
E2EWatch: An End-to-end Anomaly Diagnosis
Framework for Production HPC Systems

Burak Aksar1[0000−0003−3627−7311], Benjamin Schwaller2, Omar Aaziz2, Vitus
J. Leung2, Jim Brandt2, Manuel Egele1, and Ayse K. Coskun1

1 Boston University, Boston MA 02215, USA {baksar,megele,acoskun}@bu.edu
2 Sandia National Laboratories, Albuquerque NM 87123, USA

{bschwal,oaaziz,vjleung,brandt}@sandia.gov

Abstract. In today’s High-Performance Computing (HPC) systems,
application performance variations are among the most vital challenges
as they adversely affect system efficiency, application performance, and
cost. System administrators need to identify the anomalies that are re-
sponsible for performance variation and take mitigating actions. One can
perform manual root-cause analysis on telemetry data collected by HPC
monitoring infrastructures to analyze performance variations. However,
manual analysis methods are time-intensive and limited in impact due
to the increasing complexity of HPC systems and terabyte/day-sized
telemetry data. State-of-the-art approaches use machine learning-based
methods to diagnose performance anomalies automatically. This paper
deploys an end-to-end machine learning framework that diagnoses per-
formance anomalies on compute nodes on a 1488-node production HPC
system. We demonstrate job and node-level anomaly diagnosis results
with the Grafana frontend interface at runtime. Furthermore, we discuss
challenges and design decisions for the deployment.

Keywords: HPC · Anomaly Diagnosis · Machine Learning · Telemetry.

1 Introduction

High-Performance Computing (HPC) systems offer invaluable computing re-
sources for a range of scientific and engineering applications, such as national se-
curity, scientific discovery, and economic research. Following the massive growth
in data and computing power, system infrastructure has grown more complex,
and effective management of HPC systems has become more challenging. Many
researchers report anomalies that cause performance variations due to network
contention [9], hardware problems [23], memory-related problems (e.g., mem-
ory leak) [2], shared resource contention (e.g., reduced I/O bandwidth) [8, 17],
or CPU-related problems (e.g., CPU throttling, orphan processes) [13]. Perfor-
mance anomalies do not necessarily terminate the execution, but often increase
job execution times by greater than 100% [22, 32, 37].

System administrators continuously collect and analyze system telemetry
data with rule-based heuristics (e.g., [3, 13]) to determine the causes behind per-
formance variations. Due to the highly complex infrastructure and massive vol-
umes of telemetry data (e.g., billions of data points per day), rule-based methods



2 Aksar et al.

are incapable of effective management and analysis. Thus, researchers use ma-
chine learning (ML)-based tools more often to detect and diagnose performance
variations automatically [4, 11, 15].

In this paper, we propose E2EWatch, an end-to-end anomaly diagnosis frame-
work for production HPC systems. E2EWatch detects and diagnoses previously
seen performance anomalies in compute nodes at runtime based on a recently
proposed ML-based approach [33]. We design an end-to-end architecture for de-
ployment and deploy this framework on a 1488-node HPC production system to
display job and node level analysis results with an easy-to-interpret user inter-
face. Our specific contributions are as follows:

– Deployment of a state-of-the-art anomaly diagnosis framework on a 1488-
node production HPC system;

– Visualization and analysis of job and node-level anomaly diagnosis results
on-the-fly;

– Demonstration of the effectiveness of our framework under a variety of exper-
imental scenarios and discussion of deployment challenges and techniques.3

The rest of the paper is organized as follows. Section 2 provides a brief overview
of related work; Sec. 3 describes the methodology in detail; Sec. 4 describes
experimental scenarios; Sec. 5 presents our results, and we conclude in Sec. 6.

2 Related Work

Performance variation has been an important research topic for large-scale com-
puting systems. Especially as we move towards the exascale computing era, it will
remain a substantial challenge. This section briefly reviews the latest anomaly
detection and diagnosis research in three categories: rule-based statistical meth-
ods, ML-based methods, and deployment.

Rule-based statistical methods: These methods are widely used in large-
scale production systems since they are generally easier to design and deploy
in practice compared to more sophisticated ML-based methods. Some example
methods use manually selected threshold values for important system metrics [3,
18]. Some researchers investigate the statistical correlation between features and
performance issues instead of solely assigning thresholds. Brandt et al. track
systems and components’ operational behaviors over time and analyze their cor-
relations with various causes, such as aging components [13]. Agelastos et al.
leverage system-wide resource utilization data and investigate specific metrics
to detect I/O congestion and out-of-memory cases [2]. Even though many rule-
based statistical methods are easy to implement for the administration side,
their efficacy is highly dependent on system properties (e.g., operating system,
underlying hardware configurations).

