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Fuzz testing repeatedly assails software with random inputs in order to trigger unexpected program behav-
iors, such as crashes or timeouts, and has historically revealed serious security vulnerabilities. In this article,
we present HotFuzz, a framework for automatically discovering Algorithmic Complexity (AC) time and space
vulnerabilities in Java libraries. HotFuzz uses micro-fuzzing, a genetic algorithm that evolves arbitrary Java
objects in order to trigger the worst-case performance for a method under test. We define Small Recursive
Instantiation (SRI) as a technique to derive seed inputs represented as Java objects to micro-fuzzing. After
micro-fuzzing, HotFuzz synthesizes test cases that triggered AC vulnerabilities into Java programs and mon-
itors their execution in order to reproduce vulnerabilities outside the fuzzing framework. HotFuzz outputs
those programs that exhibit high resource utilization as witnesses for AC vulnerabilities in a Java library. We
evaluate HotFuzz over the Java Runtime Environment (JRE), the 100 most popular Java libraries on Maven,
and challenges contained in the DARPA Space and Time Analysis for Cybersecurity (STAC) program. We
evaluate SRI’s effectiveness by comparing the performance of micro-fuzzing with SRI, measured by the num-
ber of AC vulnerabilities detected, to simply using empty values as seed inputs. In this evaluation, we verified
known AC vulnerabilities, discovered previously unknown AC vulnerabilities that we responsibly reported
to vendors, and received confirmation from both IBM and Oracle. Our results demonstrate that micro-fuzzing
finds AC vulnerabilities in real-world software, and that micro-fuzzing with SRI-derived seed inputs outper-
forms using empty values in both the temporal and spatial domains.
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1 INTRODUCTION

Software continues to be plagued by vulnerabilities that allow attackers to violate basic software se-
curity properties. These vulnerabilities take myriad forms, for instance, failures to enforce memory
safety that can lead to arbitrary code execution (integrity violations) or failures to prevent sensi-
tive data from being released to unauthorized principals (confidentiality violations). The third tra-
ditional security property, availability, is not exempt from this issue. However, denial-of-service
(DoS) as a vulnerability class tends to be viewed as simplistic, noisy, and easy (in principle) to de-
fend against. This view, however, is simplistic, as availability vulnerabilities and exploits against
them can take sophisticated forms. Algorithmic Complexity (AC) vulnerabilities are one such
form, where a small adversarial input induces worst-case! behavior in the processing of that input,
resulting in a denial of service. While in the textbook example against a hash table an adversary in-
serts values with colliding keys to degrade the complexity of lookup operations from an expected
O(1) to O(n), the category of AC vulnerabilities is by no means hypothetical. Recent examples of
AC vulnerabilities include denial of service issues in Go’s elliptic curve cryptography implementa-
tion [7], an AC vulnerability that manifests through amplification of API requests against Netflix’
internal infrastructure triggered by external requests [17], and a denial of service vulnerability in
the Linux kernel’s handling of TCP packets [5]. The vulnerability in the Linux kernel was consid-
ered serious enough that it was embargoed until OS vendors and large Linux users such as cloud
providers and content delivery networks could develop and deploy patches. While these particular
vulnerabilities involved unintended CPU time complexity, AC vulnerabilities can also manifest in
the spatial domain for resources such as memory, storage, or network bandwidth. For example, a
recent vulnerability was discovered in Huawei devices that permits unauthenticated remote ad-
versaries to leak memory by simply sending crafted messages to victim devices [9]. On desktop
systems, attackers could exhaust kernel memory by taking advantage of an oversight in Shiftfs’
fault handling code [11]. In some cases, attackers can even cause AntiVirus software to consume
excessive memory and freeze a system by simply storing a specially crafted file [10]. While discov-
ering AC vulnerabilities is notoriously challenging, program analysis seems like a natural basis for
developing solutions to tackle such issues. In fact, prior research has started to explore program
analysis techniques for finding AC vulnerabilities in software. Most of this work is based on man-
ual or static analysis that scales to real-world code bases, but focuses on detecting known sources
of AC vulnerabilities, such as triggering worst-case performance of commonly used data struc-
tures [27], regular expression engines [42, 70, 79], or serialization APIs [29]. Fuzz testing, where a
fuzzer feeds random inputs to a program under test until the program either crashes or times out,
historically revealed serious bugs that permit Remote Code-Execution (RCE) exploits in widely
used software such as operating system kernels, mobile devices, and web browsers. While the orig-
inal fuzzers demonstrated widespread reliability issues across UNIX utilities [52], modern fuzzers
like AFL [81], and libFuzzer [13] have become important components of the software development
lifecycle because of their ease of use and the speed at which they discover software faults. Recent
work has adapted these state-of-the-art fuzzers to automatically slow down programs with known
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performance problems. These approaches include favoring inputs that maximize the length of an
input’s execution in a program’s control flow graph (CFG) [59], incorporating multi-dimensional
feedback that provides AFL with more visibility into the portions of the CFG each test case executes
the most [47], augmenting AFL with symbolic execution in order to maximize a Java program’s
resource consumption [41, 54], or using a genetic algorithm over programs in a domain specific
language (DSL) in order to trigger a Java method’s worst-case runtime [76]. These recent ad-
vances demonstrate that modern fuzzers can automatically slow down programs such as sorting
routines, hash table operations, and common UNIX utilities. Furthermore, identifying allocation
functions via static analysis in order to incorporate memory usage into a program’s CFG [77] have
been shown to outperform state-of-the-art fuzzers for detecting AC space vulnerabilities that crash
programs by exhausting available memory. These recent developments present exciting new di-
rections for fuzz testing beyond detecting memory corruption bugs. However, these approaches
do not reconcile the traditional fuzzing objective function of maximizing code coverage (breadth)
with the opposing goal of maximizing a given program or individual method’s runtime (depth).
Indeed, these tools are evaluated by the slowdown or memory usage they can achieve for a given
program or function, as opposed to the amount of code they successfully cover. Achieving high
code coverage on any program under test is a notoriously difficult task because common program
patterns like comparing the input to magic values or checksum tests are difficult to bypass using
fuzzing alone, although program transformation tricks like splitting each comparison into a se-
ries of one-byte comparisons [46] or simply removing them from the program [58] can improve
coverage. Augmenting fuzzing with advanced techniques like taint analysis [62] or symbolic execu-
tion [55, 71] helps overcome these fuzzing roadblocks, and RedQueen [14] showed how advanced
tracing hardware can emulate these more heavyweight techniques by providing a fuzzer with
enough information to establish correspondence between program inputs and internal program
state. Prior work has successfully shown fuzz testing can reproduce known AC vulnerabilities in
software, and research continues to produce innovative ways to maximize code coverage. What
is missing in fuzzing for AC vulnerabilities are techniques to automatically sanitize a program’s
execution for AC vulnerabilities, analogous to how modern fuzzers rely on sanitizers to detect
memory corruption bugs [67]. Current fuzzing approaches in general lack the ability to automat-
ically fuzz programs at the method level without the need for manually defined test harnesses.
Recent work has started automating the creation of test harnesses for existing fuzzers with the
goal of creating enough valid states to successfully invoke individual methods either through stat-
ically analyzing library control flow graphs [39] or by obtaining valid method calls by examining
the client code that uses a library method [16]. While this represents exciting new directions for
automatically generating test harnesses, they nonetheless require access to high-quality code that
correctly uses the method under test. This article proposes micro-fuzzing (a concept analogous to
micro-execution [32]) as a novel technique to automatically construct test harnesses that allow a
fuzzer to invoke methods and sanitize their execution for AC vulnerabilities in both time and space.
Both AFL and libFuzzer can fuzz individual methods, but only after an analyst manually defines a
test harness that transforms a bitstream into the types required to call a method. For AFL this in-
volves defining a C program that reads the bitstream from standard input, whereas libFuzzer passes
the bitstream to a specific function that it expects will call the method under test with the appropri-
ate types derived from the bitstream. In contrast, micro-fuzzing takes whole programs or libraries
as input and attempts to automatically construct a test harness for every function contained in the
input. Observe that this approach is analogous to micro-execution [32], which executes arbitrary
machine code by using a virtual machine as a test harness that provides state on-demand in order
to run the code under test. To this end, micro-fuzzing constructs test harnesses represented as
function inputs, directly invokes functions on those inputs, and measures the amount of time and
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space each input consumes using a combination of model specific registers available on the host
machine and an altered execution environment. This alleviates the need to define test harnesses
manually and supports fuzzing whole programs and libraries by considering every function within
them as a possible entrypoint. Furthermore, we sanitize every function’s execution so that once
its observed runtime or memory usage crosses configured thresholds, we kill the micro-fuzzing
process and highlight the function as vulnerable. This sanitization highlights functions with po-
tential AC vulnerabilities out of all the functions micro-fuzzing automatically executes, as opposed
to measuring a fuzzer’s ability to automatically slow-down individual programs or functions.

