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Abstract
The Linux-based firmware running on Internet of Things (IoT)
devices is complex and consists of user level programs as well
as kernel level code. Both components have been shown to
have serious security vulnerabilities, and the risk linked to
kernel vulnerabilities is particularly high, as these can lead
to full system compromise. However, previous work only
focuses on the user space component of embedded firmware.
In this paper, we present Firmware Solution (FirmSolo), a
system designed to incorporate the kernel space into firmware
analysis. FirmSolo features the Kernel Configuration Reverse
Engineering (K.C.R.E.) process that leverages information
(i.e., exported and required symbols and version magic) from
the kernel modules found in firmware images to build a kernel
that can load the modules within an emulated environment.
This capability allows downstream analysis to broaden their
scope into code executing in privileged mode.

We evaluated FirmSolo on 1,470 images containing 56,688
kernel modules where it loaded 64% of the kernel modules.
To demonstrate how FirmSolo aids downstream analysis,
we integrate it with two representative analysis systems;
the TriforceAFL kernel fuzzer and Firmadyne, a dynamic
firmware analysis tool originally devoid of kernel mode anal-
ysis capabilities. Our TriforceAFL experiments on a subset
of 75 kernel modules discovered 19 previously-unknown bugs
in 11 distinct proprietary modules. Through Firmadyne we
confirmed the presence of these previously-unknown bugs
in 84 firmware images. Furthermore, by using FirmSolo,
Firmadyne confirmed a previously-known memory corruption
vulnerability in five different versions of the closed-source
Kcodes’ NetUSB module across 15 firmware images.

1 Introduction
The Internet of Things (IoT) is predicted to grow to 41.6
billion devices by 2025 [41]. Unfortunately, most IoT vendors
hail from the electronics side of device manufacturing and
lack security awareness on the software side. This has
led to the untenable situation of large-scale deployments
of IoT gadgets that feature known and unknown software

vulnerabilities. The negative impact of this situation was
impressively demonstrated by a distributed denial of service
attack orchestrated by the creators of the Mirai botnet [1]. In
2016, Mirai compromised hundreds of thousands of DVRs
and home routers to launch a DDoS attack against Internet
mainstays like Netflix, Dyn, and GitHub. Mirai relied on the
insecure practice of configuring all devices of a given product
line with a default username and password. More recent IoT
threats [18] upped the ante and started to leverage exploits
against known vulnerabilities in prolifically deployed and
Internet-reachable gadgets. Given the poor security posture of
the devices that comprise the IoT, it is vital that the community
devises techniques that enable the automated vulnerability
analysis of the firmware powering these devices.

Prior work (e.g., [11, 34, 37]) in this area provides a solid
foundation towards this goal. However, the static analysis
techniques presented in these papers, while scalable, suffer
from large numbers of false positives. Additionally, prior
work on dynamic analysis features its own limitations. First,
a set of previous research [20, 44] provides highly precise
analysis capabilities that unfortunately do not scale to the
size and variety of the IoT, since these systems require access
to a physical device whose software should be analyzed. A
second category of prior work are scalable analysis systems
(e.g., [5, 7, 10, 42]), which are limited in the breadth of their
analysis capabilities. For example, Zaddach et al. [10] analyze
the security of Web applications frequently found on IoT
devices. Firmadyne [5] broadens that scope to include other
user level components running on the same IoT device.

Existing systems, however, cannot analyze privileged
(i.e., kernel level) code; neither the kernel proper nor any of
the kernel modules used by IoT gadgets. This limitation is
troublesome, because a vulnerability in a kernel module or
the kernel proper can risk compromise of the entire system.
While upstream Linux kernel modules receive fixes from their
corresponding maintainers, vendors often use outdated kernel
versions and do not backport these fixes in their products.
To make matters worse, IoT devices frequently feature
binary-only proprietary modules, making it challenging for



third party analysts to audit them for security vulnerabilities.
A notable example of a vulnerable binary-only kernel module
is Kcodes’ NetUSB.kowhich exposes USB printers connected
to a WiFi router to the network and features a Remote Code
Execution vulnerability (CVE-2015-3036). Despite the
serious consequences that such a vulnerability can have on
affected devices, the research community lacks techniques
capable of automatically detecting bugs that are located in the
privileged code of Linux-based IoT systems.

To fill this gap, we propose FirmSolo, the first scalable
software system to automatically expose IoT privileged kernel-
level code distributed in the form of Linux kernel modules to
downstream analysis. Crucially, FirmSolo does not require,
but can take advantage of, the availability of module source
code. As such, it supports open-source as well as proprietary
binary-only modules. A prerequisite to any dynamic analysis
of a kernel module is that the module is successfully loaded by
the kernel, a process guarded by the kernel’s module loading
facility (see Section 2.3). All but the most trivial modules
will require interaction with the kernel proper through kernel
symbols; functions or kernel-defined data structures. As type
information is removed during compilation, it is imperative
that the data structures defined in the kernel have the same
memory layout expected by the kernel modules. The availabil-
ity of symbols and the layout of data structures in the kernel
are controlled by options that constitute the configuration (i.e.,
.config) of the kernel. Thus, FirmSolo’s goal is to reverse
engineer the kernel’s configuration such that a kernel that
is built with this configuration can successfully load, and
subsequently analyze, the kernel modules distributed in real-
world firmware images. To this end, FirmSolo implements a
fully-automated two-pronged hybrid analysis process we refer
to as Kernel Configuration Reverse Engineering. K.C.R.E.
first leverages static symbol and dependency information
from an image’s kernel modules to infer an approximate
kernel configuration. Subsequently, K.C.R.E. iteratively
augments this configuration with a dynamic analysis used to
align the data structures shared between the modules and the
kernel proper, yielding a kernel that can load the binary kernel
modules within firmware images of real-world IoT devices.

To demonstrate FirmSolo’s main utility, we integrated
FirmSolo with two representative analysis systems; the
TriforceAFL [26] kernel fuzzer and the Firmadyne [5]
dynamic firmware analysis system. While initially unable
to analyze Linux IoT firmware kernel modules, combined
with FirmSolo both systems can analyze kernel modules in
IoT firmware. To the best of our knowledge, FirmSolo is the
first system that makes the binary kernel modules found in IoT
firmware amenable to downstream dynamic analysis systems.
In summary, this paper makes the following contributions:

• We propose a novel automated hybrid reverse engineer-
ing approach (K.C.R.E.) of the IoT kernel modules
distributed in a firmware image to infer the configuration
of the corresponding Linux kernel.

• We present FirmSolo, a fully-automated prototype
implementation of this approach. We assess FirmSolo’s
efficacy by building kernels for 1,470 firmware images,
that rely on 77 different kernel versions. These kernels
can successfully load 64% of the 56,688 kernel modules
contained in their corresponding firmware images.

• To demonstrate FirmSolo’s utility to enable downstream
analyses to assess firmware images more holistically,
we modify the TriforceAFL kernel fuzzer to support
firmware kernel module fuzzing. With FirmSolo’s help,
TriforceAFL analyzed 75 modules from our set and
detected 19 previously unknown bugs in 11 distinct
proprietary modules, across 10 distinct products.

• To analyze the modules in our set for bugs at scale, we
extend the open-source Firmadyne system and evaluate
it over the set of 1,470 images. FirmSolo’s kernels load
69% of the 18,018 kernel modules used by the images
and confirm a previously-known vulnerability in five
versions of a closed-source proprietary module (i.e.,
KCodes’ NetUSB.ko) spanning 15 IoT firmwares as
well as the presence of the previously-unknown bugs
identified by TriforceAFL across 84 images.

We responsibly disclosed our findings to all the affected
vendors and will release the implementation of FirmSolo
under an open-source license.

2 Background
In this section we provide background information on
the Linux kernel’s configuration, kernel module loading
procedure, and the assumptions our system relies on.

2.1 Linux Kernel
The Linux kernel provides an elaborate configuration system
reflected in thousands of configuration options that, if selected
by the user, enable certain functionality (e.g., networking
support). These options and their values constitute the
configuration file .config, which is a prerequisite to compile
a Linux kernel through its build system. The definitions of
the options are present in the hundreds of (Kconfig) files in
the kernel source tree, and each option has one of five types
(bool, tristate, string, hex, or int). The majority of
options are of type bool or tristate and can be assigned
a value from the set {n,y} or {n,m,y}, respectively. These
values translate to not selected (n), compile as part of the main
kernel (y), and compile as a Loadable Kernel Module (LKM)
(m). Furthermore, the availability of an option can be guarded
by dependencies in the form of logic expressions over other
options and their values. Intuitively, an option can only be
assigned a value if its dependencies (also expressed in the
Kconfig files) are fulfilled. For example, Listing 5 in Appendix
C shows the definition of the BRIDGE_NETFILTER option
which enables the kernel’s netfilter subsystem to see bridged



IP and ARP traffic and is commonly enabled on devices
that provide firewall capabilities, such as WiFi home routers.
This option in turn depends on NETFILTER_ADVANCED and a
logical expression of three other options.

Users can interact with the kernel’s configuration system
through various make targets and other tools. The result of
all these mechanisms is the .config configuration file which
contains the configuration options and their corresponding
values in the format CONFIG_<option_name>=<value>.

2.2 Loadable Kernel Modules
To avoid turning the Linux kernel into a large monolithic
binary, a user can opt to compile a portion of the kernel source
code as Loadable Kernel Modules (LKM). A LKM is an
ELF binary which, once loaded, extends the functionality of
the main kernel at runtime. Typical uses of LKMs include
support for new hardware peripherals (i.e., device drivers),
file-systems, and supplements to the kernel network stack.

To ensure interoperability between the kernel and a LKM,
it is essential that each LKM is compiled using the same
configuration that was used for the kernel proper. Using the
same configuration ensures that symbols (functions and data
structures), which are common to the kernel and the LKMs,
have the same type and layout, and that the LKM will not cause
an error after it is loaded into the kernel. In addition, LKMs
must also match the vermagic (version magic) of the kernel
that captures information on the kernel’s version, Symmetric
Multiprocessing, Preemption, and Module Versioning.

