
High-Performance Low-Energy Implementation of
Cryptographic Algorithms on a Programmable SoC

for IoT Devices

Boyou Zhou, Manuel Egele, Ajay Joshi

ABSTRACT
Due to severe power and timing constraints of the “things”
in the Internet of things (IoT), cryptography is expensive for
these devices. Custom hardware provides a viable solution.
However, implementations of cryptographic algorithms in the
devices need to be upgraded frequently compared to the
longevity of these “things”. Therefore, there is a critical
need for reconfigurable, low-power and high-performance
cryptography implementations for IoT devices. In this paper,
we propose to use an FPGA as the reconfigurable substrate
for cryptographic operations. We demonstrate our proposed
approach on a Zedboard, which has two ARM cores and
a Zynq FPGA. The implemented cryptographic algorithms
include symmetric cryptography, asymmetric cryptography, and
secure hash functions. We also integrate our cryptographic
engines with the OpenSSL library to inherit the library’s
support for block cipher modes. Our approach shows that the
FPGA-based reconfigurable cryptographic components consume
between 1.8× and 4033× less energy and run between 1.6× and
2983× faster than the software implementation. At the same
time, the FPGA implementation of cryptographic operations is
more flexible compared to custom hardware implementations of
cryptographic components.

1. INTRODUCTION
The current trend toward connecting a variety of electronic

devices, such as thermostats, robots, and smart devices, has
led to the dawn of the Internet of Things (IoT) paradigm [1].
IoT devices frequently handle sensitive information, such as
command and control signals for smart homes, automobiles,
and factory floors. Thus, our society would be best served by
leveraging strong cryptography primitives that can guarantee the
integrity and confidentiality of IoT data. Strong cryptographic
primitives could have helped avoid some of the most recent
security breaches in this area (e.g., [2–6]). Furthermore, the
growth of data-volume in the IoT space is projected to be
unprecedented. For example, Cisco predicts that the amount
of data produced and consumed by 4 ∼ 5 billion IoT devices
will grow to 15 exabytes (a billion billion bytes) by 2020 [7].
At the same time, protecting the data at that scale will become
increasingly challenging [8]. The increasing demand for data has
led to the following conflict. On the one hand, capabilities of
IoT devices are constrained by a low power budget, which can
be as low as 6.45 µw watts [9] in energy harvesting applications.
On the other hand, energy-intensive cryptographic operations are
required to protect all the data produced and consumed by the
IoT devices. The perspective of growth, device longevity, and
the observation that cryptographic operations are relatively costly
when compared to regular system functionality, call for novel
solutions for IoT devices to provide cryptographic primitives that
are scalable, flexible and energy-efficient.

Historically, energy-efficient and scalable implementations
of cryptographic algorithms have been introduced by chip
manufacturers as dedicated crypto-engines, which are essentially
Application Specific Integrated Circuit (ASIC) units embedded
with the processor [10–12]. These ASIC implementations
provide performance and energy efficiency advantages but they
are not flexible. The longevity of IoT devices necessitates
flexible cryptographic functionality. For example, cryptographic
algorithms that are found insecure (e.g., DES) should be
replaced with more secure algorithms (e.g., AES). Thus, to
achieve high performance, energy efficiency, and flexibility, we
propose to implement the cryptographic primitives in a Field
Programmable Gate Array (FPGA) that is integrated with a
processor in a System-on-Chip (SoC) configuration. In this
paper, we design and thoroughly evaluate the performance,
energy efficiency, and flexibility of various cryptographic
algorithms. To this end, we evaluate each algorithm in a realistic
setting where the cryptographic functionality is implemented in
an FPGA and exposed to Linux user-space programs through a
simple modification of the OpenSSL [13] cryptographic library.
Specifically, we perform our evaluations on a Digilent Zedboard,
a System on Chip (SoC) platform that features two ARM cores
connected to an FPGA. This setup further illustrates that our
solution can seamlessly integrate with existing software that
depends on the hugely popular OpenSSL library. For example,
a minimal installation of the Ubuntu Linux (16.04) operating
system distribution contains as many as 113 packages depending
on the OpenSSL library. Our implementation seamlessly benefits
all of these applications without further modifications to these
packages. The detailed contributions are listed below:

• To provide IoT devices with high performance and
energy-efficient cryptographic primitives, we propose, a
flexible hardware solution based on commodity off-the-
shelf FPGAs (Section 3).