We implement micro-fuzzing for Java programs in HotFuzz, which uses a genetic algorithm to
evolve method inputs with the goal to maximize method execution time and space consumption.
Java provides an ideal platform for evaluating micro-fuzzing because of its wide use across differ-
ent domains in industry and the JVM’s support for introspection allows HotFuzz to automatically
generate test harnesses, represented as valid Java objects, for individual methods dynamically at
runtime. To generate initial populations of inputs, we devise two different strategies. The Iden-
tity Value Instantiation (IVI) strategy creates inputs by assigning each actual parameter the
identity element of the parameter’s domain (e.g., 0 for numeric types or “” for strings). In contrast,
Small Recursive Instantiation (SRI) assigns parameters small values chosen at random from
the parameter’s domain. We use IVI for the sole purpose of providing a baseline for measuring the
effectiveness of using SRI to generate seed inputs for micro-fuzzing, based on recent recommenda-
tions for evaluating new fuzz testing techniques [43]. Irrespective of how inputs are instantiated,
HotFuzz leverages the EyeVM, an instrumented JVM that provides run-time and memory mea-
surements at method-level granularity. If micro-fuzzing creates an input that causes the method
under test’s execution time or memory consumption to exceed a threshold, HotFuzz marks the
method as potentially vulnerable to an AC attack. To validate potential AC vulnerabilities, Hot-
Fuzz synthesizes Java programs that invoke flagged methods on the suspect inputs and monitors
their end-to-end execution in an unmodified JVM that mirrors a production environment. Those
programs that exceed a timeout or exhaust the JVM’s memory are included in HotFuzz’s output
corpus. Every program contained in the output corpus represents a witness of a potential AC vul-
nerability in the library under test that a human operator can either confirm or reject. Sanitizing
method execution for AC vulnerabilities based on resource thresholds mimics the sanitizers used
by modern fuzzers that kill a process whenever an integrity violation occurs at runtime, but it also
introduces false positives into our results given that it is difficult to configure a proper timeout
that detects only true positives. In our evaluation, we show that the number of bugs detected by
our sanitizer is concise enough to permit manual analysis of the results when micro-fuzzing for
both AC time and space bugs. We evaluate HotFuzz by micro-fuzzing the Java Runtime Environ-
ment (JRE), challenges provided by the DARPA Space and Time Analysis for Cybersecurity
(STAC) program, and the 100 most popular libraries available on Maven, a popular repository for
hosting Java program dependencies. We identify 13 intentional (in STAC) and 217 unintentional
(in the JRE and Maven libraries) AC vulnerabilities.

In summary, this article makes the following contributions:

— We introduce micro-fuzzing as a novel and efficient technique for identifying AC time and
space vulnerabilities in Java programs (see Section 3.1).

— We devise two strategies (IVI and SRI) to generate seed inputs for micro-fuzzing (see
Section 3.1.2).

— We propose the combination of IVI and SRI with micro-fuzzing to detect AC time and space
vulnerabilities in Java programs.

— We design and evaluate HotFuzz, an implementation of our micro-fuzzing approach,
on the JRE, challenges developed during the DARPA STAC program, and the 100 most
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popular libraries available on Maven. Our evaluation results yield previously unknown
AC vulnerabilities in real-world software, including 52 (26 Time and 26 Space) in the JRE,
165 (132 Time and 33 Space) across 47 Maven libraries, including the widely used org.json
and ASM libraries in addition to the Clojure runtime, “solve” 13 challenges (five Time and
eight Space) from the STAC program, and include confirmations from IBM and Oracle. In
addition, micro-fuzzing with SRI-derived seed inputs outperforms IVI-derived seed inputs,
measured by the number of AC witnesses detected, when micro-fuzzing with respect to
both time and space (see Section 5).

2 BACKGROUND AND THREAT MODEL

In this section, we briefly describe AC vulnerabilities, different approaches that detect such vul-
nerabilities, the threat model we assume, and the high-level design goals of this work.

2.1 AC Vulnerabilities

AC vulnerabilities arise in programs whenever an adversary can provide inputs that cause the
program to exceed desired (or required) bounds in either the temporal or spatial domains. One
can define an AC vulnerability in terms of asymptotic complexity (e.g., an input of size n causes a
method to store O(n®) bytes to the filesystem instead of the expected O(n)), in terms of a concrete
function of the input (e.g., an input of size n causes a method to exceed the intended maximum 150n
seconds of wall clock execution time), or in other more qualitative senses (e.g., “the program hangs
for several minutes”). However, in each case, there is a definition, explicit or otherwise, of what
constitutes an acceptable resource consumption threshold. In this work, we assume an explicit
definition of this threshold independent of a given program under analysis and rely on domain
knowledge and manual filtering of AC witnesses in order to label those that should be considered
as true vulnerabilities. We believe that this is a realistic assumption and pragmatic method for vul-
nerability identification that avoids pitfalls resulting from attempting to automatically understand
intended resource consumption bounds, or from focusing exclusively on asymptotic complexity
when in practice, as the old adage goes, “constants matter.” We define an AC witness to be any input
that causes a specific method under test’s resource consumption to exceed a configured threshold.
In this work, we consider AC witnesses that consume excessive time as well as memory. We con-
sider any method that has an AC witness to contain an AC vulnerability. We recognize that this
definition of an AC vulnerability based on observing a method’s resource consumption exceeding
some threshold will inevitably cause some false positives, since the chosen threshold may not be
appropriate for a given method under test. Section 3 presents a strategy for minimizing false pos-
itives by automatically reproducing AC vulnerabilities in a production environment outside our
fuzzing framework. This step may fail to remove all false positives, and in our evaluation given
in Section 5, we show that the output of this validation stage is concise enough to allow an an-
alyst to manually triage the results. Since we make no assumption about the methods we test in
our analysis, we argue that output that consists of less than four hundred concise test cases after
micro-fuzzing a hundred libraries is reasonable for a human analyst to consume.

2.2 AC Detection

Software vulnerability detection, in general, can be roughly categorized as a static analysis, dy-
namic testing, or some combination of the two. Static analysis has been proposed to analyze a
given piece of code for its worst-case execution time behavior. While finding an upper bound
to program execution time is certainly valuable, conservative approximations in static analysis
systems commonly result in a high number of false positives. Furthermore, even manual interpre-
tation of static analysis results in this domain can be challenging as it is often unclear whether

ACM Transactions on Privacy and Security, Vol. 25, No. 4, Article 33. Publication date: July 2022.



33:6 W. Blair et al.

a large worst-case execution time results from a property of the code or rather the approxima-
tion in the analysis. Additionally, static analyses for timing analysis commonly work best for
well-structured code that is written with such analysis in mind (e.g., code in a real-time operat-
ing system). The real-world generic code bases in our focus (e.g., the Java Runtime Environment),
have not been engineered with such a focus and quickly reach the scalability limits of static tim-
ing analyzers. Dynamic testing, in particular fuzz testing, has emerged as a particularly effective
vulnerability detection approach that runs continuously in parallel with the development lifecy-
cle [51, 69]. State-of-the-art fuzzers detect bugs by automatically executing a program under test
instrumented with sanitizers until the program either crashes or times out. A sanitized program
crashes immediately after it violates an invariant enforced by the sanitizer, such as writing past
the boundary of a buffer located on the stack or reading from previously freed memory. Once a
fuzzer generates a test case that crashes a given sanitized program under test, the test case is a
witness to a memory corruption bug in the original program. Since memory corruption bugs may
be extended into exploits that achieve Remote Code Execution or Information Disclosure, fuzzers
offer an effective and automated approach to software vulnerability detection. When source code
is not available, a fuzzer can still attempt to crash the program under test in either an emulated or
virtualized environment. Fuzz testing’s utility for detecting memory corruption bugs in programs
is well known, and current research explores how to maximize both the amount of code a fuzzer
can execute and the number of bugs a fuzzer can find. Unfortunately, defining a sanitizer that
crashes a process after an AC vulnerability occurs is not as straightforward as detecting memory
integrity violations. This is in part because what constitutes an AC vulnerability heavily depends
on the program’s domain. For example, a test case that slows down a program by several millisec-
onds may be considered an AC vulnerability for a low latency financial trading application and
benign for a web service that processes requests asynchronously. In this work, we sanitize for AC
vulnerabilities in HotFuzz with respect to both time and space. HotFuzz sanitizes for AC time vul-
nerabilities by killing a process after a method’s runtime exceeds a configured threshold. HotFuzz
can also sanitize for AC space vulnerabilities by killing a process after a method’s memory con-
sumption exceeds a separate threshold or throws an out of memory exception. Like sanitizers that
detect memory corruption bugs, this allows us to save only those test cases that exhibit problem-
atic behavior. The drawback is that we do not have absolute certainty that our test cases are actual
bugs in the original program and risk highlighting test cases as false positives. Building a fuzzing
analysis that does not introduce any false positives is notoriously difficult, and fuzzers that detect
memory corruption bugs are not immune to this problem. For example, Aschermann et al. [14]
point out that previous evaluations erroneously report crashing inputs that exhaust the fuzzer’s
available memory as bugs in the original program under test. Furthermore, sanitizers point out
many different sources of bugs including stack-based overflows, use after free, use after return,
and heap-based overflows. While the presence of any of these bugs is problematic, triaging is still
required to understand the problem given in a test case.