ML-based methods for performance analytics: Some researchers focus on
predicting node or application-level failures using ML models trained on sys-
tem monitoring data and logs [16, 20, 35]. Ates et al. use ML models to detect

3 Our implementation is available at: https://github.com/peaclab/E2EWatch



E2EWatch 3

applications running on supercomputers by leveraging applications’ resource uti-
lization characteristics [5]. Anomaly detection (for a broader range of events than
failures) is widely popular in the HPC and cloud domains [26, 36, 10]. However,
most anomaly detection focuses on detecting anomalies instead of providing in-
formation on the anomaly type. Several ML approaches have been proposed to
detect anomalous behavior in applications and compute nodes using historical
normal data [4, 11, 15, 21, 31]. Tuncer et al. leverage historical telemetry data to
diagnose previously observed performance anomalies on compute nodes during
an application run, but do not demonstrate a runtime deployment [33]. In addi-
tion to node-level anomaly detection and diagnosis, Xie et al. train a one-class
support vector machine on vector embeddings to detect anomalous function ex-
ecutions using call stack trees [34]. In another work, Denis and Vadim use a
Long Short Term Memory (LSTM) network to detect abnormal and suspicious
behavior during an application run [31].

Deployment: Operational Data Analytics (ODA) solutions provide runtime
system insights for users and system administrators and complement monitoring
frameworks [27, 30, 12]. Some important application areas of ODA are applica-
tion fingerprinting, scheduling and allocation, performance variation detection.
Netti et al. demonstrate the use of several ML models to forecast compute node
power and identify outliers and anomalous behavior using power, temperature,
and CPU metrics on an HPC cluster at runtime [27]. Borghesi et al. propose an
autoencoder-based semi-supervised approach to detect anomalous behaviors in
compute nodes and deploy them to their 45-node HPC system [11].

In production systems, the size of a system can substantially affect the de-
ployment because a production HPC system might have thousands (e.g., Sierra,
Astra) to tens of thousands (e.g., Cori, Blue Waters) compute nodes. For ex-
ample, Borghesi et al. train node-specific models that use monitoring data from
a specific node and a node-agnostic model that uses monitoring data from all
compute nodes during training [11]. Using node-specific models could be feasible
for small computing clusters; however, it infers high training and maintenance
costs, e.g., selecting a new detection threshold for each model is time-consuming.
The abovementioned approaches (e.g., [11, 27]) only collect data when the sys-
tem behaves in the normal state, which requires constant system assessment
by a system administrator. A manual assessment approach may not be feasible
considering the complexity of HPC systems. Another aspect is evaluating mod-
els’ performance against scenarios where there are unknown applications and
unknown application inputs in order to guarantee they perform as intended.
However, neither of the methods covers real-world deployment scenarios. Even
though Netti et al. and Borghesi et al. have online deployment components, they
solely focus on detecting anomalies rather than classifying their type [11, 27]. To
the best of our knowledge, none of the prior methods provide an end-to-end
anomaly diagnosis framework running on a large-scale production HPC system.



4 Aksar et al.

3 Methodology

The main goal of E2EWatch is to diagnose the root cause of previously ob-
served performance anomalies in compute nodes during application runs. We
provide diagnosis results in a dashboard that enables users or system adminis-
trators to track their applications’ status and interfere when necessary. Figure 1
shows an overview of E2EWatch. In this paper, we focus on anomalies that
cause performance variability (e.g., CPU contention and memory problems) in
different sub-systems instead of faults that terminate the execution of a pro-
gram prematurely. Our framework can diagnose the anomaly type and provide
easy-to-interpret results to users while an application is still running.

3.1 E2EWatch Overview

E2EWatch is an end-to-end anomaly diagnosis framework similar to Tuncer et
al.’s framework, and we deploy the framework on a production HPC system [33].
E2EWatch has a user interface and works with labeled data that system admin-
istrators or automated methods can generate. In this work, we collect system
telemetry data from compute nodes while running applications with and with-
out synthetic anomalies that produce well-known performance variations (e.g.,
CPU contention, memory leakage). Specifically, we collect resource usage (e.g.,
free memory, CPU utilization) and performance counter telemetry data (e.g.,
CPU interrupt counts, flits) across a set of applications. After the data collec-
tion phase, we apply statistical preprocessing techniques (e.g., feature selection)
to raw time series data to extract useful information and then train supervised
ML models. We compare the performance of a set of ML models in the test
data and deploy the best model to the monitoring server. At runtime, a user
queries a specific job-id assigned by the monitoring server. We provide a sum-
mary across all compute nodes, and drill-down analysis for each node, used by
the application. In the upcoming sections, we explain each phase in detail.