• To demonstrate feasibility, we implement cryptographic
engines for symmetric and asymmetric cryptographic
algorithms, as well as cryptographic hash functions on the
Zedboard platform in a ready-to-use system. We develop
our functions in an application program for evaluations
(Section 4).

• We achieve flexibility in the online reconfiguration of
FPGA hardware and block cipher modes in software. As
our FPGA-based symmetric encryption engine is integrated
into the OpenSSL library, we inherit support for the various
block cipher modes implemented by OpenSSL (Section 4).

• We synthesize implementations of AES, Rivest & Shamir
& Adleman (RSA), Data Encryption Standard (DES) and
Secure Hash Algorithm (SHA) hardware as obtained from
Opencores [14] (Section 5).

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

• We thoroughly evaluate these implementations along the
dimensions of performance, energy, and power. To assess
improvements along these dimensions, we also compare
the FPGA-based implementations with their respective
software-only counterparts (Section 5).

2. RELATED WORK
Since FPGA enables building flexible hardware, various

implementations of the cryptographic algorithms on FPGA
substrates have been proposed. An FPGA implementation of
AES was first shown to have benefits in terms of performance
improvements and energy savings in 2004 [15]. Here, the stream
reached a speed of 204Mbps on average for AES encryption.
Since then, FPGAs were explored as a potential solution to
cryptographic applications for low power devices. Good et al.
proposed a minimal data path design of AES, which is used
only on 8-bit data path in all the operations in AES [16]. This
design made the entire AES fit in small programmable areas.
Hamalainen et al. presented an upgraded version with the cost
of using 3.1k gates [17] compared to [16] using ∼4.7k gates.

With the increasing area of FPGAs, more and more resources
could be used for cryptographic designs. Bulens et al. first
put one full round of SubBytes operations in AES on FPGA
in 2008 [18]. With pipelined designs, the plain text can
be continuously streamed into the cryptographic units for
encryption/decryption to achieve high throughput. Good et al.
showed the designs from the fastest to the smallest, which can
provide different design points on different hardware platforms,
in order to achieve a trade-off between speed and area [19]. Our
design achieved a speed of 397Mbps compared with their design,
which had a speed of 358Mbps encryption/decryption speed.
Modern FPGAs have enough programmable logic that can fit the
expansion of 10 to 14 rounds of SubBytes operations. Hoang et
al. showed a fast implementation of AES with the key size of 128
bits, with a look-up table of SubBytes [20]. There are also partial
and dynamic reconfigurable implementations for more flexible
solutions on FPGA [21]. As partial configurations are designed
for high-end FPGA applications, low-energy FPGA has not yet
widely adopted the partial configurations for their applications.

Side channel attacks use power, time or other physical
properties to break cryptographic algorithms. Once discovered,
it is possible to prevent a given side channel attack by modifying
the implementation of cryptographic algorithms. Robust designs,
such as [22, 23], are resistant to Differential Power Analysis
(DPA) leaking AES keys in their implementation. However,
robustness and DPA resistant designs come at a higher cost
in performance or energy consumption. Other cryptographic
algorithms, such as Hummingbird [24] and Whirlpool [25], have
also been implemented on FPGA. Recent works have shown
that FPGA can be an ideal solution for modern cryptographic
computation. Saarinen et al. implemented Authenticated
Encryption with Associated Data (AEAD), AES-GCM on
Zedboard [26]. Saarinen et al. also showed one variant
implementation of Whirlpool [27]. These works contain detailed
explanations of implementation and performance analysis,
but a lack of power and energy analysis and multi-crypto-
engines implementation. Our work includes performance,
power comparisons measurements on FPGA and software
cryptographic algorithm implementations. Due to the particular
importance of energy budget in IoT designs, we also include the
energy cost comparison between measurements of FPGA and
software implementations.

3. BACKGROUND
Performance, energy consumption, and security are three

major considerations for IoT devices. Using software-
based cryptographic operations on IoT devices enables us
to upgrade the IoT device security. Nevertheless, these

software-based cryptographic operations are expensive in terms
of energy for IoT devices. Hence, the custom hardware
implementation of the algorithm is a viable option, as it can boost
performance and have lower power consumption compared to its
software implementation. Yet cryptography implementations are
frequently changed many times in the lifetime of IoT devices.
The IoT devices can be employed for 5-10 years [1]; on the
contrast, the OpenSSL library can be updated once a month
on average over last 10 years [13]. These custom hardware
implementations cannot be changed once they are manufactured.
Using FPGAs solves this problem by allowing the hardware to
receive updates.