2.3 Fuzzing AC

SlowFuzz [59] and PerfFuzz [47] adapt two state-of-the-art fuzzers, libFuzzer, and AFL, respec-
tively, and demonstrate the capability to automatically slow down individual programs or methods
implemented in C/C++. Parallel developments also showed frameworks built on top of AFL can
successfully slow down programs in interpreted languages as well [54]. Memlock [77] extends the
PerfFuzz approach with static analysis to provide the fuzzer visibility into how individual execu-
tion paths consume memory in order to better generate inputs that exhaust memory and crash a
program under test.
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HotFuzz departs from these previous works by automatically creating test harnesses during
micro-fuzzing, and sanitizing methods’ execution for AC vulnerabilities. For example, PerfFuzz
relies on fine grained coverage information (e.g., AFL’s approximate edge coverage [81] and the
performance map) to derive inputs that slow a program down. In contrast, HotFuzz relies on course-
grained resource measurements to detect AC vulnerabilities across whole libraries. The former is
far more detailed, and could likely allow HotFuzz to cover more library code and detect additional
AC vulnerabilities. However, after implementing AFL’s approximate edge coverage in HotFuzz,
we observed a 55X decline in throughput while micro-fuzzing the JRE. For this reason, we used
course grained measurements in order to obtain an efficient evaluation. In addition to quickly
micro-fuzzing large libraries, HotFuzz does not require an analyst to manually define a test har-
ness in order to fuzz individual methods contained in a library. This key feature differentiates
micro-fuzzing found in HotFuzz from how AFL or libFuzzer fuzz individual methods. Since AFL
and LibFuzzer only consider test cases consisting of finite bitstreams, one can fuzz an individual
method with AFL by defining a test harness that transforms a bitstream read from stdin into func-
tion inputs, and with libFuzzer an analyst implements a C function that takes the bitstream as input
and must transform it into the types needed to invoke a function. Observe that this must be done
manually, whereas HotFuzz examines the type signature of the method under test and attempts
to generate the test harness automatically. To reproduce our evaluation using existing tools, we
would need to manually define approximately 360,000 individual test harnesses for the artifacts
contained in our evaluation. Alternatively, a single test harness that receives a finite bitstream
from the fuzzer could be made around each library. In this setting, a prefix in the bitstream selects
the method, and the remainder of the bits derive the method’s input which could be passed to con-
structors. This approach would fail to generate objects that trigger security issues with corrupted
attributes that normal constructors would never produce (see Section 5.2.7). The input bits could
also represent serialized objects, which may require providing the fuzzer seed inputs either man-
ually or by authoring input generators [56]. In our early prototypes, we observed that traditional
bitstream mutation strategies quickly corrupted Java objects’ strict binary format in memory and
caused the JVM to throw exceptions. It is also difficult to statically determine how many input bits
will be needed to randomly create a method’s input. This implies HotFuzz’s instantiation strate-
gies may require generating new bits from the finite bitstream passed to the test harness. This
complicates propagating bitstream mutations to the generated Java objects. In contrast, HotFuzz
directly alters Java objects that all share a common ancestry with a corpus of automatically-derived
seed objects. Finally, the test harness would also need to restrict sanitizers to the chosen method
under test and implement timeouts that prevent false positives from slowing micro-fuzzing (see
Section 5). Prior works such as SlowFuzz and PerfFuzz both explore how fuzzers can automati-
cally slow down individual programs and methods. Understanding what techniques work best to
slow down code is necessary to understand how to design a fuzzer to detect AC time vulnerabili-
ties. SlowFuzz observed that using the number of executed instructions as a test case’s fitness in
libFuzzer’s genetic algorithm can be used to slow down code with known performance problems,
such as sorting routines and hash table implementations. PerfFuzz went a step further and showed
how incorporating a performance map that tracks the most visited edges in a program’s CFG helps
a fuzzer further slow down programs. Memlock adapts the fuzzer’s goal of maximizing code cov-
erage to consuming more memory in order to detect AC space vulnerabilities. These approaches
take important steps needed to understand what techniques allow fuzzers to automatically slow
down arbitrary code in order to spot AC vulnerabilities in programs. At the same time, they lack
three important properties for being used to detect unknown AC vulnerabilities. First, they re-
quire manually defined test harnesses in order to fuzz individual functions. Second, these fuzzing
engines only consider bitstreams as input to the programs under test and miss the opportunity
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to evolve the high-level classes of the function’s domain in the fuzzer’s genetic algorithm. Third,
these tools are evaluated primarily by how they successfully slow down code or cause code to
consume memory, as opposed to sanitizing individual method executions for AC vulnerabilities.

2.4 Optimization

The goal of identifying AC vulnerabilities boils down to a simple to posit yet challenging to an-
swer optimization question. “What are concrete input values that make a given method under
test consume the most resources?” One possible approach to tackle such optimization problems
is with the help of genetic algorithms. A genetic algorithm emulates the process of evolution to
derive approximations for a given optimization problem. To this end, a genetic algorithm will start
with an initial population of individuals and over the duration of multiple generations repeatedly
perform three essential steps: (i) Mutation, (ii) Crossover, and (iii) Selection. In each generation, a
small number of individuals in the population may undergo mutation. Furthermore, each genera-
tion will see a large number of crossover events where two individuals combine to form offspring.
Finally, individuals in the resulting population get evaluated for their fitness, and the individuals
with the highest fitness are selected to form the population for the next generation. The algorithm
stops after either a fixed number of generations, or when the overall fitness of subsequent popu-
lations no longer improves. In our scenario where we seek to identify AC vulnerabilities in Java
methods, individuals correspond to the actual parameter values that are passed to a method under
test. Furthermore, assessing fitness of a given individual can be accomplished by measuring the
method’s resource consumption while processing the individual (see Section 4.1). While mutation
and crossover are straightforward to define on populations whose individuals can be represented
as sequences of binary data, the individuals in our setting are tuples of well-formed Java objects.
As such, mutation and crossover operators must work on arbitrary Java classes, as opposed to flat
binary data (see Section 3.1.1).

2.5 Threat Model

In this work, we assume the following adversarial capabilities. An attacker either has access to the
source code of a targeted program and its dependencies, or a compiled artifact that can be tested
offline. Using this code, the attacker can employ arbitrary techniques to discover AC vulnerabilities
exposed by the program, either in the program itself or by any library functionality invoked by the
program. Furthermore, we assume that these vulnerabilities can be triggered by untrusted input.
An adversary can achieve DoS attacks on programs and services that utilize vulnerable libraries by
taking the information they learn about a library through offline testing and developing exploits
that trigger the AC vulnerabilities contained in library methods used by a victim program. For
example, an adversary could take the test cases produced by our evaluation (see Section 5) and
attempt to reproduce their behavior on programs that utilize the methods. Determining whether
an adversary can transform these test cases into working AC exploits on victim programs is outside
the scope of this work.

2.6 Design Goals

The goal of our work is to discover AC vulnerabilities in Java code with respect to both time and
space so that they can be patched before attackers have the opportunity to exploit them. In par-
ticular, we aim for an analysis that is automated and efficient such that it can run continuously in
parallel with the software development lifecycle on production artifacts. This gives developers in-
sight into potential vulnerabilities hiding in their applications without altering their development
workflow.
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Fig. 1. Architectural overview of the HotFuzz testing procedure. In the first phase, individual gFuzz instances
micro-fuzz each method comprising a library under test. Resource consumption is maximized using genetic
optimization over inputs seeded using either IVI or SRI. In the second phase, test cases flagged as potential
AC vulnerabilities by the first phase are synthesized into Java programs. These programs are executed in
an unmodified JVM in order to replicate the abnormal resource consumption observed in the first phase.
HotFuzz reports those programs that pass the Synthesis and Validation stage as AC vulnerability witnesses
to a human analyst.

3 HOTFUZZ OVERVIEW

HotFuzz adopts a dynamic testing approach to detecting AC vulnerabilities, where the testing pro-
cedure consists of two phases: (i) micro-fuzzing, and (ii) witness synthesis and validation. In the
first phase, a Java library under test is submitted for micro-fuzzing, a novel approach to scale AC
vulnerability detection. In this process, the library is decomposed into individual methods, where
each method is considered a distinct entrypoint for testing by a pFuzz instance. As opposed to
traditional fuzzing, where the goal is to provide inputs that crash a program under test, here each
pFuzz instance attempts to maximize the resource consumption of individual methods under test
using genetic optimization over the method’s inputs. To that end, seed inputs for each method
under test are generated using one of two instantiation strategies: IVI and SRI Method-level re-
source consumption when executed on these inputs is measured using a specially-instrumented
Java Virtual Machine (JVM) we call the EyeVM. If optimization eventually produces an execution
that is measured to exceed a pre-defined threshold, then that test case is forwarded to the second
phase of the testing procedure. Differences between the micro-fuzzing and realistic execution en-
vironments can lead to false positives. The purpose of the second phase is to validate whether test
cases found during micro-fuzzing represent actual vulnerabilities when executed in a real Java
run-time environment, and therefore reduce the number of false positives in our final results. This
validation is achieved through witness synthesis where, for each test case discovered by the first
phase, a program is generated that invokes the method under test with the associated inputs that
produce abnormal resource usage. If the behavior with respect to resource utilization that was
observed during micro-fuzzing is replicated, then the synthesized test case is flagged as a witness
of the vulnerability that can then be examined by a human analyst. Otherwise, we discard the
synthesized test case as a false positive. Figure 1 depicts a graphical overview of the two phases.
In the following, we motivate and describe the design of each component of the testing procedure
in detail.

ACM Transactions on Privacy and Security, Vol. 25, No. 4, Article 33. Publication date: July 2022.



33:10 W. Blair et al.

3.1 Micro-Fuzzing

Micro-fuzzing represents a drastically different approach to vulnerability detection than traditional
automated whole-program fuzzing. In the latter case, inputs are generated for an entire program
either randomly, through mutation of seed inputs, or incorporating feedback from introspection
on execution. Whole-program fuzzing has the significant benefit that any abnormal behavior—i.e.,
crashes—that is observed should be considered as a real bug as by definition all the constraints on
the execution path that terminates in the bug are satisfied (up to the determinism of the execution).
However, whole-program fuzzing also has the well-known drawback that full coverage of the test
artifact is difficult to achieve. Thus, an important measure of a traditional fuzzer’s efficacy is its abil-
ity to efficiently cover paths in a test artifact. Micro-fuzzing strikes a different tradeoff between
coverage and path satisfiability. Inspired by the concept of micro-execution [32], micro-fuzzing
constructs realistic intermediate program states, defined as Java objects, and directly executes in-
dividual methods on these states. Thus, we can cover all methods by simply enumerating all the
methods that comprise a test artifact, while the difficulty lies instead in ensuring that constructed
states used as method inputs are feasible in practice.? In our problem setting, where we aim at pre-
emptively warning developers against insecure usage of AC-vulnerable methods or conservatively
defend against powerful adversaries, we believe micro-fuzzing represents an interesting and useful
point in the design space that complements whole program fuzzing approaches. In this work, we
consider the program’s state as the inputs given to the methods we micro-fuzz. Modeling implicit
parameters, such as files, static variables, or environment variables are outside the scope of this
work. A second major departure from traditional fuzzing is the criteria used to identify vulnera-
bilities. Typical fuzzers use abnormal termination as a signal that a vulnerability might have been
found. In our case, vulnerabilities are represented not by crashes but rather by excessive resource
consumption. Thus, coverage is not the sole metric that must be maximized in our case. Instead,
HotFuzz must balance between maximizing a method’s resource utilization in addition to cover-
age. Conceptually speaking, implementing resource measurement is a straightforward matter of
adding methods to the existing Reflection API in Java that toggles resource usage recording and
associates measurements with Java methods. In practice, this involves non-trivial engineering, the
details of which we present in Section 4. In the following, we describe how HotFuzz optimizes
resource consumption during micro-fuzzing given dynamic measurements provided by the Eye-
VM, our instrumented JVM that provides run-time and memory consumption measurements at
method-level granularity.