Comparable to shared libraries, LKMs can access exter-
nally defined functions and variables (i.e., symbols) beyond
their own code, as long as these symbols are exported ei-
ther by the kernel proper or another module (i.e., via the
EXPORT_SYMBOL[_GPL] macros). Thus, FirmSolo has to en-
sure that any external symbol used by a module is exported
either by another module or the kernel proper. Furthermore, if
the user enables the CONFIG_KALLSYMS option, the compiler
will preserve information about all exported symbols and their
addresses in the kernel binary. FirmSolo makes use of this infor-
mation, if present, in an image’s kernel binary (see Section 3.1).

2.3 Module Loading Process
The module loading process is initiated by the init_module
system call, commonly invoked by insmod or modprobe.
Loading a module consists of six stages: 1) check if the user
has permission to load modules, 2) copy the module binary
code from user-space to a temporary kernel-space buffer, 3)
check if the module and kernel vermagic match, 4) allocate
the actual kernel memory for the module, 5) perform symbol
resolution and relocation, and finally 6) call the module’s
initialization function (module_init). In Section 4.2, we
highlight the importance of steps 3, 5 and 6 to FirmSolo.

2.4 Assumptions
Experimental evidence shows that the original kernels used in
IoT firmware cannot directly be booted in a full-system emula-

tor such as QEMU. The main reason is that these kernels are
compiled for Systems-on-Chip (SoCs) that are not supported
by the emulator. In particular QEMU does not support the
peripherals in the SoCs, thus causing any attempt of booting a
device’s kernel in the emulator to fail.

Furthermore, we assume that IoT vendors rarely modify the
code of their open-source LKMs also present in the upstream
kernel source tree of the kernel version used in their products.
This assumption is essential for the Data Structure Layout
Correction step (see Section 4.2) and implies that open-source
IoT firmware LKMs share the majority of their source code
with their upstream counterparts in the kernel’s repository. It
also implies that data structures defined in the kernel and used
by any module, solely depend on the configuration options
(i.e., the .config file) used to compile the kernel.

3 System Overview
In this section we provide the system overview of FirmSolo.
Provided a target firmware image (I), the goal of FirmSolo is
to produce a Linux kernel (KFS) capable of loading the kernel
modules (DKM) distributed within the file-system of I. KFS
can then be used by downstream systems to analyze these
kernel modules for bugs and vulnerabilities.

A kernel module can only be loaded if the following three
requirements are fulfilled. First, the kernel and the module
must be of the same version. Second, all external symbols that
a module depends on must be provided, either by the kernel
proper or by another module that must be loaded first. Third,
the layout of data structures shared between the kernel and
the module must be consistent. Note that FirmSolo can only
adjust KFS, as the goal is to load the binary (proprietary and
open-source) modules in DKM unmodified. In the remainder
of this section we will discuss how FirmSolo satisfies these
three requirements. On the one hand, finding the right kernel
version for a given module is easily possible due to the
open-source nature of the Linux kernel via its git repository.
On the other hand, the availability of symbols and layout of
data structures depend entirely on the kernel’s configuration,
a challenge addressed by FirmSolo’s K.C.R.E. process.

Figure 1 illustrates FirmSolo as a fully-automated three-
stage process: 1 The Information Gathering stage extracts
static meta information about a firmware image (I), such as
its kernel version and the set of modules DKM . 2 The Kernel
Configuration Reverse Engineering (K.C.R.E.) stage then
follows a hybrid and iterative approach to infer the configu-
ration for a kernel (KFS) that matches the configuration in the
compilation of I’s original kernel (K0) 3 The Downstream
Analysis stage leverages the kernel (KFS) from the above step
to subject the modules found in image I to various security
analyses. As representative examples of such analyses we
discuss the integration with TriforceAFL and Firmadyne.
Clearly, further analysis systems can easily leverage the KFS
kernels generated by FirmSolo.

Note that while DKM refers to the set of modules distributed
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Figure 1: System overview of FirmSolo: The dashed boxes indicate that a step or information are optional. Also while stage
3 is not part of FirmSolo, we feature two representative downstream analysis.

in a firmware image, we use the symbol UKM for the modules
compiled by FirmSolo as a product of K.C.R.E. using the
source code of the upstream Linux kernel. Per our assumptions
in Section 2.4, a subset of open-source modules in DKM will
have corresponding modules in UKM , an insight we will
exploit to align the layout of data structures in Section 3.2.

3.1 Information Gathering
In stage 1 , FirmSolo gathers metadata about the image I and
its DKM modules. Examples of these metadata are the symbols
(functions and data structures) required by the DKM modules
and the optional vermagic, which indicates what kernel source
tree (version) FirmSolo should configure. We provide more
detailed information about the metadata collected by FirmSolo
in Section 4.1. The metadata collected in this stage are used
in stage 2 to configure and compile the KFS kernel.

3.2 K.C.R.E.
The Kernel Configuration Reverse Engineering (K.C.R.E.)
stage is the core of FirmSolo and aims to infer a configuration
for KFS that is an approximation of the configuration of K0 to
allow the modules found in image I to load and operate. Note
that configuration options in K0 that do not affect symbols
used by the DKM modules are not necessary for the modules’
operation and hence are of no concern to FirmSolo. K.C.R.E.
consists of three iterative steps: a) The KFS Kernel Build,
b) the Firmware Emulation and c) the Data Structure Layout
Correction. We describe each step below.

2a KFS Kernel Build: At its first iteration, this step infers an
approximate kernel configuration based on the static metadata
extracted in stage 1 . This initial configuration will be refined
in subsequent iterations.

FirmSolo performs seven tasks when building a kernel image
in step 2a : 1) It consumes the information produced in stage
1 . 2) It searches the source code of the target kernel version

and identifies the C-source files that provide the implementa-

tions for the required symbols. 3) It detects the configuration
options responsible for compiling these C-source files. 4) It
also parses the C-source files and pinpoints additional config-
uration options that might guard the symbol definitions. 5) It
enables these options in the configuration for KFS and, if neces-
sary, resolves any option dependencies. 6) K.C.R.E. identifies
which (tristate) options guard the creation of the kernel mod-
ules (DKM) in image I and assigns these options the value m
to emit the corresponding UKM modules. Of course, this step
only applies to modules with available source code in the ker-
nel source tree. The outcome of the previous tasks is a kernel
.config file. 7) Finally, FirmSolo compiles the KFS kernel
and its modules (UKM), using the generated .config file. As
the kernel must be compiled for a specific hardware platform,
FirmSolo chooses the Malta (MIPS) and Versatile and
Realview (ARMv5 and ARM[v6/v7], respectively) develop-
ment boards1, as these are well-supported by QEMU [2].

This procedure ensures that the symbols required by the
modules in DKM are provided either by other modules in DKM
or the kernel proper. However, the existence of all required
symbols is necessary but not sufficient. Recall that for a binary
module to work correctly, the memory layout of any data
structures shared between the kernel proper and the module
must be consistent. As the above process cannot guarantee
the correct memory layout of shared symbols, step 2b will
identify the modules where mismatches exist and the Data
Structure Layout Correction in 2c will address them.

2b Firmware Emulation: To validate the accuracy of the

.config produced in step 2a , FirmSolo assesses which
modules in DKM can be loaded correctly by KFS. This is an
iterative process where FirmSolo tries to load the modules
in DKM after it has resolved any module dependencies.

When a module d∈DKM fails to load (e.g., due to a crash)

1Choosing a real-SoC will yield a kernel that runs only on said SoC, but
will not be supported by QEMU (see Section 2.4)



1 struct net {
2 atomic_t count;
3 ...
4 #if defined(CONFIG_NF_CONNTRACK) ||
5 defined(CONFIG_NF_CONNTRACK_MODULE)
6 struct netns_ct ct;
7 #endif
8 ...
9 struct net_generic *gen;

10 };

Listing 1: Code snippet of the implementation of struct net
in the Linux kernel.

it can prevent the loading of additional modules, if they rely on
symbols exported by the offending module d. We refer to the
set of modules that fail to load as CKM ⊆DKM . To minimize
this issue and ensure that a larger number of modules are avail-
able to downstream analysis in stage 3 , FirmSolo implements
a substitution mechanism where it substitutes CKM modules
with their counterparts from UKM . Of course, FirmSolo can
only substitute modules that have a correspondence in the
source tree of KFS, and hence binary-only proprietary modules
cannot be substituted. This mechanism allows us to assess
the overall quality of the inferred kernel configuration, as
FirmSolo attempts to load as many modules as possible. The
output of step 2b are the modules in DKM that could be
loaded successfully, the substitutions FirmSolo implemented
during this step, along with the module-load-order of both.
2c Data Structure Layout Correction: The kernel modules

interact with the kernel through symbols of typed data
structures defined in the kernel proper. However, while step
2a makes these symbols available in the KFS kernel, it

makes no effort to ensure that their memory layout (i.e., type)
matches the layout the modules in DKM expect. Specifically,
if KFS and a DKM module were not compiled with the same
configuration options, and by extension the same .config
file, there might be a mismatch between the layout of a shared
data structure within KFS and the layout that the DKM module
expects. These symbol layout differences are one of the main
reasons why modules in CKM fail to load in step 2b .

For example, Listing 1 illustrates the definition of struct
net in the Linux kernel. This struct contains several mem-
bers that are guarded by configuration options, such as ct (line
9) which is guarded by the CONFIG_NF_CONNTRACK option
(line 8). An example of a kernel variable (symbol) of type
struct net is init_net (not shown in the Listing) which is
exported to all networking modules. The layout of init_net
(e.g., size and offset of its members) depends directly on the
options in the .config that was used to compile the kernel.
Thus, a module can only safely use init_net if it has been
compiled with the same setting of CONFIG_NF_CONNTRACK as
the kernel that is trying to load the module. Specifically, the
offset of member init_net->gen (line 12) would be different
if the CONFIG_NF_CONNTRACK settings were inconsistent and
accessing that member would likely result in a crash.

FirmSolo addresses these errors by recovering the correct

layout of the target data structure s (e.g., struct net in List-
ing 1) by applying this step to all the modules (CKM) that
crashed in step 2b . The purpose of step 2c is twofold. First, it
fixes crashing modules and reintroduces them into the analysis
pipeline, subsequently making them available to downstream
analysis (see Section 3.3). Second, it helps to prevent any
additional errors later in the emulation related to misaligned
data structures. If a module fails to load for an unrelated reason
(e.g., because it tries to interact with a peripheral that is not
emulated by QEMU), it gets discarded and FirmSolo proceeds
with the next crashing module.