FPGAs provide a good middle ground as they provide
flexibility. The FPGA clock speed is much slower than the
clock on a general purpose processor. However, the FPGA
can complete the computation intensive functions much faster
than the software implementation. For example, a software
implementation of AES can take up to 600,000 cycles on an
ARM machine, while a hardware implementation only needs
20 cycles [14]. Even though FPGA clock speed can be
10× slower than General Purpose Processor (GPP), the FPGA
implementation can still be up to 3,000× faster.

In addition to the performance boost, FPGA implementation
also consumes much lower power to complete the same amount
of computation. Compared to GPP, FPGAs do not have extra
operations such as instruction fetching or instruction decoding.
Data paths on the FPGA are customized to the algorithm in
order to achieve its maximum computation efficiency. Without
operations to loading instructions in GPP and with customized
data path, FPGAs have much higher energy efficiency in
computationally intensive applications.

FPGA provides a lot of benefits in performance and power,
but it also has some drawbacks. Since the manufacturing
technologies are different for FPGAs and GPPs, manufacturers
only provide GPP and FPGA connected in the same package,
while on different dies (off-die). In some platforms, they are even
in different packages (off-chip). One of the key drawbacks is that
in order to access discrete FPGA, GPPs are required to use off-
die or off-chip channels, which have higher latency compared to
on-chip channels. SoC solutions like Zedboard, where GPP and
FPGA are integrated on the same chip, can communicate through
on-chip buses, like the Advanced eXtensible Interface (AXI) bus,
which largely reduces the communication latency. AXI ports are
also used for off-die, high-speed communications, such as CPU
communicating with main memory. These Zedboard platforms
have lower communication cost and are off-the-shelf solutions.
Thus we have used Zedboard as our target system.

Numerous cryptographic operations have been implemented
on FPGA (see §2). Nevertheless, any FPGA has its own
limitations on area usage and available resource to implement
all the cryptographic algorithms. This demands that there
should be a re-configurable scheme, where hardware can be
configured with available crypto-engines. We propose to use
FPGAs for crypto operations as FPGAs can be reconfigured and
at the same time, they are more energy efficient than software
implementations. Considering the limitations on the FPGAs, we
implement our system on Zedboard and evaluate the performance
and energy cost of our proposed scheme.

4. EXPERIMENTAL SETUP
To evaluate the use of FPGAs as an energy-efficient re-

configurable substrate for crypto-engines, we use AES, RSA, and
SHA as examples of symmetric crypto, asymmetric crypto, and
hash functions, respectively. We demonstrate our approach on
Zedboard platform by Digilent. The Zedboard platform uses the
Zynq 7000 SoC chip containing two ARM9 cores and one Zynq
7000 FPGA. The FPGA substrate interfaces directly with the
system main memory through AXI ports. The persistent storage

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

ARM
Cores

Write

Read

Memory
Read

Write

AXI Bus

AXI CLK

Read

Write AXI IP
Encrypto-Core

0x43C10000
0x43C10001
0x43C10002

Input

Output

Encryption
Core

Memory
Addressing

Space

Figure 1: System Architecture for AES Encryption Engine

101 102 103 104 105 106 107 108

Number of Blocks

10-5

10-4

10-3

10-2

10-1

100

101

102

E
n

cr
yp

ti
o
n

 T
im

e
[s

]

DES ENC

FPGA-DES

c-DES

(a)

0 10 20 30 40 50 60 70 80 90
 % of Total Data Sampled

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
o
w

e
r[

W
]

DES ENC

power-c-des

power-fpga-des

10-1

100

101

E
n

e
rg

y[
J]

energy-c-des

energy-fpga-des

(b)

101 102 103 104 105 106 107 108

Number of Blocks

10-5

10-4

10-3

10-2

10-1

100

101

102

D
e
cr

yp
ti

o
n

 T
im

e
[s

]

DES DEC

FPGA-DES-dec

c-DES-dec

(c)

0 10 20 30 40 50 60 70 80 90
 % of Total Data Sampled

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
o
w

e
r[

W
]

DES DEC

power-c-des-dec

power-fpga-des-dec

10-1

100

101

102

E
n

e
rg

y[
J]

energy-c-des-dec

energy-fpga-des-dec

(d)

100 101 102 103 104 105 106 107

Number of Blocks

10-5

10-4

10-3

10-2

10-1

100

101

102

E
n

cr
yp

ti
o
n

 T
im

e
[s

]