3.2 Offline Data Collection

The goal of offline data collection is to collect high-fidelity monitoring data to
train ML models. We use Lightweight Distributed Metric Service (LDMS) to
collect telemetry data across different subsystems [1]. We run controlled exper-
iments with synthetic anomalies from the HPC Performance Anomaly Suite
(HPAS) with three real and three proxy applications to mimic performance
anomalies [6]. We perform data cleaning and interpolation for missing hardware
metrics and increasing counter values. We provide the details of the anomalies,
applications, and data preprocessing in Sec. 4.

3.3 Offline Data Preparation

After the offline data collection, we divide raw time series into multiple equal-
length overlapping windows with 15-seconds skip intervals (e.g., [0-45], [15-60]).
While the windowing operation substantially increases the amount of training



E2EWatch 5

Telemetry
Data
Collector

Telemetry Data 
(csv)

Wrapper to 
assert uniform 

data format

Pandas
Dataframe

Windowing
Feature Extraction
Feature Selection

Cross Validation
Hyperparameter 

Tuning

Trained Model 
(pickle)

Training & Testing

Monitoring 
Server

Runtime 
Query 

Wrapper to 
assert uniform 

data format

Windowing
Feature Extraction
Feature Selection

Pandas
Dataframe

Grafana 
Frontend 

Make prediction

Trained Model 
(pickle)

Wrapper to generate 
output for each 

window with 
confidence level

Anomaly Diagnosis

Wrapper to 
prepare results 

for frontend
Legend

Software System File FormatModule

D
at

a 
Pr

ep
ar

at
io

n

OFFLINE MODEL TRAINING

RUNTIME DEPLOYMENT

Fig. 1. The high-level architecture of E2EWatch. The top flow contains the offline
training phase, and the bottom flow contains the online anomaly diagnosis phase. We
train ML models with known normal and anomalous application telemetry data and
find the best parameters with hyperparameter tuning for each model. We deploy the
best-performing model to the monitoring server. A user sends a query with the specific
application ID at runtime, and our framework displays node-by-node diagnosis results
in the Grafana frontend interface.

data, it also enables us to provide results without waiting for an application to
run to completion. Then, we calculate the following statistical features of each
window: “minimum and maximum; 5th, 25th, 50th, 75th, 95th percentile values;
mean, variance, skewness and kurtosis” [33]. Each 2D window transforms into
a 1D vector after the feature extraction stage. This approach brings substantial
savings in computational power and memory while preserving the main charac-
teristics of time series.

After we extract statistical features, we adopt the feature selection process
proposed by Tuncer et al. [33]. We calculate the cumulative distribution func-
tions (CDF) of each feature when running the application with and without an
anomaly. We use the Kolmogorov-Smirnov (KS) test to compare each feature’s
CDF [24]. CDFs of normal and anomalous metric values show a high statisti-
cal difference if the anomaly substantially affects metric values. We repeat the
abovementioned procedure and concatenate the selected features for each appli-
cation and anomaly pair.



6 Aksar et al.

3.4 Offline Training and Testing

The goal of this stage is to find the best-performing model before deploying the
model to the monitoring server. After the offline data preparation phase, we
perform hyperparameter tuning for each ML model and test their performance
using multiple cross-validation folds. We label each equal-sized window for our
anomaly diagnosis task according to the node’s label it belongs to. For example,
if we run an anomaly on a compute node, we label it according to the type of
the anomaly; otherwise, it is labeled normal.

3.5 Deployment and Runtime Diagnosis

We use the model trained during the offline training phase for runtime diagnosis.
We store the trained model on the monitoring server of our target system (see
Sec. 4 for details) along with other back-end components such as data storage
and visualization. At runtime, a user sends a query to the monitoring server
with the desired application ID assigned by the HPC system scheduler, and our
runtime analysis module presents results in the Grafana frontend. For the job-
level breakdown, we calculate how many anomalous windows are diagnosed for
each anomaly across the compute nodes used by the application (e.g., 75% of
windows have “cachecopy” anomaly). In Fig. 2, we demonstrate a job-level diag-
nosis summary for one example application run. The user can see all anomalies
diagnosed over time along with the classifier’s prediction confidence for the se-
lected application ID. We explain the calculation of the prediction confidences in
Sec. 5. Furthermore, it is possible to perform drill-down analysis for the selected
compute nodes.

4 Experimental Methodology

We detail the target system and the monitoring framework in the first section.
Next, we describe the synthetic anomalies we use to create performance variation.
In the last section, we explain the implementation details of E2EWatch.