3.1.1 Resource Consumption Optimization. HotFuzz’s fuzzing component, called pFuzz, is re-
sponsible for optimizing the resource consumption of methods under test. To do so, pFuzz uses
genetic optimization to evolve an initial set of seed inputs over multiple generations until it de-
tects abnormal resource consumption. Traditional fuzzers use evolutionary algorithms extensively,
but in this work, we present a genetic optimization approach to fuzzing that departs from prior
work in two important ways. First, as already discussed, traditional fuzzers optimize an objective
function that solely considers path coverage (or some proxy thereof), whereas in our setting we
are concerned in addition with resource consumption. Prior work for detecting AC vulnerabilities
through fuzz testing either record resource consumption using a combination of program instru-
mentation, CPU utilization, counting executed instructions, or measuring memory allocated by
designated functions. In contrast, we record resource consumption using an altered execution en-
vironment (the EyeVM) and require no modification to the library under test. Second, traditional

2We note that in the traditional fuzzing case, a similar problem exists in that while crashes indicate the presence of an
availability vulnerability, they do not necessarily represent exploitable opportunities for control-flow hijacking.
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fuzzers treat inputs as bitstreams when genetic optimization (as opposed to more general muta-
tion) is applied. Recall that genetic algorithms require defining crossover and mutation operators
on members of the population of inputs. New generations are created by performing crossover
between members in prior generations. Additionally, in each generation, some random subset of
the population undergoes mutation with a small probability. Since pFuzz operates on Java objects
rather than bitstreams, we must define new crossover and mutation operators specific to this do-
main as bitstream-specific operators do not directly translate to arbitrary Java objects, which can
belong to arbitrary Java classes.

Java Value Crossover. Genetic algorithms create new members of a population by “crossing”
existing members. When individual inputs are represented as bitstreams, a standard approach is
a single-point crossover: a single offset into two bitstreams is selected at random, and two new
bitstreams are produced by exchanging the content to the right of the offset from both parents.
Single-point crossover does not directly apply to inputs comprised of Java objects, but can be
adapted in the following way. Let Xy, X; represent two existing inputs from the overall population
and (xg, x1)p = xo and (xg, x1); = x1. To produce two new inputs, perform single-point crossover
for each corresponding pair of values (xg, x1) € (Xo, X1) using

(g x7) =

C(x9, x1) if (xo, x1) are primitives,
(Cr(x0, x1), Cr(x0, x1)) if (xo, x1) are objects.

Here, C performs a one-point crossover directly on primitive values and produces the offspring as
a pair. When x, and x; are objects, C; and Cg recursively perform cross-over on every member
attribute in (xy,x;) and select the left and right offspring, respectively. For example, consider a
simple Java class List that implements a singly linked list. The List class consists of an integer
attribute hd and a List attribute t1. Crossing an instance of List ¥ with another instance y
constructs two new lists x” and ’ given by

x' = CL(X, 1) = (hd := C(R.hd, §.hd), t] := Cp(R.t1, §.t])),
y = Cr(2,9) = (hd := C(X.hd, §.hd)1, t] := Cr(R.tl,7.t1)).

In this example, we show how HotFuzz crosses over a List that holds integers, but if the type of
value stored in the hd attribute were a complex class T, the crossover operator would recursively
apply crossover to every attribute stored in T.

Java Value Mutation. Mutation operators for traditional fuzzers rely on heuristics to derive new
generations, mutating members of the existing population through random or semi-controlled
bit flips. In contrast, micro-fuzzing requires mutating arbitrary Java values, and thus bitstream-
specific techniques do not directly apply. Instead, yFuzz mutates Java objects using the following
procedure. For a given Java object x with attributes {ay, a1, . . ., a,}, choose one of its attributes g;
uniformly at random. Then we define the mutation operator M as

Mgiip_bit(a;) if a; is a numeric value,
Minsert_char(ai) if a; is a string or array value,
a = Mgelete_char(ai) %f a; %s a str%ng or array value,
Mieplace_char(@;) if a; is a string or array value,
Mswap_chars(ai) if a; is a string or array value,
Mmutate_attr(ai) if a; is an object.
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Set { AbstractSet I HashSet

Collection | AbstractCollection | ______
: T

Fig. 2. A random walk over a CHG finds a concrete class for the Collection interface.

Each mutation sub-operator above operates on the attribute a; chosen from the object x. For exam-
ple, My pit selects a bit at random in a numeric element and flips it, while Msyap_chars randomly
selects two elements of a string or array and swaps them. In our current implementation, we only
consider arrays of primitive types. The other sub-operators are defined in an intuitively similar
manner. When an attribute is a class, as opposed to a primitive type or a string or array, mutation
utilizes the Mmuytate attr Operator. Mmuytate attr recursively applies the mutation operator M to the
chosen attribute a; when g; is an object. After we obtain the mutated attribute a;, we produce the
mutated object x” by replacing a; with a; in x.

3.1.2  Seed Generation. Given suitable crossover and mutation operators, all that remains to
apply standard genetic optimization is the definition of a procedure to generate seed inputs. First,
we define a Class Hierarchy Graph (CHG) that allows HotFuzz to find the concrete classes that
implement any abstract classes and interfaces needed to invoke a method under test. In order to
instantiate each concrete class, we define two procedures that we describe below: IVI, and SRI.

Class Hierarchy Graph. Every object in an object-oriented language like Java is assigned a corre-
sponding class that allows the runtime environment to understand the attributes contained within
the object and the methods available that may be called on the object. While micro-fuzzing a given
method under test, HotFuzz may have to instantiate an abstract class or interface given in the
method’s signature. These classes are difficult to instantiate because they provide no constructors
and the concrete classes available to HotFuzz depends heavily on the classes available in a pro-
gram’s environment. For this reason, we propose constructing a CHG as a pre-processing step
to make all the concrete classes that inherit a given abstract class or interface available to Hot-
Fuzz for instantiating. To support constructing the CHG, we only require a binary relation S such
that A S B holds whenever a class B either inherits A directly or through multiple intermediate
classes. Note that we can represent the CHG as the transitive closure S* which encodes all the
classes reachable from a given class. This allows HotFuzz to consult S* in order to obtain a suitable
concrete class B that can be instantiated and used to represent any abstract class or interface A.
For example, Figure 2 provides a simplified version of S* that shows several concrete implemen-
tations of a Collection reachable from both abstract classes and interfaces. If a given method
under test requires an instance of a Collection, HotFuzz performs a random walk starting from
the Collection node until it encounters a concrete class. A random walk over the CHG helps
ensure that seed inputs for the method under test contain a diverse number of classes. In this ex-
ample, the random walk is illustrated by the dotted line and shows how HotFuzz selects TreeSet
as the concrete class to represent the requested Collection interface. In our prototype implemen-
tation of HotFuzz, we avoid explicitly constructing S* by utilizing Java’s ability to dynamically
query relationships between classes at runtime. The details of our implementation can be found in
Section 4.2 and the benefits obtained by micro-fuzzing using a CHG can be found in Section 5.2.1.

Identity Value Instantiation. Recent work has proposed guidelines for evaluating new fuzz test-
ing techniques [43]. One of these guidelines is to compare any proposed strategy for constructing
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seed inputs for fuzz testing with “empty” seed inputs. Intuitively, empty seed inputs represent the
simplest possible seed selection strategy. Since empty bitstreams do not directly translate to our
input domain, we define IVI as an equivalent strategy for Java values. The term “identity value” is
derived from the definition of an identity element for an additive group.

In particular, IVI is defined as

0 if T is a numeric type,

false if T is a boolean,
I(T)=1"" if T is a string,

{} if T is an array,

Trandom (I(T), ..., I(Ty)) if T is a class.

That is, I(T) selects the identity element for all primitive types, while for classes I is recursively
applied to all parameter types T; of a randomly selected constructor for T. Thus, for a given method
under test M, I(M) is defined as I applied to each of M’s parameter types. While seed inputs
produced by IVI will all be identical modulo consulting the CHG, micro-fuzzing will lead to a
diverse population with time as the genetic algorithm applies mutation at random to introduce
new features, and crossover leads to related offspring.