AES ENC

FPGA-AES-enc

c-AES-enc

(e)

0 10 20 30 40 50 60 70 80 90
 % of Total Data Sampled

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
o
w

e
r[

W
]

AES ENC

power-c-aes-enc

power-fpga-aes-enc

10-2

10-1

100

101

102

E
n

e
rg

y[
J]

energy-c-aes-enc

energy-fpga-aes-enc

(f)

100 101 102 103 104 105 106 107

Number of Blocks

10-5
10-4
10-3
10-2
10-1
100
101
102
103

D
e
cr

yp
ti

o
n

 T
im

e
[s

]

AES DEC

FPGA-AES-dec

c-AES-dec

(g)

0 10 20 30 40 50 60 70 80 90
 % of Total Data Sampled

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
o
w

e
r[

W
]

AES DEC

power-c-aes-dec

power-fpga-aes-dec

10-2

10-1

100

101

102

E
n

e
rg

y[
J]

energy-c-aes-dec

energy-fpga-aes-dec

(h)

Figure 2: Comparisons between C implementation (software), and FPGA implementation (hardware) of DES, AES in encryption (ENC)
and decryption (DEC). We encrypt and decrypt data ranging from 16 blocks to 166 blocks in DES experiments, and from 1 block to
107 in AES experiments. (a) and (c) show time comparisons in DES. Encryption is 1.9× faster and decryption is 1.6× faster in DES.
(b) and (d) show power consumption and energy comparisons. Encryption has 3.9× energy reduction and decryption has 1.9× energy
reduction. (e) and (g) show time comparisons in AES. Encryption is 18.8× faster and decryption is 116.6× faster on FPGA. (f) and
(h) show power consumption and energy comparisons in AES. Encryption has 13.9× energy reduction and decryption has 6.0× energy
reduction.

on the Zedboard has two partitions, one is the boot partition
for loading FPGA bitstreams and starting the Linux Kernel.
The other partition contains an installation of the Linaro Linux
distribution [28]. The boot partition contains three files: one
file for mapping bitstreams to FPGA, one file for Linux Kernel,
and the device tree file defines all the devices that are present
in the system. To minimize unwanted energy consumption, we
select minimum device tree, which boots up the Linux system
and configures the Zynq 7000 FPGA. We build a system with the
device tree we created, which consists of no other functionalities
but Linux running on the ARM core, AXI peripheral blocks, and
encryption IP cores as it is shown in Fig 1. Vivado provides a
custom AXI IP core wrapper, which integrates well with CPU
communication channels on the one hand, and wraps the custom
design inside the IP wrapper on the other hand. The ARM core
provides at maximum 512 32-bit channels as communication
channels for communications. The interfaces of these channels
on the FPGA side can be synthesized into registers on the
programmable logic. On the ARM core side, these channels

are memory mapped I/Os, which can be accessed by memory
operations.

We downloaded the hardware implementation of AES,
DES, RSA, and SHA for evaluations, from Opencores [14],
synthesized them in the custom AXI wrapper and mapped them
on the Zedboard. The input, output, and configuration bits
connect to communication channel interface registers, and the
AXI wrapper along with our custom designs are mapped to the
FPGA. These registers can be addressed with memory offset
provided by Vivado after the synthesis of the wrapper. With
the calculated memory locations of these registers, offloading
encryption operations consists of the writing phase and reading
phase. During the writing phase, plain text and keys are
written to the corresponding memory locations. In the reading
phase, encrypted data are copied out to the output of encryption
function. With FPGA acceleration, the cryptographic functions
only consist of mapping pointers to the memory locations and
memory copying.

In the experiments for evaluation, we use our own application

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

100 101 102 103 104 105 106 107

Number of Blocks

10-5

10-4

10-3

10-2

10-1

100

101

102
E

n
cr

yp
ti

o
n

 T
im

e
[s

]
AES CBC ENC

FPGA-AES-cbc-enc

c-AES-cbc-enc

(a)

100 101 102 103 104 105 106 107

Number of Blocks

10-5
10-4
10-3
10-2
10-1
100
101
102
103

E
n

cr
yp

ti
o
n

 T
im

e
[s

]

AES CBC DEC

FPGA-AES-cbc-dec

c-AES-cbc-dec

(b)

0 5 10 15 20 25 30 35 40
Number of Blocks

0

20

40

60

80

100

120

E
n

cr
yp

ti
o
n

 T
im

e
[s

]

AES GCM

FPGA-AES-gcm

c-AES-gcm

(c)