4.1 Target System and Monitoring Framework

To demonstrate the efficacy of E2EWatch, we conduct experiments and deploy
the framework on Eclipse, a production HPC system with 1488 compute nodes
located at Sandia National Laboratories (SNL). Each node has 128GB memory
and two sockets, where each socket has 18 E5-2695 v4 CPU cores with 2-way
hyperthreading [29]. System administrators use LDMS to monitor the system
health of Eclipse, and LDMS is actively running on all compute nodes. LDMS
can collect thousands of different resource usage metrics and performance coun-
ters from compute nodes at sub-second granularity. From LDMS, we use 160
system metrics sampled at 1Hz while running six applications with and with-
out synthetic anomalies. The applications used are listed in Table 1. SNL has
a separate monitoring server, referred to here as HPCMON, for data storage,
analysis, and visualization. HPCMON is a four-node cluster with 48 Intel Xeon



E2EWatch 7

Fig. 2. An example SWFFT application run with the membw anomaly. We provide
diagnosed anomaly types (orange box) and their percentage across all windows (yellow
box) as well as model’s prediction confidences (green box) in the job-level breakdown.
The time series plot shows the average confidence level of each anomaly across all the
compute nodes used by the application. We also provide the node-level breakdown
composed of the same analyses we provide in the job-level breakdown.

Gold 6240 CPUs, 750 GB of memory, and 28 TB of NVMe raided storage. Eclipse
telemetry data is sent to HPCMON and is queryable through a Grafana frontend
interface. A user specifies the time range and application ID of interest, and the
corresponding telemetry data is sent through our ML models at query time. The
model output is then summarized and formatted for Grafana visualization [30].

4.2 Synthetic Anomalies

We use open-source synthetic anomalies from High-Performance Anomaly Suite
(HPAS) [6]. HPAS has 8 performance anomalies that create contention across
different subsystems such as memory, network, and I/O. We use the following
anomalies: memleak, which mimics memory leakage by allocating an array of
characters of a given size without storing the addresses; membw mimics memory
bandwidth contention, which prevents data from being loaded into the cache;
cpuoccupy mimics excessive CPU utilization; cachecopy mimics cache contention
by allocating two-arrays and swapping their contents repeatedly for a specific

Table 1. We run 3 real and 3 proxy applications during offline data collection phase.

Benchmark Application Description

ECP Proxy Suite ExaMiniMD Molecular dynamics
SWFFT 3D Fast Fourier Transform
sw4lite Numerical kernel optimizations

Real Applications LAMMPS Molecular dynamics
HACC Cosmological simulation
sw4 Seismic modeling



8 Aksar et al.

cache level, e.g., L3 cache. We have 3 different input configurations for each
application, which corresponds to 4, 8, and 16 node application runs, respectively.
On each node, we allocate one core for LDMS, one core for an anomaly, and 32
cores for an application.

Table 2. A list of anomalies and their configurations.

Anomaly type Configuration

cpuoccupy -u 100%, 80%
cachecopy -c L1,-m 1 / -c L2 -m 2
membw -s 4K, 8K, 32K
memleak -s 1M, -p 0.2 / -s 3M -p 0.4 / -s 10M -p 1

4.3 Implementation Details

We fill out missing metric values with linear interpolation because some met-
ric values can be missing while telemetry data is being collected. We also take
the difference of cumulative counters in every step because we care about the
increase, not the raw value. We strip out the first and last 60 seconds of the
collected time-series data to prevent fluctuations during the initialization and
termination phases of applications. We experiment with 45 and 60-second win-
dows since we want to provide effective results while minimizing the delay. In the
end, we choose 60-second windowing since it led to a better F1-score, anomaly
miss rate, and false alarm rate during evaluation.

We use the “Min-Max” scaler on training data and scale the test data using
the same scaler during the model training to minimize possible data leakage.
After the training, the scaler is saved as a Python pickle object, and the same
scaler is used during runtime diagnosis. We split the dataset into 5-folds and
iteratively fit the model on the remaining folds while holding the remaining one
for validation. While splitting the data, we use stratified sampling where the
class distribution matches with the whole dataset in each fold.

We experiment with Random Forest and Gradient Boosting Machines. Ran-
dom Forest is composed of multiple decision trees, and it generally combines the
average of each decision tree or applies majority voting during prediction. We use
the implementation in scikit-learn that uses majority voting for the classification
tasks [28]. Gradient Boosting Machines are decision-tree-based classifiers and
use gradient boosting, which produces a prediction result using an ensemble of
weak prediction models. We use Extreme Gradient Boosting (XGBoost) [14] and
Light Gradient Boosting Machine (LGBM) [19] implementations. Even though
XGBoost and LGBM are part of the gradient boosting machines, they have dif-
ferent techniques while splitting the nodes. We use the LGBM as a final classifier
due to high performance in F1-score, anomaly miss rate, and false alarm rate.