Step 2c relies on binary static analysis to infer the data
structure s that caused the crash along with its unaligned mem-
bers. Afterwards, FirmSolo infers a set of configuration op-
tions that are used to refine the .config in step 2a and build

a new KFS with s correctly aligned. Note that step 2c works
only for CKM modules with an upstream counterpart in UKM
and not for proprietary modules (see Section 4.2). If successful,
the new kernel will be able to load the modules that crashed due
to differences in the memory layout of shared data structures.

3.3 Firmware Analysis
FirmSolo’s utility stems from the fact that it allows existing
downstream analyses to broaden their scope into the analysis
of Linux-based IoT firmware kernel modules. We demonstrate
this aspect by integrating FirmSolo with two representative
analysis systems; TriforceAFL [26] and Firmadyne [5]. Tri-
forceAFL is a kernel fuzzer designed for system call fuzzing
on Linux x86 and ARM kernels. By extending TriforceAFL
with support for MIPS and combining it with FirmSolo, Tri-
forceAFL can fuzz the kernel modules (open and closed-
source) found in IoT firmware. Firmadyne is a vulnerability
analysis system targeting user space applications in firmware
images but lacks any kernel-level analysis capabilities. With
the assistance of FirmSolo, Firmadyne supports the analysis of
closed and open source kernel modules found in IoT firmware.

4 Implementation
We next discuss the implementation details of FirmSolo.

4.1 Information Gathering
Stage 1 consumes the extracted file-system of the original
firmware image I, collects the set of DKM kernel modules from
I and infers 1) the endianess and the architecture of the target
system, 2) the symbols that the DKM modules depend on and
export, 3) the module vermagic and 4) the KALLSYMS entry
from the K0 kernel. Both vermagic and the KALLSYMS entry
are optional information that FirmSolo takes advantage of if
they are present. The endianess and architecture dictate the
compiler-toolchain to compile the KFS kernel and is extracted
from the modules’ ELF headers via readelf. The remaining
information allows FirmSolo to infer the configuration options
used by the vendor when compiling the original K0 kernel.



As explained in Section 2.2, kernel modules can only be
loaded and used if all symbols they rely on are either provided
by another module (that must be loaded first) or by the kernel
proper. Thus, to load modules, FirmSolo must infer these
symbols and ensure they exist. To this end, FirmSolo first
extracts two sets of symbols from the set of modules DKM
contained in I. The set Sund corresponds to the set of symbols
imported by (or undefined in) any of the modules in DKM .
Analogously, Sexp is the set of symbols exported by any of the
modules in DKM . Of course, a given symbol can be undefined
in one module and exported by another module and thus end up
in both sets. For example, the symbol gpl_usb_alloc_urb
marked as undefined by the proprietary NetUSB kernel module
is defined and exported by the GPL_NetUSB module. Thus,
S′und = Sund \Sexp is the set of symbols not provided by any
module and these symbols must be provided by the kernel
proper. FirmSolo extracts the status of symbols (undefined
or exported) from the kernel modules’ ELF headers via nm.

The vermagic contains information about the target kernel
version and is embedded as a zero-terminated string in kernel
modules which FirmSolo extracts with a simple regular expres-
sion. It also embeds 5 configuration options related to the target
system (see Section 2.2 and Appendix B). In case the vermagic
is not present in a module, FirmSolo infers the kernel version
from I’s file-system at /lib/modules/<kernel-version>.
Also, it attempts to (partially) recover the vermagic options
in step 2a of stage 2 . Finally, if available, FirmSolo extracts
the KALLSYMS entry from K0 via vmlinux-to-elf.2 The
information collected above determines which configuration
options must be enabled in KFS in step 2a .

4.2 K.C.R.E.
The goal of stage 2 (K.C.R.E.) is to configure and build a
KFS Linux kernel that is compatible with the DKM modules.
2a KFS Kernel Build: In this step, FirmSolo performs three

tasks: First, it checks out the correct version of the Linux
kernel from git.kernel.org. Second, it configures the
kernel pursuant to the static information extracted in stage
1 . Third, and finally, FirmSolo uses the appropriate cross

compiler toolchain to build the KFS kernel and the modules
in UKM . To preserve valuable information for subsequent
steps (e.g., step 2c ), FirmSolo compiles the KFS and all UKM
modules with debug symbols.

The .config generated by FirmSolo should satisfy the
following two constraints: (1) the compiled KFS kernel should
export all symbols in S′und , and (2) each module d∈DKM that
has an implementation in the kernel source tree should have
its corresponding module u∈UKM built too.

Enable Symbols. For each symbol s ∈ S (S =
S′und∪ KALLSYMS3), FirmSolo must infer which configuration
option enables s in the kernel. Thus, given s, FirmSolo first

2https://github.com/marin-m/vmlinux-to-elf
3If KALLSYMS could not be extracted, this set is the empty set

1 mm/slab.c:
2 struct cache_sizes malloc_sizes[]
3 EXPORT_SYMBOL(malloc_sizes);
4 mm/Makefile:
5 obj-$(CONFIG_SLAB) += slab.o

Listing 2: CONFIG_SLAB option detection. The listing
shows code snippets from two files mm/slab.c (1-3) and
mm/Makefile (4-5) with only the relevant lines retained.

identifies the source file f that defines s. As the kernel ex-
ports symbols to its modules via the EXPORT_SYMBOL[_GPL]
macros, FirmSolo uses cscope [21] to search for expressions
of the form EXPORT_SYMBOL[_GPL](<s>) to identify which
file f implements s. Subsequently, FirmSolo analyzes the
kernel’s build system to identify which configuration option
guards the compilation of f . That is, FirmSolo identifies
the Makefile in the kernel’s source tree that is responsible
for building f and extracts the configuration option o (i.e.,
CONFIG_<option name>) that guards the compilation of f .
Next, FirmSolo enables o in the .config file (initially being a
minimal template .config). Finally, the definition of s can be
further affected by additional configuration options within f .
FirmSolo addresses these cases by parsing f and detecting any
options that encapsulate (guard) the definition of s within f ’s
body. As with o, FirmSolo also enables these new options in
the .config file. While some configuration options can be di-
rectly enabled in the .configfile, others are guarded by depen-
dencies. Thus, to satisfy the constraints enforced over config-
uration options (expressed as logical formulae in the Kconfig
files), FirmSolo leverages Kconfiglib [25] to first transform
the Kconfig files into a constraint tree. In this tree, configura-
tion options are the leaf-nodes and internal nodes are the logical
operators (&&, ||, !). FirmSolo then enables (or disables for
negations) the constraining options while walking the tree in
pre-order traversal and finally enables the target option o.

Listing 2 shows an example for the symbol malloc_sizes.
First FirmSolo detects that the malloc_sizes symbol is
exported by the mm/slab.c file, via cscope (lines 1 and 4).
Afterwards, FirmSolo, detects that the Makefile responsible
for the compilation of slab.c is the mm/Makefile (line 5) and
by parsing it detects the compilation of slab.o, is guarded by
the option CONFIG_SLAB, in mm/Makefile (line 6).

Multiple Symbol Definitions. While the above mechanism
works for most scenarios, some symbols have multiple
definitions throughout the kernel and the configuration dictates
which implementation will be used during compilation. For
example the symbol kmem_cache_alloc is defined in both
mm/slab.c and mm/slub.c, guarded by the mutually exclu-
sive options CONFIG_SLAB and CONFIG_SLUB, respectively.
To resolve such multiple definitions, FirmSolo relies on a
heuristic that works as follows. While processing a symbol
s∈S, let fn be the set of files that each define s. FirmSolo will
select whatever file provides the most additional symbols in
S. That is, if de f ( f ) returns the set of symbols defined in file

https://github.com/marin-m/vmlinux-to-elf


f , then FirmSolo chooses f according to max
f∈ fn
|de f ( f )∩S)|.

Enable UKMModules. In addition to the configuration
options that control the symbols in S, FirmSolo also configures
the kernel to build the UKM modules that correspond to the
DKM modules found in I. The modules in UKM play an
important role in the following steps. As the Makefiles in the
kernel source tree indicate which configuration option guards
the generation of each kernel module, FirmSolo simply sets
the corresponding options to the value m (build as module)
to trigger the compilation of the corresponding module. Of
course, FirmSolo skips this step for proprietary modules.
Finally, FirmSolo selects the configuration options coupled to
the vermagic extracted in stage 1 . The vermagic encodes five
configuration options that are not always present in the set of
options related to symbols in S (see Listing 4 in Appendix B),
since the vermagic options might not have any correspondence
in these symbols. Thus, we manually encoded the relation
between vermagic values and their configuration options into
FirmSolo. In case the vermagic is not available, FirmSolo at-
tempts to reconstruct it by searching the set of options related to
symbols in S for the presence of the encoded vermagic options.
K.C.R.E. is an iterative process. Hence, during the iterative
steps, additional information about configuration options that
must be enabled to align data structures from step 2c are in-
cluded here. For the final phase of this step, FirmSolo compiles
KFS and its UKM modules based on the generated .config.

2b Firmware Emulation: The goal of this step is to assess
which modules in DKM load in KFS and which do not. To
this end, FirmSolo first infers the correct module load-order
induced by the dependencies between various modules (i.e.,
from the modules’ .modinfo section). In a second step, Firm-
Solo loads these modules (according to the load-order) after
booting a generic file-system based on buildroot [29] in the
QEMU system emulator. This file-system contains the DKM
modules and their UKM counterparts compiled previously.

Module Substitution. If a module c∈CKM causes an error
during loading, FirmSolo deals with the offending module, by
invoking the substitution mechanism which works as follows.
If c does not load due to a failure in one of the module loading
stages (see Section 2.3), FirmSolo simply loads the u∈UKM
counterpart of c instead (if it exists). However, if c triggers a
kernel Oops, FirmSolo proceeds to restart the QEMU instance.
This restarting mechanism is necessary as the Oops could
bring the kernel into an inconsistent state (e.g., leave drivers
in a semi-initialized state). In these cases FirmSolo applies the
substitution process after the restart. If there is no substitution
for c, FirmSolo skips loading the module after the restart.