0 10 20 30 40 50 60 70 80 90
 % of Total Data Sampled

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
o
w

e
r[

W
]

AES CBC ENC

power-c-aes-cbc-enc

power-fpga-aes-cbc-enc

10-2

10-1

100

101

E
n

e
rg

y[
J]

energy-c-aes-cbc-enc

energy-fpga-aes-cbc-enc

(d)

0 10 20 30 40 50 60 70 80 90
 % of Total Data Sampled

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
o
w

e
r[

W
]

AES CBC DEC

power-c-aes-cbc-dec

power-fpga-aes-cbc-dec

10-2

10-1

100

101

102

E
n

e
rg

y[
J]

energy-c-aes-cbc-dec

energy-fpga-aes-cbc-dec

(e)

0 10 20 30 40 50 60 70 80 90
 % of Total Data Sampled

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
o
w

e
r[

W
]

AES GCM

power-c-aes-gcm-enc

power-fpga-aes-gcm-enc

10-2

10-1

100

101

102

E
n

e
rg

y[
J]

energy-c-aes-gcm-enc

energy-fpga-aes-gcm-enc

(f)

Figure 3: Comparisons between C implementation (software), and FPGA implementation (hardware) of AES block cipher modes, for
both CBC and GCM. In all the hardware implementations, AES core engine operations use FPGA, while block cipher modes use C
implementation. Thus, we still can see a significant performance boost and energy savings in CBC modes, while much fewer benefits in
GCM modes. In CBC mode, we encrypt and decrypt data ranging from 1 block to 107 blocks. In GCM mode, we encrypt data ranging
from 4 to 40 blocks. (a), (b) and (c) show time comparisons. CBC encryption is 6.3× faster, CBC decryption is 38.6× and GCM is
1.1× faster on FPGA. (d), (e) and (f) show power consumption and energy comparisons. CBC encryption has 33.2× energy reduction,
CBC decryption has 154.8× energy reduction and GCM has 1.2× energy reduction.

programs to load data into memory and to encrypt/decrypt /hash
for repeated measurements. We measure AES operations in
Electronic Code Book mode (ECB) and cipher block chaining
(CBC). We use the same crypto-engine core for both modes in
cryptography. In cipher block chaining, current block operations
depend on previous block results, known as the read-after-
write dependency between two operations. As a result, the
AES crypto-engine can not be implemented in a streaming
fashion, where plain text data are continuously fed into crypto-
engines and encrypted data are produced at the same time. We
integrate our implementation of the AES crypto function into
OpenSSL to enable other block cipher modes. We use AES block
cipher as a building block to construct a symmetric encryption
scheme where the hardware accelerated block cipher is used
in combination with a software implementation of the block
cipher modes. In order to achieve system reconfiguration, we
synthesize all the algorithms and write them to bitstream on
the memory storage (SD card on Zedboard). Our hardware
implementation embeds well into existing libraries so that users
can easily utilize our implementations for their designs. All that
is needed to upgrade the cryptographic libraries is to replace the
bitstream file with the new bitstream file through secured channel
on the network. Whenever a re-configuration is requested,
reconfiguration of the FPGA can be achieved by sending the
bitstream to the configuration device port. After the generated
crypto-engine bitstream are copied to FPGA, the Zedboard
system takes less than a second to reconfigure. In this way,
the system can get updated bitstream and map them to FPGA
accordingly.

For the power and energy analysis, we first measure the static
power consumption of the entire Zedboard platform and then
record the power consumption for each individual algorithm. We
make sure that fluctuations have been averaged out through a
large number of experiments. In each algorithm measurement,
we measure a certain amount of data cryptographic operations
that are larger than average web page size (2MB) [29]. We
record the power consumption of 166 256-bit blocks for SHA,
166 64-bit blocks for DES, 105 1K-bit blocks for RSA and
107 128-bit blocks for AES for 10 different runs at a sample
rate of 1 sample per second. After the sampling, we average
each data point among 10 runs of experiments to get the
average power for each sampling interval. We deduct the
static system power consumption of both ARM, FPGA, and
peripheral devices to get the dynamic power consumption for the
measurements with FPGA acceleration. For the pure software
implementation measurements, in addition to the deduction of
overall static power consumption, we also deduct the static power
consumption of FPGA. Since the software implementation takes
much longer time to finish, we use percentages of processed data
to normalize the total time for energy comparisons.