E2EWatch 9

None cachecopy cpuoccupy membw memleak
Labels

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F1
-S

co
re

s

Anomaly Miss 
 Rate

False Alarm 
 Rate

0.00

0.02

0.04

0.06

0.08

0.10

0.12

(%
)

lgbm rf xgboost

Fig. 3. Macro average F1-scores of LGBM, Random Forest, and XGBoost models.
LGBM and XGBoost perform up to 10% better in cachecopy, cpuoccupy, and membw
anomalies than Random Forest. LGBM and XGBoost are 2x better than Random
Forest in anomaly miss rate while achieving near zero false alarm rate.

5 Evaluation

We evaluate our model under 3 different experimental scenarios and report F1-
score, false alarm rate (i.e., false-positive rate), and anomaly miss rate (i.e.,
false-negative rate). F1-score is defined as the harmonic mean of precision and
recall, where precision shows what percentage of positive class predictions were
correct and recall shows what percentage of actual positive class samples were
identified correctly. Eq. 1 shows the false alarm rate, which corresponds to the
percentage of normal runs identified as one of the anomaly types. Eq. 2 shows
the anomaly miss rate, which corresponds to the percentage of anomalous runs
(any anomaly) identified as normal.

False Alarm Rate =
False Positives

False Positives + True Negatives
(1)

Anomaly Miss Rate =
False Negatives

False Negatives + True Positives
(2)

5.1 Anomaly Diagnosis Scores

We present anomaly diagnosis results for each anomaly type with anomaly miss
rate and false alarm rate in Fig. 3. Average F1-scores are 0.91, 0.90, and 0.87,
for LGBM, XGBoost, and Random Forest, respectively. All models achieve an
almost perfect diagnosis F1-score for windows without anomalies. LGBM and
XGBoost outperform Random Forest in terms of F1-score in all cases. It is
expected to see a similar performance among XGBoost and LGBM since they are
fundamentally similar. XGBoost and LGBM miss 0.05% of anomalous windows
and achieve almost zero false alarm rates. The F1-scores of cpuoccupy anomaly
are lower than other anomalies because all classifiers confuse cpuoccupy with
membw anomaly due to similar CPU utilization characteristics.



10 Aksar et al.

ExaMiniMD HACC LAMMPS SWFFT sw4 sw4lite
Unknown Application

0.0

0.2

0.4

0.6

0.8
F1

-S
co

re
s

Anomaly Miss 
 Rate

False Alarm 
 Rate

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(%
)

lgbm rf xgboost

Fig. 4. Macro average F1-score of models when an unknown application exists in the
test set. LGBM is 8% and 4% better than Random Forest and XGBoost in F1-score
on average, respectively. LGBM and XGBoost achieve lower false alarm and anomaly
miss rates than Random Forest.

5.2 Unknown Applications

In a production system scenario, it is likely to encounter applications that do
not exist in the training data, so we evaluate the model’s performance with
scenarios where unknown applications exist in the test data while keeping all
the anomalies. First, we remove all runs of the selected application from the
training set and then include only the removed application to the test set. We
repeat this setup for each application and report average F1-scores, anomaly
miss rate, and false alarm rate in Fig. 4. Except for SWFFT, XGBoost and
LGBM are up to 10% better than Random Forest in F1-scores, and LGBM is
the best performing one, including for anomaly miss rate and false alarm rate.

5.3 Unknown Application Inputs

Another common scenario in production systems is running the same application
with different input decks. In our dataset, we have three input sizes (small,
medium, large) for each application, and each input size corresponds to the
different number of compute nodes we run the application. We evaluate the
model’s performance with scenarios where unknown application inputs exist in
test data. First, we remove all runs of the selected input size from the training
set and then include only the removed input size in the test set. We repeat this
setup for each input size and report average F1-scores along with anomaly miss
rate and false alarm rate in Fig. 5. For all unknown input types, LGBM and
XGBoost can diagnose anomalies with F1-scores over 0.75. LGBM is the most
robust one to unknown input sizes in terms of anomaly miss rate and false alarm
rate.

5.4 Discussion on Deployment

At SNL, HPCMON hosts the analysis and visualization pipeline for under-
standing HPC system data. The pipeline uses the Scalable Object Store (SOS)



E2EWatch 11

Small Medium Large
Unknown Input Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
F1

-S
co

re
s

Anomaly Miss 
 Rate

False Alarm 
 Rate

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

(%
)

lgbm rf xgboost

Fig. 5. Macro average F1-score of models when an unknown application input exists
in the test set. LGBM and XGBoost are 13% better than Random Forest in F1-scores.
While models have comparable anomaly miss rates, LGBM is 8x, and XGBoost is 4x
better than Random Forest in false alarm rate.

database that has unique indexing to efficiently manage structured data, includ-
ing time series [30]. The first advantage of SOS is that we can query the data of
interest instead of getting the whole data and selecting afterward. This enables
E2EWatch to provide anomaly diagnosis results without waiting for the comple-
tion of an application. The second advantage is that SOS enables easy configu-
ration for user-derived metrics, hence supports a flexible analysis development
cycle. This feature enables the easier development of new models for different
classification tasks as new needs arise. At a high level, E2EWatch requires the
following components to provide diagnosis results at runtime in another produc-
tion system:

1. Monitoring framework that can collect numeric telemetry data from com-
pute nodes while applications are running. Even though we only experiment
with LDMS, it can be adapted to other popular monitoring frameworks such
as Ganglia [25], Examon [7] by modifying the wrappers in the data collection
phase.