Small Recursive Instantiation. In addition to IVI, we define a complementary seed input gen-
eration procedure called SRI. In contrast to IVI, SRI generates random values for each method
parameter. However, experience dictates that selecting uniformly random values from the entire
range of possible values for a given type is not the most productive approach to input generation.
For example, starting with large random numbers as seed inputs may waste time executing benign
methods that simply allocate large empty data structures like Lists or Sets. For example, creating
a List with the ArrayList(int capacity) constructor and passing it an initial capacity of 1<<30
takes over 1 second and requires over 4 GB of RAM. For this reason, we configure SRI with a spread
parameter « that limits the range of values from which SRI will sample. Thus, SRI is defined as

Roum(—a, @) if T is a numeric type,
S(T.a) {Reha } om0 ) if T is a string,
) =
(S(T, o) } Roum (0-) if T is an array,

Trandom (S(Ty, @), ..., S(Ty, a)) if T is a class.

In the above, Rhum(x,y) selects a value at random from the range [x,y), while Rchar produces a
character obtained at random. Similarly to I, for a given method under test M we define S(M) as
S applied to each of M’s parameter types. We note that SRI with @ = 0 is in fact equivalent to IV],
and thus IVI can be considered a special case of SRI. We note that HotFuzz can be configured with
different random number distributions to alter the behavior of R.

3.2 Witness Synthesis

Test cases exhibiting abnormal resource consumption are forwarded from the micro-fuzzing phase
of the testing procedure to the second phase: witness synthesis and validation. The rationale be-
hind this phase is to reproduce the behavior during fuzzing in a realistic execution environment us-
ing areal JVM in order to avoid false positives introduced due to the measurement instrumentation.
In principle, one could simply interpret any execution that exceeds the configured timeout or allo-
cates memory beyond the configured threshold as evidence of a vulnerability. In practice, this is an
insufficient criterion since the method under test could simply be blocked on1/O, sleeping, perform-
ing some other benign activity, or the micro-fuzzing environment simply exhausted its heap. An
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additional consideration is that because the EyeVM operates in interpreted mode during the first
micro-fuzzing stage (see Section 4.3), a test case that exceeds the timeout or memory threshold in
the first phase might not do so during validation when Just-in-Time (JIT) compilation is enabled.
Therefore, validation of suspected vulnerabilities in a realistic environment is necessary. To that
end, given an abnormal method invocation M(vy, . . ., v,), a self-contained Java program is synthe-
sized that invokes M by using a combination of the Reflection API and the Google GSON library. The
program is packaged with any necessary library dependencies and is then executed in a standard
JVM with JIT enabled. Instead of using JVM instrumentation, the wall clock execution time of the
entire program is measured. If the execution was both CPU-bound as measured by the operating
system and the elapsed wall clock time exceeds a configured timeout, the synthesized program is
considered a witness for a legitimate AC time vulnerability and recorded in serialized form in a
database. For AC space vulnerabilities, we limit the size of the Java heap to the configured memory
threshold and confirm a witness if the synthesized program throws an out of memory exception.
The resulting corpus of AC vulnerability witnesses are reported to a human analyst for manual
examination. Recall HotFuzz takes compiled whole programs and libraries as input. Therefore, the
witnesses contained in its final output corpus do not point out the root cause of any vulnerabili-
ties in a program’s source code. However, the EyeVM can trace the execution of any Java program
running on it (see Section 4.1.2). Given a witness of an AC vulnerability, we can trace its execution
in the EyeVM in order to gain insight into the underlying causes of the problem in the program or
library. In Section 5, we use this technique to discover the root cause for several AC bugs detected
by HotFuzz. We acknowledge that filtering false positives may hide true positives that could be
discovered through additional micro-fuzzing. Since HotFuzz stores all test cases in a database, an
analyst can always use results from the first stage to inform future micro-fuzzing campaigns.

4 IMPLEMENTATION

In this section, we describe our prototype implementation of HotFuzz and discuss the relevant
design decisions. Our prototype implementation consists of 5,824 lines of Java code, 1,007 lines
of C++ code in the JVM, and 300 lines of Python code for validating AC witnesses detected by
micro-fuzzing.

4.1 EyeVM

The OpenJDK includes the HotSpot VM, an implementation of the JVM, and the libraries and
toolchains that support the development and execution of Java programs. The EyeVM is a fork
of the OpenJDK that includes a modified HotSpot VM for recording resource measurements. By
modifying the HotSpot VM directly, our micro-fuzzing procedure is compatible with any program
or library that runs on the OpenJDK. The EyeVM exposes its resource usage measurement capa-
bilities to analysis tools using the Java Native Interface (JNI) framework. In particular, a fuzzer
running on the EyeVM can obtain the execution time of a given method under test by invoking
the getRuntime() method which we added to the existing Executable class in the OpenJDK.
The Executable class allows pFuzz to obtain a Java object that represents the method under test
and access analysis data through our APL This API includes four methods to control and record
our analysis: setMethodUnderTest, clearAnalysis, getRuntime, and getMemory. We chose to
instrument the JVM directly because it allows us to analyze programs without altering them
through bytecode instrumentation. This enables us to micro-fuzz a library without modifying it
in any way. It also limits the amount of overhead introduced by recording resource measurements.
The EyeVM can operate in two distinct modes to support our resource consumption analysis: mea-
surement, described in Section 4.1.1, and tracing, described in Section 4.1.2. In measurement mode,
the EyeVM records program execution time with method-level granularity, while the tracing
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mode records method-level execution traces of programs running on the EyeVM. HotFuzz utilizes
the measurement mode to record the method under test’s resource usage during micro-fuzzing,
while the tracing mode allows for manual analysis of the suspected AC vulnerabilities produced by
HotFuzz.

4.1.1 EyeVM Measurement Mode. Commodity JVMs do not provide a convenient mechanism
for recording method execution times or the amount of memory consumed by an individual
method. Prior work has made use of bytecode rewriting [45] for this purpose. However, this ap-
proach requires modifying the test artifact, and produced non-trivial measurement perturbation in
our testing. Furthermore, accurately measuring resource usage by correctly rewriting the bytecode
of the large code bases given in our evaluation, which includes the entire JRE along with popular
Maven libraries, represents a significant undertaking that deviates from our research goal of detect-
ing AC vulnerabilities. Alternatively, an external interface such as the Serviceability Agent [65] or
JVM Tool Interface [2] could be used, but these approaches introduce costly overhead due to the
context switching incurred whenever the JVM invokes a method. Therefore, we chose to collect
resource measurements by instrumenting the HotSpot VM directly. The HotSpot VM interprets
Java programs represented in a bytecode instruction set documented by the JVM Specification [1].
During start-up, the HotSpot VM generates a Template Table and allocates a slot in this table for
every instruction given in the JVM instruction set. Each slot contains a buffer of instructions in
the host machine’s instruction set architecture that interprets the slot’s bytecode. The Template
Interpreter inside the HotSpot VM interprets Java programs by fetching the Java instruction given
at the Bytecode Pointer (BCP), finding the instruction’s slot in the Template Interpreter’s table,
and jumping to that address in memory. The HotSpot VM interprets whole Java programs by per-
forming this fetch, decode, and execute procedure starting from the program’s entrypoint, which
is given by a method called main in one of the program’s classes. During execution the Template
Interpreter also heavily relies on functionality provided by HotSpot’s C++ runtime. The HotSpot
source code contains an Assembler API that allows JVM developers to author C++ methods that,
when executed, generate the native executable code required for each slot in the Template Inter-
preter. This allows a developer to implement the functionality for a given bytecode instruction,
such as iadd, by writing a C++ method m. When the HotSpot VM starts up, it invokes m, and
m emits as output native code in the host machine’s instruction set architecture that interprets
the iadd bytecode. HotSpot saves this native code to the appropriate slot so it can use it later to
interpret iadd bytecode instructions. The API available to developers who author these methods
naturally resembles the host’s instruction set architecture. One can think of this Assembler API
as a C++ library that resembles an assembler like GNU as. For example, if the two arguments to
an iadd instruction reside in memory, a developer can call methods on this API to load the values
into registers, add them together, and store the result on the JVM’s operand stack. We use this API
to emit code that efficiently records methods’ resource utilization for our analysis.

We instrument the JVM interpreter by augmenting relevant slots in the Template Interpreter
using the same API that the JVM developers use to define the interpreter. To measure execution
time, we modify method entry and exit to store the method’s elapsed time, measured by the RDTSC
Model-Specific Register (MSR) available on the x86 architecture, into thread-local data struc-
tures that analysis tools can query after a method returns. We limit our current implementation
to the x86-64 platform, but this technique can be applied to any architecture supported by the
HotSpot VM. In addition, we could modify the Template Interpreter further to record additional re-
sources, such as disk consumption. Unfortunately, instrumenting the JVM such that every method
invocation and return records that method’s execution time introduces significant overhead. That
is, analyzing a single method also results in recording measurements for every method it invokes
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Fig. 3. The different ways the JVM may allocate an object, and how the EyeVM tracks memory usage.