5. EVALUATION
In this section, we show the performance and energy based

comparison between software implementation and hardware
FPGA implementation of AES, RSA, DES, and SHA256. We
perform the analysis for both encryption and decryption for all
the symmetric and asymmetric cryptographic algorithm. We

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

100 101 102 103 104 105

Number of Blocks

10-5
10-4
10-3
10-2
10-1
100
101
102
103

E
n

cr
yp

ti
o
n

 T
im

e
[s

]

RSA ENC

FPGA-RSA

c-RSA

(a)

100 101 102 103 104 105

Number of Blocks

10-5
10-4
10-3
10-2
10-1
100
101
102
103
104
105

D
e
cr

yp
ti

o
n

 T
im

e
[s

]

RSA DEC

FPGA-RSA-dec

c-RSA-dec

(b)

101 102 103 104 105 106 107 108

Number of Blocks

10-4

10-3

10-2

10-1

100

101

102

103

E
n

cr
yp

ti
o
n

 T
im

e
[s

]

SHA

FPGA-SHA

c-SHA

(c)

0 10 20 30 40 50 60 70 80 90
 % of Total Data Sampled

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
o
w

e
r[

W
]

RSA ENC

power-c-rsa

power-fpga-rsa

10-2

10-1

100

101

102

103

E
n

e
rg

y[
J]

energy-c-rsa

energy-fpga-rsa

(d)

0 10 20 30 40 50 60 70 80 90
 % of Total Data Sampled

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
o
w

e
r[

W
]

RSA DEC

power-c-rsa-dec

power-fpga-rsa-dec

10-2

10-1

100

101

102

103

E
n

e
rg

y[
J]

energy-c-rsa-dec

energy-fpga-rsa-dec

(e)

0 10 20 30 40 50 60 70 80 90
 % of Total Data Sampled

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
o
w

e
r[

W
]

SHA

power-c-sha

power-fpga-sha

10-1

100

101

102

103

E
n

e
rg

y[
J]

energy-c-sha

energy-fpga-sha

(f)

Figure 4: Comparisons between C implementation (software), and FPGA implementation (hardware) of RSA in encryption (ENC) and
decryption (DEC) and SHA. We encrypt and decrypt data ranging from 1 block to 105 blocks in RSA. (a) and (b) show time comparisons.
Encryption is 71.2× faster and decryption is 2983.1× faster. (d) and (e) show power consumption and energy comparisons. Encryption
has 6.5× energy reduction and decryption has 4033.0× energy reduction. We do hash ranging from 16 blocks to 166 blocks in SHA.
(c) shows time comparisons. (f) shows power consumption and energy comparisons. We can see a performance boost, energy savings
of hardware implementation in SHA.It shows 6.6× faster in time, 4.6× reduction in energy,

present measurements results of AES Cipher Block Chaining
(CBC) and AES Galois/Counter Mode (GCM) mode as the
examples for block cipher modes. AES CBC uses the bitwise
exclusive-or between the previous encrypted block and current
plain text block as the input for the next block in order to increase
pseudo-randomness in the cipher text. AES GCM, in addition,
has the authentication of data along with encryption in block
cipher modes.

Table 1, shows a summary of Look-Up Tables (LUTs)
utilizations after crypto-engines are mapped to the FPGA. LUTs
are gate level units that encode any boolean expression by
modeling such functions in truth tables. The number of LUTs
tells us the amount of resources that need to be used for logic on
FPGA.

AES RSA SHA DES
Number of Gates 41,427 18,687 29,650 1,275
LUTs Utilization 77.87% 35.11% 55.71% 2.4%

Table 1: This table shows the LUTs utilizations in FPGA of
different crypto-engines.

In the measurement tests, we process data ranging from 16
bytes to 268,435,456(167) bytes for SHA256 and DES blocks,
from 1 byte to 1,600,000 bytes for RSA testbench, and from
1 byte to 160,000,000 bytes for AES. The Zedboard with the
Linaro OS running the system consumes 4.0 watts on average,
which is the static power consumption (power consumption of
the system with running no application program but operating
system). The programmable components consume less than

0.035 watts [30] static power. In the following subsections, we
discuss how much the FPGA implementations have improved
on performance and energy in symmetric cryptography (§ 5.1),
asymmetric cryptography (§ 5.2) and hash functions (§ 5.3),
compared to software.

5.1 Symmetric Cryptography
In DES implementation, the hardware implementation is 1.9×

in encryption and 1.6× in decryption faster than software (see
Figure 2). Though the hardware implementation does not show
a significant performance improvement, the FPGA consumes
much less power. The energy consumption, is 3.9× in encryption
and 1.9× in decryption lower for the hardware implementation
(see Figure 2).