Except enabling more DKM modules to load (see Sec-
tion 5.2), the substitution mechanism also helps to unearth
additional offending modules since more modules reach step
6 (invoking init_module) of the module loading stages.
FirmSolo attempts to address the module crashes in step
2c . Finally, FirmSolo preserves the information about the

successfully loaded modules in DKM and their substitutions
for use by downstream analysis (see Section 4.3).
2c Data Structure Layout Correction: In step 2c , FirmSolo

addresses crashes for CKM modules that arise from the mis-
aligned data structures these modules rely on. Specifically,
using as basis the data structure layout that a module c expects,
FirmSolo attempts to match the same layout in the KFS ker-
nel. Unfortunately, the CKM modules are in binary form and
stripped, whereas theirUKM counterparts are compiled with de-
bugging information (i.e., DWARF) which preserves the layout
of data structures as metadata. Using this observation we can
address the above challenge as follows: 1) transfer debugging
information from the UKM to the CKM modules to pinpoint the
data structure misalignment and 2) adjust the data structure lay-
out in KFS and itsUKM modules, via their mutual build process.
Note that this step is not intended to recover the memory layout
of all the data structures that the CKM modules use but only
align the ones responsible for the crashes. Finally, this step
also addresses two special cases not addressed by the generic
algorithm described below: 1) for struct module and 2) for
struct kmem_cache. FirmSolo implements the data struc-
ture alignment process via the following automated analysis.

Layout Recovery. Given a crashing module c∈CKM and
the corresponding module u∈UKM , 1) Identify the function
fc ∈ c that caused the crash. 2) Identify the corresponding
function fu∈u. 3) Extract the access patterns to all variables in
fc and fu. 4) Match the variables between fc and fu. 5) Identify
struct variables. 6) Find mismatching accesses to members
in these structs. 7) Identify the options that affect the offset
of mismatched members. 8) Choose the options such that the
misaligned members become aligned.

To implement these steps, FirmSolo first identifies the
crashing function fc from the kernel’s Oops message. It is
straightforward to identify fu as it shares the same name
with fc. To transfer the debugging information from fu
to fc, FirmSolo extracts variable accesses similarly to the
static analysis presented in ORIGEN [15]. Specifically,
FirmSolo uses a Ghidra [13] script to lift the assembly code
(MIPS or ARM) of fc to PcodeOP (i.e., Ghidra’s Intermediate
Language). PcodeOP enables FirmSolo to directly extract
all the variables used in fc along with their def-use chains.
A def-use chain consists of a variable definition and all
the instructions accessing the variable which can be reached
from its definition. FirmSolo processes the chains and only
retains the memory access instructions, since they indicate
a variable member access (through a constant displacement
off of the base of the variable). The rationale to focus on
these instructions is that compilers translate the access to a
struct’s member as accesses with constant displacements.

FirmSolo applies the same process to function fu, however
note that fu’s variables are annotated with debugging informa-
tion which preserves their data types. Figure 3 in Appendix D,
showcases the variable def-use chain extraction process in
the case of the CKM module ifb.ko. FirmSolo proceeds to



map the variables and thus data types from fu to fc by com-
paring the def-use chains of the variables between functions
fu and fc. In this case each variable’s def-use chain can be
viewed as a vector of memory instruction types and their num-
ber of occurrences within the chain (e.g., three load-byte lb,
two store-word sw instructions, etc). Variables with the most
similar def-use chains between the two functions are mapped
together. Since the data types of variables in fu are known,
FirmSolo is in turn able to transfer this information to the
variables in fc based on the newly found mappings. As layout
differences only occur in struct data-types, FirmSolo only
preserves matches between variables that have such a type.

Next, FirmSolo identifies which of the remaining variable
pairs represents the offending data structure s. FirmSolo fo-
cuses on the offsets (i.e., the member accesses) at which a vari-
able vc and its match vu are accessed in fc and fu, respectively.
Different offsets indicate a layout misalignment. In particular,
for each struct variable pair vc and vu, FirmSolo reduces
their def-use chains into the constant displacements used in
the memory instructions that constitute the chains, forming
two integer sets. After sorting both sets, FirmSolo identifies a
misaligned member access where the displacements in both
sequences differ (see Figure 3c). When this phenomenon oc-
curs for a pair vc and vu the struct type assigned to that pair
is considered the offending data structure s that FirmSolo has
to fix. Again, the debugging information available for variable
vu is used to infer which member of vc was accessed with a
different offset in fc.

With the misaligned members inferred, FirmSolo analyzes
the kernel source to identify which configuration options
affect the layout of the struct s that contains the members
(and recursively any contained structs). The set of these
configuration options induce the search space that FirmSolo
must explore to find an assignment of options that correctly
align s’s members that caused the Oops to begin with. To this
end, FirmSolo implements a backtracking search algorithm
to efficiently and repeatedly 1) toggle a configuration option,
2) build a new kernel module u, and 3) confirm whether the
struct members are now aligned.

Here we denote that a module c can invoke functions from
its dependencies in DKM , thus the crashing function fc might
not be contained in c. FirmSolo handles these cases, using
the same process as described above. In addition, despite the
observation that most CKM modules are stripped, function
names are readily available from section names, when the
ffunction-sections compiler flag was used by the vendors
to compile the CKM modules and their dependencies. In
our dataset (see Section 5.1) 56% of the images feature this
characteristic. Using the name of fc, FirmSolo can easily
identify the corresponding fu.

Special Case: struct module. Before proceeding with
s’s layout recovery process described above, FirmSolo first
checks if the struct module is aligned between c and u.
This struct is a kernel module’s representation within the

kernel. Its correct alignment between c and u is necessary
since a misaligned access might cause a crash even before
the invocation of init_module (see Section 2.3). Luckily,
struct module is directly encoded in the module binary un-
der the .gnu.linkonce.this_module section. Again using
Ghidra, FirmSolo is able to extract the size and the offsets
of two pointers, members, of struct module; the module’s
init_module and cleanup_module functions. The size indi-
cates the last member of struct module. This information
is sufficient for FirmSolo to align struct module between c
and u, using the same process described above.

Special Case: kmem_cache_alloc. Finally, Firm-
Solo handles a special case if an error occurs in the
kmem_cache_alloc kernel function, responsible for allo-
cating memory for kernel objects. This function takes an
argument of type struct kmem_cache. Through manual
inspection we observed that only two options (ZONE_DMA and
SLUB_DEBUG) affect the layout of struct kmem_cache, so
FirmSolo simply checks if any of the two options correct the
struct’s layout. Once FirmSolo infers the configuration
options that align the data structures in the c∈ CKM module,
this information is provided to step 2a for the next iteration.

Proprietary modules. This alignment only works for mod-
ules that have an open-source counterpart in UKM , and thus
not for proprietary modules. However, any proprietary module
that relies on data structures also used by any of the modules
in UKM would transitively benefit from aligning the layout in
these modules. This is due to the requirement that the data
structure layout between all (proprietary and open-source)
modules in the firmware image must be consistent.

4.3 Firmware Analysis
To demonstrate the utility of FirmSolo, we provide two
representative use cases of dynamic analysis tools that benefit
from FirmSolo; TriforceAFL [26] and Firmadyne [5].

TriforceAFL. The TriforceAFL kernel fuzzer only supports
x86 and ARM. However, and consistent with prior work, the
majority of IoT firmware in our dataset runs on the MIPS
architecture. Thus, we modified the QEMU sources for MIPS
to support the AFL instrumentation, fork-server, and hyper
call, thereby enabling the use of TriforceAFL with MIPS.
Furthermore, we modified the user-space agent that assists
the fuzzer within the guest, to only fuzz the IOCTL system
call. The rationale is that the vast majority of system calls are
handled by the kernel proper. However, FirmSolo focuses on
functionality contained in the DKM kernel modules commonly
invoked through the IOCTL system call. We provide more
information about our fuzzing strategy in Appendix A.

Firmadyne. Firmadyne relies on a single modified kernel
version and heavily relies on the Kprobes [17] function
hooking mechanism to collect runtime data on various system
calls. However, Kprobes was introduced into the Linux kernel
after version 2.6.36-rc1 and thus it is not supported by older
versions used by IoT devices present in our data set. Thus,



to support Firmadyne on older and newer kernels, FirmSolo
obviates the need for Kprobes and automatically patches the
implementation of the system calls within the kernel’s source
directly resulting in identical hooking functionality.

As Firmadyne relies on the original startup scripts contained
in each image, these scripts control which modules actually get
loaded. However, FirmSolo must ensure that Firmadyne does
not attempt to load any of the crashing modules from CKM .
To this end, FirmSolo simply replaces the CKM modules with
theirUKM counterparts, or deletes the respective module in the
Firmadyne file-system image if no replacement module exists.
Thus, instead of loading a crashing module, the startup scripts
in Firmadyne will transparently load either a replacement
module or no module at all.

5 Evaluation
In this section we evaluate FirmSolo’s three stage approach
and especially the K.C.R.E. process on a large set of firmware
images and the kernel modules they contain. Specifically, we
evaluate FirmSolo along three dimensions.

Q1 Efficacy: What is the contribution of the first two stages
of FirmSolo to successfully loading IoT kernel modules
(§ 5.2)?

Q2 Precision: How close is the kernel configuration that
FirmSolo infers to a ground-truth kernel configuration
(§ 5.3)?

Q3 Broader Applicability: How does FirmSolo aid down-
stream systems to analyze kernel modules (§ 5.4)?

In the following, we first introduce the dataset that we use
to evaluate FirmSolo. We then present the experiments that
we conduct to evaluate our approach in detail.