in turn. This is both unnecessary and adds noise to the results due to both the need to perform an
additional measurement for each method as well as the adverse effects on the cache due to the pres-
ence of the corresponding measurement field. Thus, our implementation avoids this overhead by
restricting instrumentation to a single method under test that yFuzz can change on demand. In par-
ticular, pFuzz stores the current method under test inside thread-local data. During method entry
and exit, the interpreter compares the current method to the thread’s method under test. If these
differ, the interpreter simply jumps over our instrumentation code. Therefore, any method call
outside our analysis incurs at most one comparison and a short jump. Every time the interpreter
invokes a method, our instrumentation stores the latest value of RDTSC into an attribute Tg;4,; in
the calling thread and increments a depth counter Tyep;s. If the same method enters again in a
recursive call, we increment Tyep;5. If the method under test calls another method, it simply skips
over our analysis code. Each time the method under test returns, we decrement Tyepsp. If Tgepin is
equal to zero, the EyeVM invokes RDTSC and the computed difference between the current value
and Ts;qrs is stored inside the calling thread. Observe that the measured execution time for the
method under test consequently includes its own execution time and the execution time of all the
methods it invokes. This result is stored inside the method under test’s internal JVM data struc-
ture located in its class’ constant pool. In addition to tracking the number of clock cycles spent
executing the method under test, we also instrument all of the memory allocation routines within
the JVM to track the method under test’s memory usage. Figure 3 breaks down the different strate-
gies the JVM may take in allocating the bytes that back a new object. The fastest way to allocate
memory is to reserve space within a buffer located within the running thread. If this thread local
buffer is full, or if too many bytes are requested, the JVM attempts to reserve space within the heap
maintained by its generational garbage collector. Within this heap, new objects are born into the
Eden space reserved for objects in their first generation. If this allocation fails, the JVM takes the
slow path which causes the Template Interpreter to switch to the JVM’s C++ runtime to allocate
the object. In order to accurately track the method under test’s memory consumption, the EyeVM
instruments each of these three allocation paths in order to increment a counter stored within
the method object. This counter cumulatively records all memory allocated by the method under
test. The EyeVM does not track deallocation performed by the JVM’s garbage collector since our
primary goal is to measure the amount of memory a method under test will consume when given
specific inputs. In our experiments, we did not see false positives caused by garbage collector ac-
tivity since every witness is validated in a production environment before being presented to an
analyst. Whenever a program allocates memory in the EyeVM, our instrumentation first checks
to see whether the method under test is active on the call stack. If so, it records the allocation
and updates the corresponding object that represents the method under test. This is a necessary
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performance optimization, as we found simultaneously tracking the memory consumption of
all methods quickly slowed down our experiments. Furthermore, heap profiling tools like JPro-
filer [73] allow analysts to explore the entire Java heap of a running program, but they are dif-
ficult to use for quickly obtaining memory measurements just for the method under test within
micro-fuzzing’s genetic algorithm. The Assembler API available in the JVM sources supports all
the functionality needed to implement these measurements, including computing the offsets of
C++ attributes, manipulating machine registers, and storing values in memory. Every time the
JVM invokes a method, the Template Interpreter sets up a new stack frame for the method which
the interpreter removes after the method returns. The code that implements this logic is defined
using the same Assembler API that implements each JVM bytecode instruction. To record our
resource measurements, we insert relevant code snippets into the Template Interpreter that run
every time the EyeVM adds or removes a stack frame. The java executable that runs every Java
program begins by loading the HotSpot VM as a shared library into its process address space in
order to run the JVM. Thus, the EyeVM can export arbitrary symbols to expose a JNI interface to
analysis tools implemented in Java. Currently, the EyeVM defines functions that allow a process to
configure the method under test, poll the method’s most recent resource consumption, and clear
the method’s stored analysis data. The EyeVM then simply uses the JNI to bind the methods we
added to the Executable Java class to the native EyeVM functions that support our analysis.

4.1.2  EyeVM Tracing Mode. In addition to measuring method execution times, the EyeVM al-
lows an analyst to trace the execution of Java programs with method-level granularity. Tracing
provides valuable insight into programs under test and is used herein to evaluate HotFuzz’s ability
to detect AC vulnerabilities (see Section 5). Each event given in a trace represents either a method
invocation or return. Invocation events carry all parameters passed to the method as input. In
principle, traces could be generated either by instrumenting the bytecode of the program under
test, or through an external tool interface like the JVMTI. As both of these approaches introduce
significant overhead, we (as for measurement mode) opt instead for JVM-based instrumentation.
That is, modifying the JVM directly to trace program execution does not require any modification
of the program under analysis and only requires knowledge of internal JVM data structures. The
EyeVM’s tracing mode is implemented by instrumenting the bytecode interpreter generated at
run-time by the HotSpot VM. Recall that the JVM executes bytecode within a generated Template
Interpreter in the host machine’s instruction set architecture. In order to generate program traces
that record all methods invoked by the program under test, stubs are added to the locations in
the Template Interpreter that invoke and return from methods. We note that these are the same
locations that are instrumented to implement measurement mode. However, while performance
overhead is an important factor, program execution tracing can nevertheless be effectively im-
plemented in the C++ run-time portion of the JVM as opposed to generating inline assembly as
in the measurement case. Then, during interpreter generation, all that is added to the generated
code are invocations of the C++ tracing functions. To trace a program under test, we define a
trace recording point as when the program either invokes a method or returns from one. When a
method under test reaches a trace recording point the JVM is executing in the generated Template
Interpreter represented in x86-64 assembly. Directly calling a C++ function in this state will lead
to a JVM crash, as the machine layout of the bytecode interpreter differs from the Application
Binary Interface (ABI) expected by the C++ run-time. Fortunately, the JVM provides a conve-
nient mechanism to call methods defined in the C++ run-time using the call_VM method available
in the Assembler API. The call_VM method requires that parameters passed to the C++ function
are contained within general-purpose registers. This facility is used to pass a pointer to the object
that represents the method we wish to trace, a value that denotes whether the event represents
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an invocation or return, and a pointer to the parameters passed to the method under test. All of
this information is accessible from the current interpreter frame when tracing an event. The JVM
maintains an Operand Stack that holds inputs to methods and bytecode instructions. Internally, a
special variable called the Top of the Stack State (ToSState) allows the JVM to check where the
top of the Operand Stack is located. Before calling our C++ stub to trace an event, we push the
current ToSState onto the machine stack. Next, we call our C++ tracing function. After the tracing
function returns, we pop the ToSState off the machine stack and restore it to its original value.
The trace event stub itself collects the name of every invoked method or constructor, and its pa-
rameters. The name of the method is obtained from the method object the JVM passes to the stub.
The parameters passed to the method under test are collected by accessing the stub parameters
in a similar fashion. The JVM’s Signaturelterator class allows the tracing function to iterate
over the parameter types specified in the method under test’s signature, and, therefore, ensures
that tracing records the correct parameter types. For each parameter passed to a method, both its
type and value are saved. Values of primitive types are represented as literals, whereas objects are
represented by their internal ID in the JVM. All of this information is streamed to a trace file one
event at a time.

4.2 Class Hierarchy Graph (CHG)

We implement the CHG by using the Class.isAssignableFrom method available in the Java
runtime as the relation S presented in Section 3.1.2. This method returns true if the input class can
be considered a subclass of the class on which the method was invoked. This allows us to explicitly
construct the transitive closure S* which we store in a redis database running alongside HotFuzz.
In order to ensure fast retrieval of the CHG during micro-fuzzing, we store every concrete class
B that is assignable from a class A under A’s slot in the database. In practice, it is sufficient to
store a fraction of S* in the database since HotFuzz only queries classes that are assignable from
abstract classes or interfaces. Before micro-fuzzing begins, we populate S* by enumerating all pairs
of classes A and B, and store B under A in the CHG if B is concrete and B is assignable from A.
During micro-fuzzing, HotFuzz needs a way to traverse S* from the information stored in the redis
database. Given an abstract class or interface A, HotFuzz computes the number of classes stored

under A using the LLEN command. HotFuzz then computes a random value i & [0,LLEN(A)) and
then attempts to instantiate the class given at LINDEX(i). If HotFuzz is unable to instantiate the
class given at index i, a new index is computed at random which repeats the process until HotFuzz
successfully instantiates a class, or exhausts the available classes.

4.3 pFuzz

Micro-fuzzing is implemented using a message broker and a collection of pFuzz instances. Each
pFuzz instance runs inside the EyeVM in measurement mode, consumes methods as jobs from a
queue, and micro-fuzzes each method within its own process. Over time, micro-fuzzing methods
in the same process might introduce side-effects that prevent future jobs from succeeding. For ex-
ample, a method that starts an applet could restrict the JVM’s security policy and prevent pFuzz
from performing benign operations required to fuzz future methods. This occurs because once a
running VM restricts its security policy, it cannot be loosened. To prevent this and similar issues
from affecting future micro-fuzzing jobs, we add the following probe to every pFuzz instance. Prior
to fuzzing each method received from the job queue, pFuzz probes the environment to ensure basic
operations are allowed. If this probing results in a security exception, the yFuzz process is killed
and a new one is spawned in its place. Traditional fuzzers avoid these problems by forking before
running each test case so that the fuzzer can fall back to its original state once the test case finishes,
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crashes, or times out. For a simple Java program that loops indefinitely, the JVM runs 16 operating
system threads. Constantly forking such a heavily multi-threaded environment on every test case
introduces unnecessary complexity and very quickly destabilizes our experiments. We configure
each pFuzz instance in the following way to prevent non-determinism present in the JVM from
introducing unnecessary noise into our experiments. Every pFuzz instance runs within the EyeVM
in an interpreted mode in order to maintain consistent run-time measurements for methods un-
der test. If yFuzz runs with JIT enabled, our measurement instrumentation no longer profiles the
method under test, but rather the JVM’s response to fuzzing the method under test. A JVM with JIT
enabled responds by compiling the bytecode that implements the method under test into equiva-
lent native code in the host machine’s instruction set architecture and executes it in a separate code
cache. This causes the method under test’s runtime to change dramatically during micro-fuzzing
and would skew our results. For this reason, we run pgFuzz in the EyeVM in interpreted mode to
ensure consistent measurements. Upon receiving a method under test, yFuzz queries the CPUs
available by obtaining the process’ CPU affinity mask with sched_getaffinity. pFuzz then calls
sched_setaffinity to pin the thread running the method under test to the lowest CPU given in
the affinity mask. This confines the method under test to a single CPU for the duration of micro-
fuzzing and also requires that every pFuzz instance have access to at least two CPUs, one for the
method under test, and the remainder for the JVM’s own threads. Each time pFuzz successfully
invokes the method under test, it submits a test case for storage in the results database. Every test
case generated by pFuzz consists of the input given to the method under test and the number of
clock cycles it consumes when invoked on the input. gFuzz interprets exceptions as a signal that
an input is malformed, and therefore all such test cases are discarded. Ignoring input that causes
the method under test to throw an exception restricts pFuzz’s search space to that of valid inputs
while it attempts to maximize resource consumption. In a different context, these test cases could
be considered a potential attack vector for triggering DoS, but not due to an AC vulnerability.