2. Labeled data that is composed of anomalous and normal compute node
telemetry data. It is possible to create labeled data sets using a suite of
applications and synthetic anomalies. Another option is to use telemetry
data labeled by users.

3. Backend web service that can provide telemetry data on the fly to the
trained model. We use the existing Django web application deployed on the
monitoring server [30]. It is possible to use other backend web services that
can handle client requests and query data from the database. If runtime
diagnosis is not necessary, it is also possible to run the pickled model after
the application run is completed.

We calculate the model’s prediction confidence in the test data for correctly
classified samples and provide the statistical distribution in Fig. 6. Prediction
confidences are also necessary to monitor possible concept drift and data drift.



12 Aksar et al.

None cachecopy cpuoccupy membw memleak
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Prediction Confidences Per Class

Calculation Confidence

Val 3 None

3 < Val 2 Low

2 < Val Medium

< Val + High

+ < Val Very High

Confidence Level Translation Table

Fig. 6. The deployed model’s prediction confidence for each anomaly type. Error bars
show one standard deviation above and below. Except membw anomaly, the model has
very high confidence for each class. The confidence translation table provides a way for
a user to interpret prediction results easily.

Concept drift happens when the statistical properties of the target variable
change, e.g., some anomalies might start showing different characteristics. Data
drift occurs when the statistical properties of streaming data change. Especially
in HPC systems, seasonality and user trends could change according to usage,
e.g., conference deadlines and periodic system upgrades. For example, suppose
we observe a sudden decrease in prediction confidences of samples predicted
normal. In that case, it can point out a possible drift scenario.

We implement two filtering techniques to increase robustness against false
alarms and anomaly misses for runtime anomaly diagnosis. The first one is con-
secutive filtering, where we keep the original prediction label if it persists in C
consecutive windows; otherwise, we replace it with the normal label. Even though
this approach reduces false alarms, it increases the anomaly miss rate since we
replace anomalies directly with the normal label. The second one is majority fil-
tering, where we replace the original prediction label with the most frequent class
label in C consecutive windows. Majority filtering generally reduces false alarms

2 4 6 8 10
0.00

0.01

0.02

0.03

M
aj

or
ity

 F
ilt

er
in

g 
 (%

)

False Alarm Rate

2 4 6 8 10
0.050

0.075

0.100

0.125

0.150
Anomaly Miss Rate

2 4 6 8 10
C

0.00

0.01

0.02

0.03

Co
ns

ec
ut

iv
e 

Fi
lte

rin
g 

(%
)

2 4 6 8 10
C

0

5

10

15

lgbm rf xgboost

Fig. 7. The first row shows majority filtering results, and the second row shows consec-
utive filtering results for different C values. LGBM and XGBoost maintains a constant
false alarm rate in both filtering techniques, whereas Random Forest’s false alarm rate
is reduced almost three times.



E2EWatch 13

and anomaly miss rates. As an example, using the following window predic-
tions, [memleak, memleak, membw, memleak, memleak], majority filtering will
return [memleak,memleak, memleak,memleak,memleak], whereas consecutive fil-
tering will return [normal,normal,normal,memleak,memleak] when C equals 3.
In Fig. 7, we show the effect of these two filtering techniques on all classifiers.
While consecutive filtering increases anomaly miss rate in all classifiers, it sig-
nificantly reduces Random Forest’s false alarm rate. On the other hand, LGBM
and XGBoost have almost constant false alarm rates and anomaly miss rates
with both techniques.

6 Conclusion and Future Work

Automatic and online diagnosis of performance anomalies has been increasingly
important as we move towards the Exascale computing era; however, transi-
tioning from research to real-world applications is challenging. In this paper,
we demonstrated E2EWatch, an end-to-end anomaly diagnosis framework, on
a 1488-node HPC production machine. E2EWatch provides job and node-level
visualizations in an easy-to-interpret dashboard. Our future work includes cre-
ating a data set that is composed of a large set of popular HPC applications
and evaluating the framework with a scenario where the scale of the number of
applications and input decks is comparable to production systems. The second
direction is to conduct user studies and evaluate the performance of our frame-
work in a real-world setting. The third direction we plan to explore is deployment
process for production systems that have compute nodes with GPUs.