5.1 Evaluation Dataset
Our dataset consists of 8,737 images used by Firmadyne and
shared with us by its authors. Additionally we downloaded
50 (at the time of writing) up-to-date images belonging to 7
vendors, to demonstrate FirmSolo’s applicability to modern
firmware as well. Of these 50 downloaded images, we were
able to use 15 for the evaluation, as for 33 images we were not
able to extract the file-system (e.g., due to encrypted images)
and 2 images target theAArch64 architecture, currently not sup-
ported by our prototype implementation. Only 5 out of these
15 images use kernels of the 4.x series or above, illustrating
that IoT vendors continue to rely on outdated software in their
devices, and thus validating the continued relevance of the Fir-
madyne dataset despite its age. We also refined the Firmadyne
dataset and removed 4,020 images belonging to open-source
projects such as OpenWRT [31] and DD-WRT [30] as the
repetitive analysis of essentially thousands of duplicates would
distort the results. Furthermore, we removed 254 images target-
ing architectures not supported by FirmSolo, 711 images that

Type of Data #
Symbols (Unique - DKM ELF headers only) 9,028
Symbols (Unique - KALLSYMS included) 95,646
C-source files exporting required symbols (Unique) 7,159
Configuration options (Unique) 1,164

Table 1: Symbol, C-source file and option information
collected by FirmSolo.

Experiment DKM Load.
Base .config only 19
Base .config + vermagic 5,276

K.C.R.E. - 2c 35,354
K.C.R.E. 36,178

Table 2: FirmSolo ex-
periments with different
settings.

Categories Total Loaded
net 25,820 20,422
drivers 14,608 6,942
misc 8,792 3,968
fs 3,965 2,784
lib 1,807 1,326
crypto 972 324
arch 724 412
Total 56,688 36,178

Table 3: Module dataset
categorization.

use kernels prior to 2.6.18 which require ancient toolchains
to compile, and finally 2,282 images whose file-system did not
contain any kernel modules. Eventually, our evaluation dataset
consists of 1,470 firmware images, where 969 target MIPS
and 501 target ARM platforms. The firmware images in our
dataset span across 77 unique kernel versions, between version
2.6.18 and version 4.4.198. The compiler tool chains we use
to compile the KFS kernels in our experiments are gcc-3.4 (to
support kernels≤ 2.6.23), gcc-4.3 (for kernels≥ 2.6.23)
and gcc-5.5 (for kernels≥ 4.4.x) for both MIPS and ARM.

Finally, Table 3 summarizes the different categories of the
kernel modules that comprise our dataset. We categorize the
modules based on their pathname in the firmware image file-
system. The majority of the modules belong to the networking
category (46% of the total modules), followed by driver mod-
ules (26% of the total modules). We consider miscellaneous
all the modules whose category is unknown.

5.2 Efficacy
In this section we evaluate the individual stages of FirmSolo
and answer Q1.
1) Information Gathering: While processing the 1,470 images,
FirmSolo extracted the names of 95,646 distinct undefined
symbols averaging 8,557 undefined symbols per image. As ex-
plained in Section 4.1, these originate from the ELF headers of
the kernel modules and the KALLSYMS entry of K0 (if available).
In our dataset, 948 images (65%) contained a K0 kernel, 871
of which (92%) contain the KALLSYMS information. This high-
lights that for the remaining 599 images, identifying symbols
via ELF headers is essential. On average, FirmSolo recognizes
14,123 undefined symbols for images whose K0 has KALLSYMS
defined, and an average of 463 ifKALLSYSMS is not available. In
the absence of KALLSYMS, FirmSolo only concerns itself with
symbols imported by the kernel modules. As most symbols in
KALLSYMS pertain to kernel functionality not used by modules,
these symbols’ corresponding configuration options are irrele-
vant to FirmSolo. Table 1 summarizes the symbol information
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Figure 2: Cumulative Distribution Functions representing
the modules in DKM loaded by FirmSolo and Firmadyne,
respectively.

obtained through the Information Gathering stage 1 .
2) K.C.R.E. We evaluate K.C.R.E. along three dimensions:
1) its capability to successfully map the symbol information
collected in stage 1 , to C-source files and the corresponding
options in the target kernel tree, 2) the capability of the KFS
kernels to successfully load the DKM modules of the firmware
images, and 3) the ability of the Data Structure Layout
Correction step to address the errors of the CKM modules and
reintroduce these modules in the analysis pipeline.

Symbols to Configuration Options. On average, FirmSolo
maps the 8,557 undefined symbols of each image I to 391
C-source files per image, and in turn to 123 configuration
options. FirmSolo then attempts to enable these options,
and succeeds for 111 (92%) options on average, during the
construction of the .config file. Table 1 contains information
about the number of distinct C-source files and unique
configuration options FirmSolo detected throughout this stage.

Of course, not all symbols identified in stage 1 can be
mapped to C-source files in the target kernel sources and then
to configuration options. For example, any symbol that appears
in the kernel due to a vendor’s modifications to the kernel will
not be present in the upstream kernel repository and hence is
not identified by FirmSolo. On average FirmSolo fails to map
2,657 (31%) symbols per image to C-source files in the target
kernel tree. This phenomenon is mostly prevalent in the case
of images that have a KALLSYMS entry, where FirmSolo tries to
resolve all the symbols exported by K0, including those not rele-
vant to any modules. In fact, FirmSolo fails to map 4,441 (32%)
symbols on average in the case of images with a KALLSYMS
entry and 63 (14%) on average when the entry is not available.

Module Loading. FirmSolo is the first system that
automatically builds kernel images that can load, and
subsequently subject to dynamic analysis the DKM kernel
modules. To support this claim we first tested Qiling [33],
a binary emulation framework with kernel module support,
against a random sample of ten kernel modules from our
dataset. Unfortunately, Qiling aborted with errors for both
MIPS and ARM modules in all cases. Specifically, Qiling
does not support symbol relocation types, such as R_MIPS_26
and R_ARM_CALL, commonly used by IoT kernel modules. We
contacted the Qiling developers and the reply indicated that
MIPS and ARM are not well tested. In light of these events

Module Failure # of Modules
Unknown symbol 13,039
Image not emulated 3,265
Relocation overflow 1,917
Modules crashed 629
Duplicate symbol export 337
File exists 258
Invalid module format 230
Module timeout 198
No such device 170
No vermagic match 123
Operation not permitted 109
Invalid argument 97
Device or resource busy 88
Cannot allocate memory 27
Resource temporarily unavailable 9
Module has no symbols 5
Bad address 5
No buffer space available 3
Relocation out of range 1
Total 20,510

Table 4: Module load failure reasons during the FirmSolo ex-
periments. The special cases where firmware images were not
emulated, modules timed out during loading (after 60 seconds)
and modules crashed are also included in the table with italics.

we consider improving Qiling outside the scope of this work.
Instead, to provide a complete evaluation of FirmSolo and

better showcase the contribution of K.C.R.E. we test our sys-
tem under four scenarios with different settings. In detail, we
run these experiments using: 1) only the template .config, 2)
the template .config plus the vermagic setting, 3) K.C.R.E.
without step 2c and 4) K.C.R.E. These experiments clearly
highlight the improvement introduced by K.C.R.E. in the ker-
nel module loading over the base cases (i.e., Experiments 1 and
2). The results in Table 2 clearly show that with K.C.R.E. our
system is substantially more successful as it loads 85% more
modules than Experiment 2.

Specifically, FirmSolo loads 36,178 (64%) of the 56,688
DKM modules in our dataset, while implementing the
substitution mechanism. Figure 2a shows the cumulative
distribution function over the number of successfully loaded
DKM modules when applying FirmSolo on our dataset.
As illustrated in Table 3, these modules fall into various
categories, the majority of which belong in the networking
category (57% of the loaded modules). Therefore FirmSolo
is not only a scalable system but also diverse as it supports
kernel modules from multiple categories.

Of course, we do not count as success the 4,601 module
substitutions that FirmSolo implements in the course of the
experiments, in our results. The substitutions account for 8%
of the totalDKM modules in our set and are related to bothDKM
modules that crash during their initialization process (311
substitutions) or fail to pass all steps of the module loading pro-
cess explained in Section 2.3 (4,290 substitutions). Crucially,
the substitution system enabled the loading of 5,290 (9%)
additional DKM modules in our set which would otherwise not



load and not be available to downstream analysis.
Failed Cases. The remaining 20,510 modules did not load in

our experiments, due to various reasons. Our analysis showed
that the majority of these modules (64 %) fail to pass the symbol
resolution step (see Section 2.3), due to required symbols not
exported by the kernel proper (see Section 5.2). We present
these failure reasons in Table 4 . While most of these required
symbols are entirely missing from the upstream kernel source
trees (e.g., osl_malloc), there are cases where FirmSolo fails
to add symbols into the kernel proper even when they are
present in its kernel tree.

A notable example is the symbol
__pci_register_driver, tied to the configuration op-
tion CONFIG_PCI and required by 1,037 modules that were not
loaded. Unfortunately, FirmSolo is unable to set CONFIG_PCI
for ARM images compiled for the Realview platform, since
the latter does not support a PCI bus. Thus, any module
that requires PCI functionality will not load in a Realview
platform-based kernel. Another interesting failure category is
the Relocation overflow error. This error is related to the
availability of a limited bit range (i.e., 28 bits) for addressing
when the kernel and kernel modules are placed far apart in
memory. It only affects MIPS images in our experiments
and based on our manual analysis it is specific to modules
compiled from an open source distribution (e.g., OpenWRT),
that is loaded in our upstream kernels. Since we removed
all the OpenWRT images from our dataset, we conclude
that vendors borrow code from open source projects like
OpenWRT and include it in their distributed firmware. Finally,
FirmSolo might fail to load a module because the module
code is already compiled as part of the kernel proper. This is a
limitation of our system related to K.C.R.E. not being able to
set options to value m because of dependency constraints. For
example, errors in categories Duplicate symbol export
and File exists are related to this limitation (see Table 4).

Emulation Failures. While FirmSolo compiles its kernels
to be supported by QEMU, there are cases where QEMU fails
to emulate the kernels. Specifically, FirmSolo fails to emulate
48 images in our set with a total of 3,265 (6%) modules. We
do not consider these cases as a limitation of our system, since
29 images require a kernel with MIPS Thread Context (a
feature for parallelism) which is not supported by QEMU and
in the rest of the cases either the kernel is not uncompressed or
it cannot mount our generic file-system. We also include these
cases in Table 4.

Finally, loading all modules in a file-system comprises the
worst-case scenario for FirmSolo, as few real-world systems
will show this behavior. Section 5.4 illustrates that real
IoT firmware only attempts to load a subset of the modules
contained in their images.