In the AES implementation, the VHDL code breaks the AES
into 10 rounds of permutation and substitution of SubBytes and
inverse SubBytes operations. We expand rounds of operations
to achieve maximum throughput. As we can see from Figure 2,
the AES encryption has 18.8× faster and AES decryption has
116.3× faster. Power consumption in both cases is almost the
same (see Figure 2). Since FPGA implementation is much faster
than the software implementation, the energy consumption of
FPGA is 13.9× less in encryption and 6.0× less in decryption
less than the software implementation. We also evaluate the
block cipher modes in a similar fashion (see Figure 3). Block
cipher modes are all implemented in software, while the crypto-
engines are implemented in hardware. AES CBC mode shows
6.2× faster for encryption and 38.6× faster for decryption. It
also shows a 33.1× energy reduction for encryption and 154.1×
energy-reduction for decryption. GCM mode exhibit 1.1×
performance and 1.2× energy savings. Compared to CBC mode,

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

the additional computation in software makes GCM have lower
performance boost and energy savings.

5.2 Asymmetric Cryptography
The software implementation of RSA is much slower than its

hardware implementation, since RSA requires a large number
of multiplications that can be performed in parallel in hardware.
With a key length of 1024 bit, the FPGA shows a performance
improvement of 71.2× in encryption and 2983.1× in decryption
compared to the software implementation (see Figure 4).
Figure 4 shows that the power consumption for RSA is less than
the software implementation. The energy cost in FPGA is 6.5×
lower in encryption and 4033× lower in decryption compared to
software implementation.

5.3 Hash Function
In the case of SHA256, the FPGA has a higher

power consumption (see Figure 4) compared to software
implementation, however, the performance is better by a factor
of 6.6× (see Figure 4). As a result, the energy consumption is
4.6× less in the FPGA implementation.

5.4 Evaluation Summary
The evaluation results from Section 5.1, 5.2, and 5.3 show

improvements of implementing cryptographic algorithms on
FPGA substrate in terms of performance boost, and energy
savings. Although in some of the cryptographic algorithms,
the FPGA implementations present higher power consumption
than software implementations from time to time, due to its high
performance in computation, all the FPGA implementations in
our evaluation section have much lower the energy cost compared
to software implementation.

6. CONCLUSION
Cryptographic operations are one of the most power-hungry

computations in today’s systems. Our paper evaluates the
mapping of crypto-engines to the FPGA of Zedboard, as the
FPGA can enable more energy-efficient crypto operations than
in software as well as the option to upgrade the cryptographic
algorithms through re-configurations. Performance boost,
and energy savings in FPGA implementations compared to
software implementations range from 1.5× to 2983×, and from
1.8× to 4033×, respectively across a variety of cryptographic
algorithms.

7. FUTURE WORK
We will work on performance and energy cost comparisons

on other off-the-shelf SoC platforms. In addition, we will have
comparisons with anti-DPA implementations of the algorithms
presented in this paper, and comparisons of ECC DH (Elliptic
Curve Diffie Hellman) with and without a reduction algorithm.

8. REFERENCES
[1] “Internet of everything.” https://systemx.stanford.edu/sites/

default/files/uploads/Archive/2014/Nov/11/Lee.pdf.
Accessed: 2016-02-10.

[2] B. Miller and D. Rowe, “A survey scada of and critical infrastructure
incidents,” in Annual Conference on Research in Information Technology,
2012.

[3] C. Miller and C. Valasek, “A survey of remote automotive attack surfaces,”
in BlackHat USA, 2014.

[4] A. Illera and J. Vidal, “Lights off! the darkness of the smart meters,” in
BlackHat Europe, 2014.

[5] G. Hernandez, O. Arias, D. Buentello, and Y. Jin, “Smart nest thermostat:
A smart spy in your home,” in Black Hat USA, 2014.

[6] S. Zonouz, J. Rrushi, and S. McLaughlin, “Detecting industrial control
malware using automated plc code analytics,” in IEEE Symposium on
Security and Privacy, 2014.

[7] “Cisco visual networking index: Global mobile data traffic forecast update,
2015-2020 white paper - cisco.” http://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-
index-vni/mobile-white-paper-c11-520862.html. Accessed:
07-24-2016.