Acknowledgment

This work has been partially funded by Sandia National Laboratories. Sandia National

Laboratories is a multimission laboratory managed and operated by National Technol-

ogy and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell

International, Inc., for the U.S. Department of Energy’s National Nuclear Security Ad-

ministration under Contract DE-NA0003525. This paper describes objective technical

results and analysis. Any subjective views or opinions that might be expressed in the

paper do not necessarily represent the views of the U.S. Department of Energy or the

United States Government.

References

1. Agelastos, A., Allan, B., Brandt, J., Cassella, P., Enos, J., Fullop, J., Gentile, A.,
Monk, S., Naksinehaboon, N., Ogden, J., et al.: The lightweight distributed metric
service: a scalable infrastructure for continuous monitoring of large scale comput-
ing systems and applications. In: Proc. of the Int. Conf. for High Performance
Computing, Networking, Storage and Analysis (SC). pp. 154–165 (2014)

2. Agelastos, A., Allan, B., Brandt, J., Gentile, A., Lefantzi, S., Monk, S., Ogden,
J., Rajan, M., Stevenson, J.: Toward rapid understanding of production HPC ap-
plications and systems. In: IEEE International Conf. on Cluster Computing. pp.
464–473 (2015)



14 Aksar et al.

3. Ahad, R., Chan, E., Santos, A.: Toward autonomic cloud: Automatic anomaly
detection and resolution. In: International Conf. on Cloud and Autonomic Com-
puting. pp. 200–203 (2015)

4. Arzani, B., Ciraci, S., Loo, B.T., Schuster, A., Outhred, G.: Taking the blame
game out of data centers operations with netpoirot. In: Proceedings of the ACM
SIGCOMM Conference. pp. 440–453 (2016)

5. Ates, E., Tuncer, O., Turk, A., Leung, V.J., Brandt, J., Egele, M., Coskun, A.K.:
Taxonomist: Application detection through rich monitoring data. In: European
Conference on Parallel Processing. pp. 92–105. Springer (2018)

6. Ates, E., Zhang, Y., Aksar, B., et al.: Hpas: An hpc performance anomaly suite for
reproducing performance variations. In: Proceedings of the 48th Intl. Conference
on Parallel Processing. p. 1–10. ACM (Aug 2019)

7. Bartolini, A., Borghesi, A., Libri, A., Beneventi, F., Gregori, D., Tinti, S., Gian-
freda, C., Altoè, P.: The davide big-data-powered fine-grain power and performance
monitoring support. In: Proceedings of the 15th ACM Int. Conf. on Computing
Frontiers. pp. 303–308 (2018)

8. Bhatele, A., Mohror, K., Langer, S.H., Isaacs, K.E.: There goes the neighborhood:
performance degradation due to nearby jobs. In: SC’13: Proceedings of the Int.
Conf. on High Performance Computing, Networking, Storage and Analysis. pp.
1–12 (2013)

9. Bhatele, A., Thiagarajan, J.J., Groves, T., Anirudh, R., Smith, S.A., Cook, B.,
Lowenthal, D.K.: The case of performance variability on dragonfly-based systems.
In: IEEE International Parallel and Distributed Processing Symposium (IPDPS).
pp. 896–905 (2020)

10. Bhuyan, M.H., Bhattacharyya, D., Kalita, J.K.: Nado: network anomaly detec-
tion using outlier approach. In: Proceedings of the Int. Conf. on Communication,
Computing & Security. pp. 531–536 (2011)

11. Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: A semisupervised
autoencoder-based approach for anomaly detection in high performance computing
systems. Engineering Applications of Artificial Intelligence 85, 634–644 (2019)

12. Bourassa, N., Johnson, W., Broughton, J., Carter, D.M., Joy, S., Vitti, R., Seto,
P.: Operational data analytics: Optimizing the national energy research scientific
computing center cooling systems. In: Proceedings of the 48th Int. Conf. on Parallel
Processing: Workshops. pp. 1–7 (2019)

13. Brandt, J.M., DeBonis, D., Gentile, A.C., Lujan, J., Martin, C., Martinez, D.J.,
Olivier, S.L., Pedretti, K., Taerat, N., Velarde, R.: Enabling advanced operational
analysis through multi-subsystem data integration on trinity. Tech. rep., Sandia
National Lab.(SNL-CA), Livermore, CA (United States) (2015)

14. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings
of the ACM Int. Conf. on Knowledge Discovery and Data Mining. pp. 785–794
(2016)

15. Dalmazo, B.L., Vilela, J.P., Simoes, P., Curado, M.: Expedite feature extraction
for enhanced cloud anomaly detection. In: IEEE/IFIP Network Operations and
Management Symposium. pp. 1215–1220 (2016)