5 EVALUATION

In this section, we describe an evaluation of our prototype implementation of HotFuzz. This evalu-
ation focuses on the testing procedure’s efficiency in finding AC vulnerabilities in Java libraries in
both time and space, and additionally considers the effect of seed input instantiation strategy on
micro-fuzzing efficiency. In particular, we define the performance of micro-fuzzing as the number
of AC vulnerabilities detected in a test artifact over time, and consider one strategy to outperform
another if the strategy detects more AC vulnerabilities given the same time budget. In accordance
with recently proposed guidelines for evaluating new fuzz testing techniques [43], we evaluate
our proposed seed selection strategy (SRI) by comparing the performance of micro-fuzzing with
SRI-based seeds to micro-fuzzing with “empty seed values” (IVI-based seeds). To the best of our
knowledge, including existing fuzzers in our evaluation that adapt AFL [41] and libFuzzer [61]
to Java programs to detect AC vulnerabilities would require significant engineering effort both
in terms of instrumentation and designing test harnesses around our artifacts. Furthermore, the
results those tools have achieved on real-world code bases like the JRE or Java libraries appear
limited to individual methods and find bugs that crash the method under test with a thrown excep-
tion, or individual challenges from the STAC program. For these reasons, we exclude those tools
from our evaluation. We evaluate HotFuzz over the JRE, all challenge programs developed by red
teams in the DARPA STAC program, and the 100 most popular libraries available on the Maven
repository. This set of evaluation artifacts presents the opportunity to detect previously unknown
vulnerabilities in real-world software as well as to validate HotFuzz on programs for which we
have ground truth for AC vulnerabilities. For the real-world software evaluation, we selected the
JRE as it provides basic functionality utilized by every Java program. Given Java’s widespread
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deployment across domains that range from embedded devices to high-performance servers, any
unknown AC vulnerabilities in the JRE present significant security concerns to programs that uti-
lize those methods. For this reason, we evaluate HotFuzz over all methods in the JRE in order to
measure its ability to detect unknown AC vulnerabilities in production software. Specifically, we
consider JRE 1.8.0_181 from Java 8 as a library under test in our evaluation. In addition to the
JRE, Java programs frequently rely on libraries available through the popular Maven Repository,
which as of 2022 hosts 28 million artifacts. While this repository provides a convenient way to
download an application’s library dependencies, it also introduces any unknown vulnerabilities
hiding within them into an application. In order to understand how vulnerable Maven’s libraries
are to AC attacks, we evaluate HotFuzz over the repository’s 100 most popular libraries. A library’s
popularity on Maven is defined by the number of artifacts that include it as a dependency. For ev-
ery Maven library we consider in our evaluation, we micro-fuzz every method contained in the
library, and exclude the methods contained in its dependencies.

Findings Summary. In conducting our evaluation, HotFuzz detected previously-unknown AC
vulnerabilities in the JRE, Maven libraries, and discovered both intended and unintended AC vul-
nerabilities in STAC program challenges. Section 5.1 documents the experimental setup used to
obtain these findings. Section 5.2 summarizes how the seed input generation strategy impacts
micro-fuzzing performance, and provides several detailed case studies of micro-fuzzing results for
the JRE, STAC challenges, and Maven libraries.

5.1 Experimental Set Up

We implement HotFuzz as a distributed system running within an on-premise Kubernetes clus-
ter. The cluster consists of 64 CPUs and 256 GB of RAM across 6 Dell PowerEdge R720 Servers
with Intel Xeon 2.4 GHz Processors. To micro-fuzz a given library under test, we deploy a set of
pFuzz instances onto the cluster that consumes individual methods from a message broker. For
each individual method under test, each yFuzz instance creates an initial population of inputs to
the method, and runs a genetic algorithm that searches for inputs that cause the method under
test to consume either the most execution time or memory. Detecting both AC time and space
vulnerabilities requires that we micro-fuzz each artifact in our evaluation separately in order to
optimize for each domain. In addition to the method under test, every job submitted to HotFuzz
requires configuration parameters given in Table 1. Recall that HotFuzz makes no assumptions
about the code under test, and therefore it is critical to configure timeouts at each step of this
process in order for the whole system to complete all methods in a library under test. For this rea-
son, the parameters (¢, A, w, y) configured various timeouts that ensured HotFuzz ran end to end
within a manageable time frame. This is important in order to prevent problems caused by fuzzing
individual methods or calling specific constructors from halting the entire micro-fuzzing pipeline.
We determined the values for these parameters empirically, and only added each parameter after
we observed a need for each one in our evaluation. The parameters (7, y, 7, €, v) configured the
genetic algorithm (GA) within HotFuzz. In our evaluation, we assigned these parameters the ini-
tial values recommended for genetic algorithm experiments [30]. Finally, o configured the timeout
used in the witness validation stage for confirming AC time witnesses. Observe that we configured
o, the time required to confirm a witness as an AC vulnerability, to be half of w, the time needed
to detect a witness. Our intuition behind this choice is that a given test case will run much faster
with JIT enabled than in our interpreted analysis environment, and hence the runtime required to
confirm a witness is lower than the time required to detect it. We found that using one parameter 6
to both detect and confirm AC space witnesses sufficed in the interpreted analysis and witness val-
idation environments. We used the same parameters for every method under test and do not tune
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Table 1. The Parameters Given to Every pFuzz Instance

Parameter Definition Value
a The maximum value SRI will assign to a primitive type when constructing an object 256
14 The maximum amount of time to create the initial population 5s
A The time that may elapse between measuring the fitness of two method inputs 5s
1) The amount of time required for a method to run in order to generate an AC witness 10 s
Y The wall clock time limit for the GA to evaluate the method under test 60 s
T The size of the initial population 100
X The probability two parents produce offspring in a given generation 0.5
T The probability an individual mutates in a generation 0.01
€ The percent of the most fit individuals that carry on to the next generation 0.5
v The number of generations to run the GA 100
o The length of time an AC witness must run for confirmation 5s
0 The memory a method must consume to generate and confirm an AC space witness 1 GB

Multiple timeouts prevent HotFuzz from stopping because of individual methods that may be too difficult to efficiently
micro-fuzz.

these parameters for specific methods. We argue that this provides a generic approach to detecting
AC vulnerabilities in arbitrary Java methods. To micro-fuzz each library under test for either AC
time or space vulnerabilities, we created a pair of fuzzing jobs with identical parameters for each
method contained in the library with the exception of the a parameter. Each pair consisted of one
job that used the IVI seed input generation strategy, and the other used the SRI strategy with the
a parameter which bounds the values used when constructing the seed inputs for micro-fuzzing.
The libraries under test that we consider for our evaluation are all 80 engagement articles given
in the STAC program and every public method contained in a public class found in the JRE, and
the 100 most popular libraries available on the Maven repository. For the latter, we consider these
public library classes and methods as the interface the library reveals to programs that utilize it.
Therefore, this provides an ideal attack surface for us to micro-fuzz for potential AC time and space
vulnerabilities.

Seed Input Strategy. Given the definition of SRI presented in Section 3.1.2, we use the following
procedure to construct the initial seed inputs for every method under test M configured to use SRI
in our evaluation. Given the parameter @, pFuzz instantiates a population of seed inputs of size =
for M as follows. Let N (i, o) be a normal random number distribution with mean y and standard
deviation o. For every primitive type required to instantiate a given class, SRI obtains a value
X « N(0,/3). This allows micro-fuzzing to favor small values centered around 0 that exceed the
chosen parameter a with a small probability. To be precise, configuring « to be three times the size
of the standard deviation o of our random number distribution N' makes Pr(|X| > @) < 0.135%.
This ensures that the primitive values we use to instantiate objects stay within the range [—«, «]
with high probability.

5.2 Experimental Results

In our evaluation, HotFuzz detected 52 (26 Time and 26 Space) previously unknown AC vulnerabil-
ities in the Java 8 JRE, detects both intended and unintended vulnerabilities in challenges from the
STAC program, and detects 165 (132 Time and 33 Space) AC vulnerabilities in 47 libraries from the
100 most popular libraries found on Maven. Section 5.2.1 describes how using the CHG improves
coverage during micro-fuzzing. Section 5.2.2 reports both the total wall-clock time HotFuzz spent
micro-fuzzing the artifacts given in our evaluation and reports micro-fuzzing’s throughput mea-
sured by the average number of test cases produced per hour. We define a test case to be a single
input generated by HotFuzz for a method under test. Overall, micro-fuzzing with SRI-derived seed

ACM Transactions on Privacy and Security, Vol. 25, No. 4, Article 33. Publication date: July 2022.



33:22 W. Blair et al.

inputs required more time to micro-fuzz the artifacts in our evaluation but detected more AC time
and space vulnerabilities.