[8] C. P. Mayer, “Security and privacy challenges in the internet of things,” in
Electronic Communications of the European Association of Software
Science and Technology, 2009.

[9] A. Klinefelter, N. E. Roberts, Y. Shakhsheer, P. Gonzalez, A. Shrivastava,
A. Roy, K. Craig, M. Faisal, J. Boley, S. Oh, et al., “21.3 a 6.45µw
self-powered iot soc with integrated energy-harvesting power management
and ulp asymmetric radios,” in IEEE International Solid-State Circuits
Conference, 2015.

[10] “Armv8 technology preview.” http:
//www.arm.com/files/downloads/ARMv8_Architecture.pdf.
Accessed: 2016-02-09.

[11] “Intel advanced encryption standard instructions (aes-ni).”
https://software.intel.com/en-us/articles/intel-
advanced-encryption-standard-instructions-aes-ni/.
Accessed: 2016-02-09.

[12] “Armv8 technology preview.”
http://www.atmel.com/Images/doc8106.pdf. Accessed:
2016-02-09.

[13] “Openssl.” https://www.openssl.org/. Accessed: 07-26-2016.

[14] “opencores.” http://opencores.org/projects. Accessed:
2016-02-10.

[15] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, and J.-D. Legat, “Compact
and efficient encryption/decryption module for fpga implementation of the
aes rijndael very well suited for small embedded applications,” in
International Conference on Information Technology: Coding and
Computing, 2004.

[16] T. Good and M. Benaissa, “Very small fpga application-specific instruction
processor for aes,” in IEEE Transactions on Circuits and Systems, 2006.

[17] P. Hamalainen, T. Alho, M. Hannikainen, and T. D. Hamalainen, “Design
and implementation of low-area and low-power aes encryption hardware
core,” in Euromicro Conference on Digital System Design, 2006.

[18] P. Bulens, F.-X. Standaert, J.-J. Quisquater, P. Pellegrin, and G. Rouvroy,
“Implementation of the aes-128 on virtex-5 fpgas,” in International
Conference on Cryptology in Africa, 2008.

[19] T. Good and M. Benaissa, “Aes on fpga from the fastest to the smallest,” in
International Workshop on Cryptographic Hardware and Embedded
Systems, 2005.

[20] S.-S. Wang and W.-S. Ni, “An efficient fpga implementation of the
advanced encryption standard algorithm,” in IEEE International
Conference on Computing & Communication Technologies, Research,
Innovation, and Vision for the Future, 2012.

[21] J. M. Granado-Criado, M. A. Vega-Rodríguez, J. M. Sánchez-Pérez, and
J. A. Gómez-Pulido, “A new methodology to implement the aes algorithm
using partial and dynamic reconfiguration,” in Integration, the VLSI
journal, 2010.

[22] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen, “A side-channel
analysis resistant description of the aes s-box,” in International Workshop
on Fast Software Encryption, 2005.

[23] S. Shah, R. Velegalati, J.-P. Kaps, and D. Hwang, “Investigation of dpa
resistance of block rams in cryptographic implementations on fpgas,” in
International Conference on Reconfigurable Computing and
Field-Programmable Gate Arrays, 2010.

[24] X. Fan, G. Gong, K. Lauffenburger, and T. Hicks, “Fpga implementations
of the hummingbird cryptographic algorithm,” in IEEE International
Symposium on Hardware-Oriented Security and Trust, 2010.

[25] N. Pramstaller, C. Rechberger, and V. Rijmen, “A compact fpga
implementation of the hash function whirlpool,” in International
Symposium on Field Programmable Gate Arrays, 2006.

[26] M.-J. O. Saarinen, “Simple aead hardware interface (sæhi) in a soc:
Implementing an on-chip keyak/whirlbob coprocessor,” in International
Workshop on Trustworthy Embedded Devices, 2014.

[27] M.-J. O. Saarinen and B. B. Brumley, “Lighter, faster, and constant-time:
Whirlbob, the whirlpool variant of stribob.,” in International Association
for Cryptologic Research Cryptology ePrint Archive, 2014.

[28] “Linaro.” http://www.linaro.org/. Accessed: 08-04-2016.

[29] “Page bloat update: The average web page is more than 2 mb in size.”
https://www.soasta.com/blog/page-bloat-average-web-
page-2-mb/. Accessed on 04-07-2017.

[30] M. Hosseinabady and J. L. Nunez-Yanez, “Run-time power gating in
hybrid arm-fpga devices,” in International Conference on Field
Programmable Logic and Applications, 2014.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