16. Das, A., Mueller, F., Rountree, B.: Aarohi: Making real-time node failure predic-
tion feasible. In: 2020 IEEE Int. Parallel and Distributed Processing Symposium
(IPDPS). pp. 1092–1101 (2020)

17. Dorier, M., Antoniu, G., Ross, R., Kimpe, D., Ibrahim, S.: Calciom: Mitigating
i/o interference in hpc systems through cross-application coordination. In: IEEE
International Parallel and Distributed Processing Symposium. pp. 155–164 (2014)



E2EWatch 15

18. Jayathilaka, H., Krintz, C., Wolski, R.: Performance monitoring and root cause
analysis for cloud-hosted web applications. In: Proceedings of the 26th Interna-
tional Conference on World Wide Web. pp. 469–478 (2017)

19. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.:
Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems 30, 3146–3154 (2017)

20. Klinkenberg, J., Terboven, C., Lankes, S., Müller, M.S.: Data mining-based anal-
ysis of hpc center operations. In: IEEE Int. Conference on Cluster Computing
(CLUSTER). pp. 766–773 (2017)

21. Lan, Z., Zheng, Z., Li, Y.: Toward automated anomaly identification in large-scale
systems. IEEE Trans. on Parallel and Distributed Systems 21(2), 174–187 (2009)

22. Leung, V.J., Bender, M.A., Bunde, D.P., Phillips, C.A.: Algorithmic support for
commodity-based parallel computing systems. Tech. rep., Sandia National Labo-
ratories (2003)

23. Marathe, A., Zhang, Y., Blanks, G., Kumbhare, N., Abdulla, G., Rountree, B.: An
empirical survey of performance and energy efficiency variation on intel processors.
In: Proceedings of the 5th Int. Workshop on Energy Efficient Supercomputing.
pp. 1–8 (2017)

24. Massey Jr, F.J.: The kolmogorov-smirnov test for goodness of fit. Journal of the
American statistical Association 46(253), 68–78 (1951)

25. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system:
design, implementation, and experience. Parallel Computing 30(7), 817–840 (2004)

26. Nair, V., Raul, A., Khanduja, S., Bahirwani, V., Shao, Q., Sellamanickam, S.,
Keerthi, S., Herbert, S., Dhulipalla, S.: Learning a hierarchical monitoring system
for detecting and diagnosing service issues. In: Proc. of the ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining. pp. 2029–2038 (2015)

27. Netti, A., Müller, M., Guillen, C., Ott, M., Tafani, D., Ozer, G., Schulz, M.: Dcdb
wintermute: enabling online and holistic operational data analytics on hpc systems.
In: Proceedings of the 29th International Symposium on High-Performance Parallel
and Distributed Computing. pp. 101–112 (2020)

28. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

29. Sandia National Laboratories: HPC capacity cluster platforms,
https://hpc.sandia.gov/HPC%20Production%20Clusters/index.html

30. Schwaller, B., Tucker, N., Tucker, T., Allan, B., Brandt, J.: HPC system data
pipeline to enable meaningful insights through analysis-driven visualizations. In:
IEEE Int. Conf. on Cluster Computing (CLUSTER). pp. 433–441 (2020)

31. Shaykhislamov, D., Voevodin, V.: An approach for dynamic detection of inefficient
supercomputer applications. Procedia Computer Science 136, 35–43 (2018)

32. Skinner, D., Kramer, W.: Understanding the causes of performance variability in
HPC workloads. In: Proceedings of the IEEE Workload Characterization Sympo-
sium. pp. 137–149 (2005)

33. Tuncer, O., Ates, E., Zhang, Y., Turk, A., Brandt, J., Leung, V.J., Egele, M.,
Coskun, A.K.: Online diagnosis of performance variation in HPC systems using
machine learning. IEEE Trans. on Parallel and Distributed Systems 30(4), 883–
896 (2018)

34. Xie, C., Xu, W., Mueller, K.: A visual analytics framework for the detection of
anomalous call stack trees in high performance computing applications. IEEE
transactions on visualization and computer graphics 25(1), 215–224 (2018)



16 Aksar et al.

35. Zasadziński, M., Muntés-Mulero, V., Solé, M., Carrera, D., Ludwig, T.: Early ter-
mination of failed hpc jobs through machine and deep learning. In: European
Conference on Parallel Processing. pp. 163–177. Springer (2018)

36. Zhang, X., Meng, F., Chen, P., Xu, J.: Taskinsight: A fine-grained performance
anomaly detection and problem locating system. In: IEEE Int. Conf. on Cloud
Computing (CLOUD). pp. 917–920 (2016)

37. Zhang, Y., Groves, T., Cook, B., Wright, N.J., Coskun, A.K.: Quantifying the
impact of network congestion on application performance and network metrics. In:
IEEE International Conference on Cluster Computing (CLUSTER). pp. 162–168
(2020)


