LVL and the AESObfuscator can be ob-
tained at: http://code.google.com/p/marketlicensing/
source/browse/library/src/com/android/vending/
licensing/AESObfuscator.java
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#Occurences Symmetric encryption scheme
5,878 AES/CBC/PKCS5Padding
4,803 AES *
1,151 DES/ECB/NoPadding
741 DES *
501 DESede *
473 DESede/ECB/PKCS5Padding
468 AES/CBC/NoPadding
443 AES/ECB/PKCS5Padding
235 AES/CBC/PKCS7Padding
221 DES/ECB/PKCS5Padding
220 AES/ECB/NoPadding
205 DES/CBC/PKCS5Padding
155 AES/ECB/PKCS7Padding
104 AES/CFB8/NoPadding

Table 4: Distribution of frequently used symmetric
encryption schemes. Schemes marked with * are
used in ECB mode by default.

Recent events demonstrated that the assumption that
cryptographic primitives are implemented correctly can be
violated [20]. However, CryptoLint’s focus is to identify
applications that use these primitives incorrectly and not
the identification of flawed implementations of the primitives
themselves.

7 Mitigations
We now discuss a set of possible countermeasures that would
likely reduce the prevalence of misused cryptographic prim-
itives in Android applications. As explained in the intro-
duction three main issues cause the problems we see with
applying cryptography in Android applications. (1) APIs
are not expressive enough to enforce semantic contracts (e.g.,
IVs should be unique and non-predictable). (2) APIs ship
with poor default configurations, and (3) the documentation
insufficiently describes the APIs.

Semantic contracts in APIs . One approach is to use
tools such as CryptoLint to vet software, e.g., as part of
the Google Play marketplace. Additionally, compilers can
provide safety warnings on typically insecure method calls to
the crypto API. For example, a call to the ECB encryption
mode could raise a warning similar to the way that the
strcpy function is flagged by the Microsoft C compiler.

Poor default configurations in APIs . Switching default
configurations in APIs is challenging, especially in the light
of backward compatibility. However, because of the negative
characteristics of today’s default values, we believe that
choosing better defaults would mitigate many problems that
lead to misused cryptography.

Table 4 lists the symmetric encryption schemes used by at
least 100 applications in our dataset. The most popular API
call is to CBC mode encryption, where CBC mode is explic-
itly picked in the name. The second (AES), fourth (DES),
and fifth most popular (DESede) do not indicate which mode
is being used. One possibility is to ban APIs that do not
make the encryption mode explicit. Such an approach would
require developers to investigate an appropriate encryption
mode. Paired with appropriate documentation, this change
would potentially make more developers aware of the crypto-
graphic issues associated with block cipher encryption modes.

API documentation. The Java and Android API documen-
tation contains a disclaimer that it is not designed to teach
a developer the prerequisites of cryptography. However, the
documentation could suggest sane defaults, e.g., CBC mode
with a random IV because it is secure. Furthermore, we
strongly advocate that the documentation for the crypto-
graphic security provider explicitly state the default values.
In some cases the default value is not mentioned at all. For
example, the Cipher class states that a block cipher mode
can be requested. However, it fails to mention if no mode is
requested, ECB mode will be used by default. As it stands,
the only way for a developer to determine default values,
and whether they are secure, is via trial and error, Internet
searches, or the inspection of the source code of the security
provider.

Although Google regularly pulls up-to-date BouncyCastle
revisions into the Android source tree, not all enhancements
within the security provider are exposed to applications via
the SDK. For example, BouncyCastle has supported Galois
counter mode (GCM 6) for authenticated encryption with
associated data since 2008. Oracle Java has supported this
mode and the necessary APIs since version 1.7, which was
released in 2011. However, the latest Android version (at
the time of writing Jelly Bean 4.3) does not expose the
necessary APIs to use associated data with any authenticated
encryption modes. Furthermore, the Android documentation
does not mention authenticated encryption at all. Thus,
developers who want to use these encryption modes have to
gather their knowledge from other resources.