Data Structure Layout Correction. Out of the 56,688
DKM modules in our set, 1,080 (2%) crash (CKM modules)
while being loaded in step 2b . By invoking step 2c , Firm-
Solo “fixes” 451 (42%) of the CKM modules that crashed, due

to a misaligned data structure member access. Delving deeper
into the results revealed that FirmSolo was able to successfully
recover the layout of three core data structures, structs
net in 272 modules, kmem_cache in 171 modules using our
kmem_cache_alloc heuristic and module as our first special
case in 118 modules ( 55 cases together with struct net and
55 cases together with struct kmem_cache).

Unfortunately, FirmSolo is unable to fix the remaining 629
CKM modules. Our manual analysis upon 232 out of these
CKM modules, revealed that the majority of their crashes are
not related to a misaligned data structure. Instead, in 110 cases
the modules execute kernel code that crashes when calling
the BUG_ON macro. This macro performs a check and if it
fails, the macro traps causing an Oops. After inspecting the
kernel code and the assembly of the CKM modules we found
out that the vendors have modified their kernels’ source code
regarding the check, thus the check fails on our upstream
kernels. In addition, in 95 cases the modules make a memory
access related to a hardware peripheral that is not supported
by QEMU and thus an unhandled memory access occurs
causing the crash. Since peripheral emulation is out of scope
for this work we do not consider these crashes a limitation of
FirmSolo. We suspect that more CKM modules that FirmSolo
cannot fix, crash due to one of the reasons mentioned above.
Finally, for the remaining 27 modules FirmSolo is actually
able to recover the misaligned data structures but not recover
their correct layout (structs bonding (3), device (2), net
(17), net_device (1) and module (4)). Our manual analysis
revealed that in 5 cases FirmSolo incorrectly recovered
the accessed members (i.e, offsets) of the offending data
structures, causing the layout recovery algorithm to fail. For
the remaining cases, dependency constraints prevented the
layout recovery algorithm from successfully testing all the
possible solutions, since FirmSolo could not set options in
these solutions to their required value (either y or n).

5.3 Precision
To assess the precision of the K.C.R.E. process when inferring
the kernel configuration, we compare its results against
a ground-truth firmware image built for the open source
Backfire OpenWRT release [27].4 The open source nature of
OpenWRT means we have access to complete ground-truth
of the configuration used to build the kernel and its modules,
allowing us to answer Q2. This experiment aims to quantify
K.C.R.E.’s reverse engineering accuracy.

Specifically, we used OpenWRT’s image builder to
create an image from the heavily modified (compared to the
upstream Linux kernel) OpenWRT source,5 for a MIPS-based
Broadcom device. The resulting image targets the 2.6.32.27
kernel and contains 530 kernel modules.

We measure FirmSolo’s precision along two dimensions

4OpenWRT is an after market Linux-based software distribution
supporting dozens of system-on-chip platforms and hundreds of IoT devices.

5git://git.openwrt.org/openwrt/svn-archive/archive.git

git://git.openwrt.org/openwrt/svn-archive/archive.git


and perform each measurement without the use of the optional
KALLSYMS. First, on a macro-scale we quantify how many of
the 530 modules can be loaded by the KFS kernel produced by
FirmSolo. The KFS kernel successfully loads 484 (91%) of the
530 modules. In total there are 8 cases where modules in DKM

crash during loading. Unfortunately, step 2c is unsuccessful
in addressing the module errors. Specifically, while FirmSolo
detects the offending struct in 2 cases, no solution is appli-
cable since the offending data structures (structs sk_buff
and net_device) are modified at their source code. For the
remaining 6 cases Ghidra is not able to correctly recover the
variable def-use chains, from the crashing functions, thus
causing the layout recovery process to abort. In addition, 9
substitutions were implemented by the substitution mecha-
nism in step 2b , 7 of which replace crashed modules in CKM .
Finally, 19 modules fail to load because the code of their UKM
counterparts is already compiled as part of the kernel proper.
Dependency constraints prevent FirmSolo from setting the
corresponding options to value m, during K.C.R.E. (see Sec-
tion 4.2). The remaining modules did not load into the KFS ker-
nel, since symbols are missing from the upstream kernel, due
to the modifications in the OpenWRT’s kernel source code.

Second, on a micro-scale we assess whether FirmSolo sets
the relevant configuration options correctly. In this context, we
consider a configuration option relevant only if it affects the
layout of a data structure defined in the kernel and used by a
module. In total the DKM modules access 4,716 data structures
defined in the OpenWRT kernel (4,675 of these also exist in
the upstream kernel). However, the vast majority thereof have
fixed layouts that are not affected by any configuration options.
Thus, we are only interested in the subset of 335 data structures
in the upstream kernel whose layout depends on the kernel
configuration. The layout of these data structures is affected
by 240 configuration options, and the ground-truth .config
used by the OpenWRT image builder has 75 of these options
set. FirmSolo, correctly infers and selects 48 of these options.
The data structure members guarded by the remaining options
are either not accessed during module loading or accessing
them does not lead to a crash during the emulation in step 2b .

5.4 Broader Applicability
To demonstrate the utility of FirmSolo, this section discusses
our experience with two representative downstream analysis
systems enhanced by FirmSolo: TriforceAFL [26] and
Firmadyne [5]. Note that FirmSolo’s novel capability is widely
applicable to a variety of other analysis systems beyond these
examples (e.g., PANDA [14] or FirmAE [19]).
1) TriforceAFL. In this section we evaluate the TriforceAFL
kernel fuzzer’s ability to discover previously unknown bugs
in IoT kernel modules. Specifically, we use TriforceAFL
on 75 DKM open and closed-source modules from our set,
which either expose a character device interface or a network
interface, that we can open and write to and contain at least

Module Paths Vendor Kernel Bugs(FP)
MIPS
acos_nat.ko 421 Netgear 2.6.22 3
art.ko 110 DLink 2.6.31 1
art-wasp.ko 56 ZyXEL 2.6.31 1
edinvram2.ko 98 ZyXEL 2.6.36 1(1)
gpio.ko 53 DLink 2.6.31 1(2*)
i2c_drv.ko 41 Linksys 2.6.36 0(1)
ipv6_spi.ko 32 Netgear 2.6.22 2
ppp_generic.ko 75 TRENDnet 2.6.31 0(1)
ralink_i2s.ko 49 Linksys 2.6.36 0(1)
rt_rdm.ko 54 TP-Link 2.6.36 1
tun.ko 51 Belkin 2.6.31 0(1)

ARM
gpio.ko 140 Supermicro 2.6.24 1(1*)
IDP.ko 68 Asus 2.6.36.4 3(1)
ppp_generic.ko 389 Synology 2.6.32.12 0(1)
smcdrv.ko 35 Supermicro 2.6.24 1
u_filter.ko 184 Tenda 2.6.36.4 4
orion_wdt.ko 91 Linksys 2.6.35.8 0(1)

Total(FP) 19(11)

Table 5: Fuzzer statistics and results for the vulnerable
modules in our set. The * indicates the False Positive might
be an actual bug but requires hardware access to confirm.

one IOCTL interface.
We fuzz our modules for 24 hours on an Intel Xeon machine

with minimum of 16GB of RAM. The fuzzer triggered 19
memory corruption bugs in 11 proprietary modules, 7 in
MIPS, and 4 in ARM images (see Table 5). In contrast to the
open-source kernel modules, which are regularly maintained,
closed-source modules probably do not receive similar code
review or testing, and thus contain various bugs.

These bugs belong to different categories such as reads and
writes to arbitrary locations in memory (10), NULL pointer
dereferences (2), out-of-bounds memory accesses (4), slab
(heap) corruption (2) and large virtual memory allocation
(1). We manually verify each bug by detecting the source of
each crash in Ghidra. We further verify the crash cases for
the acos_nat.ko and ipv6_spi.ko modules on a physical
Netgear WNDR3400v2 device, to confirm that TriforceAFL’s
findings are true positives. We test all 5 bugs related to these
two modules and confirm the existence of the bugs, either by
crashing the modules or causing a kernel panic, which forces
the device to reboot.

The fuzzer also produced a total of up to eleven false
positives. We could confirm that the crashes in the open source
tun.ko and ppp_generic.ko modules are false positives. A
manual analysis with Ghidra quickly revealed that FirmSolo
did not correctly align structs net and file which lead
to a kernel crash during the modules’ analysis by the fuzzer.
Furthermore, the fuzzer produced eight likely false positive
cases for modules without a UKM counterpart. Our manual
analysis via Ghidra revealed that all of these cases are related
to accesses in memory regions that might be mapped as MMIO
to a physical device not modeled by QEMU. For the three
crashes in the gpio modules in Table 5 we were unable to



confirm whether the accessed memory locations are MMIO
mapped, and whether these cases are true false positives. Due
to the lack of access to a corresponding physical device we
conservatively label all these crashes as false positives. Note
that we do not consider MMIO related errors as a limitation of
FirmSolo since providing models for the peripherals accessed
by the DKM modules is out of scope for this work.

Of course, we responsibly disclosed all previously unknown
bugs we detected to the affected vendors. During the
disclosure 7 vendors, (all except Tenda) corresponded directly
with us requesting a PoC and, so far, 2 (Supermicro and Asus)
confirmed our findings.
2) Firmadyne. To assess the utility of FirmSolo for Firmadyne,
we run the 1,470 images from our evaluation data set in
Firmadyne. Recall that in the evaluation in Section 5.2
FirmSolo attempted to load all the modules in a firmware
image. When ran in Firmadyne, the subset of modules that
will be loaded is determined by the image’s startup scripts.
Specifically, when running in Firmadyne, the 1,470 images
attempt to load 18,018 kernel modules at boot time (i.e., 32
% of all 56,688 modules in our dataset). While the original
Firmadyne system cannot load a single kernel module, the
improvements made through FirmSolo allow the system to
successfully load 12,352 (69%) of these modules. Figure 2b
shows the cumulative distribution function over the number
of DKM modules loaded in the Firmadyne experiments.