8 Related Work
The popularity of the Android operating system has at-
tracted the attention of many researchers in the past. With
TaintDroid, Enck et al. [13] track the propagation of sensi-
tive information through Android applications. Hoffmann
et al. [17] present SAAF, a static analysis framework that
helps a human analyst to examine Android applications. Fur-
thermore, the Android permission system has been at the
core of many scientific publications [14, 16, 24]. While the
permission system is the first line of defense in the Android
security landscape, cryptographic primitives allow develop-
ers to add another line of defense by encrypting data before
storing or transmitting it. Thus, to the best of our knowl-
edge, CryptoLint is the first approach that investigates
whether application developers make correct (i.e., secure)
use of cryptographic primitives.

Zhou [29] and Vidas [26] investigate malicious applica-
tions in the Android ecosystem. The focus of CryptoLint,
however, is to identify benign applications that employ cryp-
tographic primitives incorrectly.

Our work is similar to the Lint program checker [18]. That
is, we identify a series of common programming mistakes
and automatically identify applications that contain such
mistakes. Similarly, LCLint [21] uses source-code analysis
and manual annotations to identify likely buffer overflows in
C programs. The main difference between these approaches
and CryptoLint is, however that CryptoLint does not
have access to source code and operates on compiled Android
applications instead. To ensure wide applicability of Cryp-
toLint, we have to operate on compiled Android applications

6 Within the Android documentation GCM is used to refer
to the Google Cloud Messaging API.
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instead. Chen and Wagner presented MOPS [8] to examine
security properties of software at compile time. CryptoLint
is similar to MOPS as its goal is also to evaluate security
properties. However, CryptoLint operates on compiled
applications. Furthermore, a major contribution of this work
is the broad overview that we gained about the prevalence of
misused cryptographic functionality in Android applications.
Fahl et al. [15] presented MaloDroid, a system that identi-
fies Android applications that do not perform the necessary
validation on SSL certificates. MaloDroid is similar to Cryp-
toLint as it targets Android applications. However, the
single property that is evaluated by MaloDroid is whether
applications adequately verify SSL certificates. CryptoLint
checks for properties that are generally applicable to a cryp-
tographic context, such as the proper use of initialization
vectors, or random salt values for password based encryption
schemes.

Mitchell et al. [22] present Murϕ a tool that allows them to
detect vulnerabilities in cryptographic and security-relevant
protocols through state enumeration. Bhargavan et al. [7]
illustrate how verification tools can be used to show the
security of cryptographic protocol implementations. The ver-
ification of the TLS1.0 protocol required the authors to write
an implementation from scratch that makes itself amenable
to the suggested verification techniques. While such an ap-
proach is desirable, it seems unreasonable to require the large
population of Android application developers to adapt such
programming standards. Similar to these two approaches, we
treat encryption primitives as black boxes. That is, we trust
their security and implementations. However, developers
using cryptographic primitives rarely implement well known
protocols themselves.

Similar to Whitten et al. [28] and Clark and Goodspeed [9]
we analyze the usability of cryptography. However, while the
mentioned works analyze the usability for end-users, Cryp-
toLint focuses on the usability of cryptographic APIs, and
functionality for application developers. However, our find-
ings are somewhat comparable in that end-users as well as
developers seem to lack the proper knowledge or support to
make correct decisions when applying cryptography.

9 Conclusions and Future work
CryptoLint checks real-world Android applications for the
violation of the six security rules outlined in Section 3. With
this automated approach we identified 10,327 applications
(88% of our dataset) that violate at least one of these rules.
We identified one of the contributing factors to be the undoc-
umented insecure default configuration of the BouncyCastle
cryptographic security provider used on the Android plat-
form. Based on the insights we gained from the large-scale
analysis of real-world Android applications, we also illus-
trated different mitigation approaches, we believe would be
beneficial to the overall security of the Android ecosystem.

We are currently working on making CryptoLint a pub-
licly accessible online service where developers and curi-
ous users can submit Android applications and have them
evaluated with respect to the cryptographic security rules
described herein. In the future we also plan to extend Cryp-
toLint with security rules that capture the misuse of asym-
metric cryptography.
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