We also encountered 141 additional cases during our
experiments where modules in DKM crashed during their
emulation. Step 2c , which is not automated for Firmadyne,
addresses 57 of these cases, where the offending data structure
is struct sk_buff. For the rest of the modules not addressed
by step 2c , our manual analysis revealed that their majority
(43) originate from kernel functions outside the offending
modules and their dependencies. Currently, FirmSolo is
unable to address these cases.

A particularly useful capability of Firmadyne is that it al-
lows an analyst to quickly confirm the presence of known and
previously-unknown vulnerabilities in a large set of firmware
images. We leverage this capability and launch 10 publicly
available proof of concept exploits from ExploitDB [36], tar-
geting the modules contained in our dataset (full list in Table 6
in the Appendix E). Additionally, we use Firmadyne to assess
which firmware images are prone to the 19 IOCTL related bugs
found by TriforceAFL as discussed above. Of the 10 exploits
from ExploitDB only one (CVE-2015-3036) successfully trig-
gers the corresponding bug. This bug exists in five different ver-
sions of the closed-source NetUSB.ko across 15 firmware im-
ages. Seven of the remaining PoCs only work against modules
built with configuration options not commonly found on IoT
firmware, such as user namespaces (i.e., CONFIG_USER_NS).
Given the firmware images in our dataset did not use this func-
tionality, the vulnerable code is not included in the DKM mod-
ules. CVE-2009-1897 and CVE-2014-4943 target older mod-
ule versions than the ones present in our module set, thus were

also unsuccessful. From the 19 IOCTL bugs 6 (gpio-mips,
gpio-arm, acos_nat (2) and ipv6_spi (2)) successfully crashed
their corresponding modules in 84 images. The other bugs
were unsuccessful since the corresponding modules were not
loaded by the startup scripts in their firmware images.

In summary, our experiments with two representative
downstream analysis systems illustrate how FirmSolo’s novel
capability to build IoT firmware-image specific kernel binaries
enables the analysis of proprietary binary-only kernel modules
for bugs and vulnerabilities.

6 Limitations
As any automated solution, FirmSolo is subject to a set of
limitations. First, FirmSolo currenlty supports kernels newer
than 2.6.18 and works for the MIPS, ARMv[5-7] architec-
tures. Supporting earlier kernel versions can be achieved by
working with older cross-compiler toolchains and additional
architectures can be added with minor engineering effort.
Second, the K.C.R.E. process can introduce false positives in
the downstream analysis if the KFS kernel and UKM modules it
produces do not agree with the DKM modules on the memory
layout of data structures these modules use. Third, the layout
recovery process of step 2c does not address cases where
the errors in CKM modules and their dependencies originate
outside their crashing functions. Introducing a dynamic
analysis approach in step 2c could potentially address
these cases. We leave this as future work. Finally, FirmSolo
cannot analyze kernel modules that require the presence of
peripherals (e.g., a USB device) not supported by QEMU.

7 Related Work
To best of our knowledge FirmSolo is the first system to enable
the loading of binary kernel modules at scale in the embedded
systems re-hosting and dynamic analysis landscape.

Kernel Configuration Recovery. Socala et al. [40] and
Pagani et al. [28] leveraged memory footprints of live kernels
and memory dumps, respectively, to recover the configuration
of pre-compiled kernels. Unfortunately, it is not only costly
to purchase thousands of IoT devices but it would also require
extensive manual effort to generate the memory dumps. Also,
as stated in Section 2.4 the available original firmware kernels
cannot be emulated by state-of-the-art emulators like QEMU.
FirmSolo overcomes the above limitations by using K.C.R.E.
to generate its own kernels that are supported by QEMU to
load the IoT kernel modules.

Firmware Analysis. Chen et al. [5] and Kim et al. [19]
developed Firmadyne and FirmAE, respectively, two dynamic
analysis frameworks that use firmware re-hosting to discover
bugs and vulnerabilities in user space applications of firmware
images. In a similar fashion Vetterl et al. [42] developed
Honware, a honeypot framework that leverages firmware
image re-hosting to imitate the behavior of real-network
connected devices and study real world attack scenarios by



deploying these devices on the Internet. All these works focus
on user space analysis while lacking support for firmware
kernel modules. In contrast FirmSolo, produces kernels that
are able to load said modules and enable downstream analysis
on both user and privileged firmware code.

Other systems, such as AVATAR [44], SURROGATES [20],
and Inception [9] implemented a hybrid approach, where an
emulator (driven by a symbolic execution engine) and an actual
device are combined, to conduct dynamic analysis on firmware
binaries. With the presence of the target device these systems
were able to overcome the peripheral availability problem,
encountered in most full system emulation approaches.
However, not all devices provide the necessary debugging
interfaces (e.g., JTAG) for integration with these systems.
Importantly, the reliance of these systems on the physical IoT
hardware inherently renders them non-scalable.

Symbolic Execution. Static analysis and symbolic
execution [12, 16, 34, 37, 38] are popular techniques used
for analyzing Linux based drivers and binary firmware.
Static analysis is essential to guide symbolic execution
engines [3, 4, 6], which serve as a replacement mechanism
in the absence of real hardware. These systems require
extensive manual effort from the analyst to integrate the
symbolic execution engines with different types of embedded
devices. In contrast, FirmSolo’s full-system emulation and
fully automated analysis pipeline make it applicable to many
different types of devices and their privileged firmware code.

Data Structure Inference. Dynamic analysis systems, such
as REWARDS [23] , HOWARD [39] and DSIbin [35] mostly
rely on memory access patterns with the help of symbolic
execution to deduce the layout of data structures. However,
since the original kernels cannot be emulated by state-of-the-
art emulators such as QEMU, these systems are not applicable
to our dataset. Static analysis systems, such as OSPREY [46]
and hybrid systems such as TIE [22] and ORIGEN [15] rely
on data and control flow analyses to recover the layout of data
structures in binaries. None of the systems mentioned above,
except ORIGEN, recover semantic information about data
structures (i.e., names and members) like FirmSolo does (i.e.,
through inter-module debugging information transferring).
Without this feature FirmSolo would not be able to recover or
align the layout of data structures in KFS. However, not even
ORIGEN can completely replace step 2c since its dynamic
analysis component, essential to ORIGEN’s functionality,
suffers from the dynamic analysis limitations stated previously.

Firmware Fuzzing. Pustogarov et al. developed EAS-
IER [32], a system directed towards Android device drivers.
Through abstraction techniques and heuristics EASIER is
capable of loading custom kernel modules on an instrumented
Android kernel, and in combination with a system call fuzzer,
EASIER is able to analyze Android kernel drivers. Currently,
EASIER supports only modules in the Android hardware
drivers category for three kernel versions. Furthermore,
EASIER is mainly designed to analyze kernel drivers indi-

vidually and not at scale. To load and analyze kernel drivers,
EASIER configures its kernels with basic .config files and
uses function abstraction techniques (i.e., replacing symbols
required by modules with empty stubs) to satisfy the kernel
modules’ symbol dependencies. This implementation imposes
the following shortcomings. First, as we show in the evaluation
of stage 2 in Section 5.2 generically configured kernels load
significantly fewer kernel modules than FirmSolo’s kernels.
Second, while the abstraction techniques used by EASIER
are effective for loading kernel modules in isolation, they fail
to capture the inter-module and kernel-module dependencies
(e.g., symbol exporting and sharing). Factoring in these
dependencies is essential for modules to load at scale into the
kernel and also function properly. Thus, the adoption of an
analysis process similar to FirmSolo’s (i.e., K.C.R.E.) would
be necessary for EASIER to overcome the above limitations
and expand to other module types and kernels. On the contrary,
FirmSolo is designed to be generic enough to support a wide
variety of kernel versions and modules at scale.

Other works such as FirmAFL [47] rely on a hybrid
form of firmware emulation (user and full system modes) in
conjunction with fuzzing [45] to analyze a firmware image.
Works like HALucinator [7] use Hardware Abstraction
Layers (HALs) to better imitate peripheral behavior during
emulation, along with a fuzzer [43], to perform dynamic
analysis on embedded firmware. As with the majority of the
other approaches, FirmAFL also takes into consideration only
the user space aspects of the firmware images. Also in the case
of HALucinator the analyst has to pinpoint all the necessary
HALs in order for the model to work correctly, thus impacting
the scalability of the framework. In contrast, FirmSolo does not
suffer from scalability limitations, due to manual intervention
and supports both user and privileged code analysis.

8 Conclusion
In this paper we presented FirmSolo, a framework that makes
privileged firmware code in the form of kernel modules avail-
able to downstream analysis. By implementing the Kernel Con-
figuration Reverse Engineering technique FirmSolo builds a
kernel for each firmware image that is capable of loading its ker-
nel modules. To illustrate FirmSolo’s utility, we demonstrated
two use cases; TriforceAFL and Firmadyne finding previously-
known and unknown bugs in binary kernel modules.
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A Fuzzing Strategy

1 struct ifreq {
2 #define IFHWADDRLEN 6
3 union
4 {
5 char ifrn_name[IFNAMSIZ];
6 } ifr_ifrn;
7
8 union {
9 struct sockaddr ifru_addr;

10 ...
11 struct if_settings ifru_settings;
12 } ifr_ifru;
13 };

Listing 3: Code snippet of the implementation of struct ifreq
in the the Linux kernel.

The IOCTL is a flexible system call, which exposes an
interface that can be used by user-space applications to interact
with the kernel proper or modules that implement the system
call. Thus we use these available interfaces to execute and
analyze the privileged code of firmware kernel modules.
Traditionally, the IOCTL has the following prototype:

int ioctl(int fd, unsigned int cmd, void *arg),
The fd argument is related to the device file registered by the
module under the /dev directory and the cmd is a number that
acts as an index to a dispatch mechanism (e.g., via a C-switch
statement) within the IOCTL implementation. Finally arg
holds a pointer to user data passed to the kernel module. The
void pointer type offers a measure of flexibility for the module
to interpret the data in any specific format it requires (e.g., as
a struct). We use the void pointer to pass the fuzzer mutated
data to the kernel module. In the case of a networking module
we use the pointer to pass a struct ifreq to the module (see
Listing 3). This struct consists of two unions of 16 bytes
each. The fist union stores the name of the network interface
associated with the module, used by the kernel to find and
execute the IOCTL of the target kernel module and the second
union stores configuration data about the network interface.
Since the network interface name must be correctly placed
in the first 16 bytes of struct ifreq, for the kernel to use
and find the target kernel module, we only have the remaining
16 bytes available in the struct to replace with mutated data
from the fuzzer.

Next to detect the cmd numbers used for the dispatch mecha-
nism, FirmSolo uses the Ghidra [13] software reverse engineer-
ing tool. While several previous works on kernel driver IOCTL
fuzzing and IOCTL cmd excavation [8,24,32] exist, these tools
either require the source code of the modules and the kernel
or they are not suited for large scale analysis, thus they are not
applicable to our analysis pipeline. Instead, we use Ghidra’s
Python scripting to lift the assembly of theDKM kernel modules
(ARM and MIPS) into Ghidra’s intermediate representation
(IR) PcodeOp, to extract integers used in conditional branch
instructions or as jump table indexes, both of which are an in-
dicator of the dispatch mechanism within the IOCTL’s imple-

mentation. However, this approach introduces a large number
of integers unrelated to the target module’s IOCTL dispatch. To
filter out most of the unwanted cases we use AFL’s afl-cmin
tool which keeps the minimum number of seeds that produce
distinct instrumentation results during a fuzzing dry run.

B Version Magic

1 #define VERMAGIC_STRING \
2 UTS_RELEASE " "\
3 MODULE_VERMAGIC_SMP MODULE_VERMAGIC_PREEMPT\
4 MODULE_VERMAGIC_MODULE_UNLOAD

MODULE_VERMAGIC_MODVERSIONS \
5 MODULE_ARCH_VERMAGIC

Listing 4: Linux-2.6.30 vermagic macro defined in include/lin-
ux/vermagic.h

The vermagic macro shown in Listing 4, provides informa-
tion about basic options that must match between a module
and the kernel proper. These options are related to Symmetric
Multiprocessing, Preemption, Module Versioning
support, etc. The UTS_RELEASE macro specifies the full kernel
version (base version + extension).

C BRIDGE_NETFILTER Definition

1 config BRIDGE_NETFILTER
2 bool "Bridged IP/ARP packets filtering"
3 depends on BRIDGE && NETFILTER && INET
4 depends on NETFILTER_ADVANCED
5 default y

Listing 5: Linux-2.6.30 BRIDGE_NETFILTER option
definition

D Data Structure Layout Correction
Figure 3 provides an example of how FirmSolo extracts the

variable def-use chains of the crashing function ifb_setup
in both the DKM and UKM versions of module ifb.ko. List-
ings 3a and 3b illustrate the Ghidra decompilation view of the
crashing function ifb_setup in theUKM andDKM versions of
module ifb.ko, respectively. It is clear that in the case of the
UKM ifb.ko, Ghidra retains the debugging information for
the variable dev of type struct net_device, which is used
during the alignment process. In turn, parts a and b in Fig-
ure 3c show the extraction and abstraction of def-use chains
to vectors~v of memory instructions. In detail, the def-use
chain of the variabledev in theUKM ifb.ko is abstracted to the
vector~v1up of five store instructions, four load double word in-
structions, etc. In our example, the variables dev, pbVar5 and
uVar1 of the UKM ifb.ko are matched to variables param_1,
pbVar2 and uVar1 of the DKM ifb.ko, based on the similar-
ity of their instruction vectors (i.e., ~v1up ≈~v1ds, ~v2up ≈~v2ds



1 void ifb_setup
(net_device *dev)

2 {
3 undefined4 uVar1;
4 uint uVar2;
5 uint uVar3;
6 uint uVar4;
7 byte *pbVar5;
8 uint uVar6;
9

10 dev->destructor
= free_netdev;

11 dev->netdev_ops
= &ifb_netdev_ops;

12 ether_setup();
13 uVar3 = *(

uint *)&dev->features;
14 uVar4 = *(uint *)((int

)&dev->features + 4);
15 uVar6 = dev->flags;
16 uVar2 = dev->priv_flags;
17 pbVar5 = dev->dev_addr;
18 uVar1 = *(undefined4

*)((int)&dev
->vlan_features + 4);

19 ...
20 dev->tx_queue_len = 0x20;
21 dev->flags = uVar6

& 0xffffefff | 0x80;
22 dev->addr_assign_type

= ’\x01’;
23 dev->priv_flags

= uVar2 & 0xffbefbff;
24 get_random_bytes(pbVar5 ,6);
25 *pbVar5

= *pbVar5 & 0xfe | 2;
26 return;
27 }

(a) UKM Ghidra snippet

1 void ifb_setup(int param_1
,undefined4 param_2 ,undefined4
param_3 ,undefined4 param_4)

2 {
3 uint uVar1;
4 byte *pbVar2;
5
6 *(code **)(param_1

+ 0x2a4) = free_netdev;
7 *(undefined **)(param_1

+ 0x118) = &DAT_000107f0;
8 ether_setup();
9 *(undefined4

*)(param_1 + 0x250) = 0x20;
10 *(uint *)

(param_1 + 0x70) = *(uint *)
(param_1 + 0x70) | 0x1900e9;

11 *(uint *)(param_1 + 0x74) = *(uint
*)(param_1 + 0x74) | 0x80;

12 uVar1 = *(uint *)
(param_1 + 0x88) | 0x190069;

13 *(uint *)(param_1 + 0x88) = uVar1;
14 *(undefined4 *)(param_1

+ 0x8c) = *(undefined4
*)(param_1 + 0x8c);

15 *(uint *)(param_1
+ 0x128) = *(uint *)(param_1
+ 0x128) & 0xffffefff | 0x80;

16 *(uint *)(param_1 + 300) = *(uint *)
(param_1 + 300) & 0xffbefbff;

17 *(undefined *)(param_1 + 0x164) = 1;
18 pbVar2 =

*(byte **)(param_1 + 0x1e4);
19 get_random_bytes

(pbVar2 ,6,uVar1 ,1,param_4);
20 *pbVar2 = *pbVar2 & 0xfe | 2;
21 return;
22 }

(b) DKM Ghidra snippet

struct net_device *dev: Accesses

struct net_device *dev: Members

Upstream Module: ifb.ko

struct net_device *dev

ldrd r8,r9,[r4,#0x70]
ldrd r2,r3,[r4,#0x88]
...
str r3,[r0,#0x264]

byte *pbVar5

ldr r10,[r4,#0x1b8]
strb r3,[r10,#0x0]
ldrb r3,[r10,#0x0]

Distributed Module: ifb.ko

byte *pbVar2

ldr r4,[r4,#0x1e4]
strb r3,[r4,#0x0]
ldrb r3,[r4,#0x0]

Def-Use Chains

uint uVar1

uint uVar1

ldr r2,r3,[r4,#0x88]
strd r2,r3,[r4,#0x88]

Upstream Module: ifb.ko

Ups. ifb.ko Dist. ifb.ko

Offsets: {0x70, 0x88, 0x110, 0x120 ..., 
0x264}

Distributed Module: ifb.ko

Offsets: {0x70, 0x88, 0x118, 0x128 ..., 
0x2a4}  

1)dev->features
  Ofst: dev + 0x70
2)dev->vlan_features
  Ofst: dev + 0x88
3)dev->netdev_ops
  Ofst: dev + 0x110
4)dev->flags
  Ofst: dev + 0x120
...
9)dev->destructor
  Ofst: dev + 0x264

1)dev->features
 Ofst: dev + 0x70
2)dev->vlan_features
 Ofst: dev + 0x88
3)dev->netdev_ops
 Ofst: dev + 0x118
4)dev->flags
 Ofst: dev + 0x128
...
9)dev->destructor
 Ofst: dev + 0x2a4

a

b

c

d

int param_1

ldrd r2,r3,[r4,#0x70]
ldrd r2,r3,[r4,#0x88]
...
str r3,[r0,#0x264]

 ={'str':5, 'ldrd':4,
   'ldr':3, 'strd':4,
   'strb':1}

V1ds

 ={'str':5, 'ldrd':4,
   'ldr':3, 'strd':4,
   'strb':1}

V1up
={'ldr':1, 'strb':1,
  'ldrb':1}

V2up ={'ldr':1, 'strd':1}V3up

={'strd':1}V3ds
={'ldr':1, 'strb':1,
  'ldrb':1}

V2ds

strd r2,r3,[r4,#0x88]

(c) Variable and member matching during the Data Structure Layout
Correction step.

Figure 3: Ghidra code snippets for the upstream and distributed versions of the ifb.ko kernel modules. The figure also presents
the process behind transferring DWARF information between the upstream and distributed version of the ifb.ko kernel module.

and~v3up ≈~v3ds), Next, FirmSolo discards all variable pairs
without a valid struct type. Since only variable dev has a
struct net_device type, only the pairdev andparam_1will
be retained by FirmSolo. Thus, struct net_device is the
offending data structure that FirmSolo has to “fix”. Part d of
Figure 3c showcases which members of struct net_device
are misaligned in our example (the figure only showcases three
misaligned members). In particular, members netdev_ops,
flags and destructor are located at offsets 0x110, 0x120
and 0x264 (hex), respectively, from the base of the struct
net_device, while they should be at offsets 0x118, 0x128
and 0x2a4 (hex). Finally, FirmSolo invokes the backtrack-
ing search algorithm providing the offsets mentioned above.
The algorithm searches for options that need to be added or
removed from the KFS kernel’s .config file so that struct
net_device is aligned in KFS and its UKM modules after a
new iteration of K.C.R.E..

E Firmadyne Exploits

CVE # Description Confirmed
CVE-2015-3036 Stack based buffer overflow Y
CVE-2009-1897 NULL pointer dereference N
CVE-2016-3135 Integer overflow N
CVE-2017-14489 Memory Corruption N
CVE-2013-1828 Memory Corruption N
CVE-2016-3134 Memory corruption N
CVE-2016-4997 Memory corruption N
CVE-2014-4943 Memory corruption N
CVE-2007-2878 Kernel object corruption N
CVE-2017-16939 Use-after-free N

Table 6: The vulnerabilities attempted to confirm within
Firmadyne and proof-of-concept exploits from ExploitDB.
Seven unconfirmed vulnerabilities rely on configuration
options not used by the firmware images in our dataset
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