5.2.1 Improved Coverage with a Class Hierarchy Graph (CHG). Recall the class hierarchy graph
presented in Section 3.1.2 which provides HotFuzz a way to obtain concrete classes that extend or
implement abstract classes and interfaces that are required to invoke a given method under test.
In our evaluation, we generated a CHG using all the classes available in the JRE, and provided
this CHG to HotFuzz while micro-fuzzing every artifact in our evaluation. In principle, we could
extend the CHG to include every class given in the DARPA STAC challenges and Maven libraries,
but given the large number of classes found in these artifacts and their dependencies, we chose
to restrict the CHG to the JRE. Over the course of our evaluation we found that using a CHG
comprised of the JRE can provide considerable benefit to micro-fuzzing and enabled HotFuzz to
cover more methods than it could without the CHG. In order to measure the coverage benefit
provided by the CHG, we micro-fuzzed the JRE without setting up the CHG using IVI-derived
seed inputs. We found that micro-fuzzing the JRE without the CHG covered only 20,434 methods
compared to the 26,598 (+30.17%) methods covered by utilizing the CHG. Given that the JRE is
filled with general-purpose utilities that are intended to be used by a wide range of Java programs,
it should not be surprising that providing HotFuzz the ability to instantiate concrete classes from
abstract classes and interfaces provides a noticeable improvement to HotFuzz’s coverage.

5.2.2 Impact of Seed Input Generation Strategy. Table 2 presents the witnesses found when
micro-fuzzing the JRE, all the challenges contained in the DARPA STAC program, and the 100
most popular libraries available on Maven using both IVI and SRI-derived seed inputs with re-
spect to both time and space. Table 3 provides micro-fuzzing statistics for both time and space in-
cluding the methods covered by each seed input strategy, the wall clock time spent micro-fuzzing
each artifact, and micro-fuzzing’s throughput measured in test cases produced per hour. Overall,
micro-fuzzing with both strategies for AC time vulnerabilities managed to invoke 29.17% of the
methods contained in the JRE, 32.96% of the methods given in the STAC program, and 29.66%
of the methods found in the 100 most popular Maven libraries. Micro-fuzzing for AC space vul-
nerabilities produced comparable coverage, with 25.44% of the methods given in the JRE, 29.49%
of the methods given in the STAC program, and 27.28% of the methods in the 100 most popular
Maven libraries. As the results indicate, neither seeding strategy is categorically superior to the
other, although SRI does consistently outperform IVI on each of the artifacts included in our evalu-
ation in both time and space. For example, when considering the results obtained by micro-fuzzing
the JRE with respect to time, SRI identifies 13 vulnerabilities that IVI does not, compared to the
eight vulnerabilities IVI finds that SRI misses. At the same time, both strategies are able to find
another five vulnerabilities. The same pattern occurs when micro-fuzzing for AC space vulner-
abilities, with SRI identifying 15 bugs over IVL IVI finding three bugs that SRI misses, and both
strategies detecting eight bugs. We observe the same pattern in both the STAC artifacts and Maven
libraries included in our evaluation, although observe that both strategies were able to solve the
same number of challenges in our experiment over the STAC articles when micro-fuzzing for AC
time vulnerabilities. When micro-fuzzing the STAC articles for AC space vulnerabilities, SRI out-
performs IVI by solving more challenges (see Case Study 5.2.5). These results indicate that SRI
outperforms IVI as a seed input strategy, and overall the two approaches are complementary. Fur-
thermore, their combined results show that relatively simple micro-fuzzing can expose serious
availability vulnerabilities in widely-used software in both time and space. In some cases, IVI-
based inputs detect vulnerabilities that SRI-based inputs miss either because only identity values
trigger a bug or a bug is triggered by an object derived from an IVI seed. When using HotFuzz in
practice, an analyst could combine the benefits of IVI and SRI by simply reserving some fraction
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Table 2. AC Witnesses Detected by HotFuzz Using IVl and SRI-derived Seed
Inputs with Respect to Both Time and Space

AC Witnesses Detected AC Witnesses Confirmed

Library Size Time Space Time Space

Methods IVI SRI Both IVI SRI Both IVI SRI Both IVI SRI Both
Java Runtime Environment 91,632 14 19 6 11 41 8 13 18 5 11 23 8
DARPA STAC 30,499 40 49 34 14 44 11 5 5 5 2 8 2
Top 100 Maven Libraries 239,777 84 102 46 23 42 6 78 97 43 1 27 5

of the population for inputs derived from each strategy. Figure 4 visually compares the perfor-
mance of micro-fuzzing the JRE, STAC challenges, and the 100 most popular Maven libraries for
AC time vulnerabilities, using both IVI and SRI-derived seed inputs. From these results, we see that
SRI-derived seed inputs produce a marginal improvement over IVI inputs, as micro-fuzzing with
SRI detects more AC time bugs over IVI seed inputs in each of our evaluation artifacts. Figure 5
provides the same comparison between IVI and SRI for detecting AC space vulnerabilities, with
SRI again outperforming IVI as a seed selection strategy. Section 5.2.7 provides a case study for an
AC space bug detected only by SRI in the runtime of the popular Clojure programming language.
Figure 6 provides a visual comparison between IVI and SRI-based micro-fuzzing for AC time on
a method provided by the JRE that works on regular expressions. According to the documenta-
tion, the RE.split(String input) method splits a given string input into an array of strings
based on the regular expression boundaries expressed in the compiled regular expression instance
RE. Figure 6(a) shows how micro-fuzzing this method using IVI-based seeds fails to arrive at a
test case that demonstrates the vulnerability. In contrast, Figure 6(b) shows how using SRI-based
seed inputs allows HotFuzz to detect the vulnerability. Additionally, we note that micro-fuzzing
with SRI-derived seed inputs require fewer test cases than micro-fuzzing with IVI-based seeds.
When we traced the execution of the exploit found by HotFuzz in the EyeVM in tracing mode,
we discovered that the method called the StringCharacterIterator.isEnd method from the
com.sun.org.apache.regexp.internal package with alternating arguments indefinitely. We ob-
served the PoC produced by HotFuzz run for seven days on a Debian system with Intel Xeon E5-
2620 CPUs before stopping it. After disclosing our PoC to Oracle, they did not view the time AC
vulnerability as a security issue since it belongs to an internal package that an adversary would
be unlikely to reach in a production application. Our evaluation revealed a second AC vulnerabil-
ity within the same RE package called subst(String substituteIn, String substitution)
that substitutes every occurrence of the compiled regular expression in substituteIn with the
string substitution. After tracing the PoC produced by HotFuzz, we observed that it has the
same underlying problem as RE. split. That is, it appears to loop indefinitely checking the result
of StringCharacterIterator.isEnd. We observed the PoC for RE. subst run for 12 days on the
same Debian system on which we tested the RE. split PoC before stopping it. After reporting the
issue to Oracle, they claimed it is not a security issue since the RE. subst method is protected and
an attacker would have to perform a non-trivial amount of work to access it. That being said, the
test case generated by HotFuzz is only 579 bytes in size and no method in the Open]DK sources
utilizes the RE. subst method outside of the OpenJDK test suite. This method appears to serve no
purpose beyond providing a potential attack surface for DoS.

5.2.3 Case Study: Detecting AC Vulnerabilities with 1VI-based Inputs. Our evaluation revealed
the surprising fact that six methods in the JRE contain AC time vulnerabilities exploitable by
simply passing empty values as input. Figure 7 shows the six utilities and APIs that contain AC
time vulnerabilities that an adversary can exploit. Upon disclosing our findings to Oracle they
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Table 3. Statistics from Evaluating HotFuzz Using IVI and SRI-derived Seed Inputs with Respect
to Both Time and Space

Methods Covered (Thousands) Fuzzing Time (hr) Throughput (M Tests/hr)
Library Time Space Time Space Time Space
IVI SRI Both IVI SRI Both IVI SRI IVI SRI IVI SRI IVI SRI
JRE 26.6 252 238 254 242 223 143 195 146 156 44 31 28 2.6

DARPA STAC 89 9.2 8.1 79 8.2 7.2 78 87 97 94 36 31 20 2.0
Top 100 Maven 69.6 68.7 669 63.1 61.8 59.5 529 555 626 737 59 56 4.0 3.1
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Fig. 4. Micro-fuzzing for AC time vulnerabilities with SRI-derived seed inputs outperforms IVI-derived seed

inputs for the JRE (Graph (a)), the DARPA STAC program (Graph (b)), and the 100 most popular Maven
libraries (Graph (c)).

communicated that five of the six methods (lines 1-29) belong to internal APIs and that no path
exists for malicious input to reach them. They recognized DecimalFormat’s behavior (lines 31-34)
as a functional bug that they will fix in an upcoming release. Oracle’s assessment assumes that
a malicious user will not influence the input of the public DecimalFormat constructor. Unless

programs exclusively pass string constants to the constructor as input, this is a difficult invariant
to always enforce.

5.2.4 Case Study: Arithmetic DoS in Java Math. As a part of our evaluation, HotFuzz detected
5 AC time vulnerabilities inside the JRE’s Math package. To the best of our knowledge, no prior
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Fig. 5. Micro-fuzzing for AC space vulnerabilities with SRI-derived seed inputs outperforms IVI-derived seed
inputs for the JRE (Graph (a)), the DARPA STAC program (Graph (b)), and the 100 most popular Maven
libraries (Graph (c)).

CVEs document these vulnerabilities. We developed proof-of-concept exploits for these vulner-
abilities and verified them across three different implementations of the JRE from Oracle, IBM,
and Google. The vulnerable methods and classes provide abstractions called BigDecimal and
BigInteger for performing arbitrary precision arithmetic in Java. Any Java program that performs
arithmetic over instances of BigDecimal derived from user input may be vulnerable to AC exploits,
provided an attacker can influence the value of the number’s exponent when represented in scien-
tific notation. A manually defined exploit on BigDecimal.add in Oracle’s JDK (Versions 9 and 10)
can run for over an hour even when JIT compilation is enabled. On IBM’s J9 platform, the exploit
ran for four and a half months, as measured by the time utility, before crashing. When we exploit
the vulnerability on the Android 8.0 Runtime (ART), execution can take over 20 hours before it
ends with an exception when run inside an x86 Android emulator. We reported our findings to all
three vendors and received varying responses. IBM assigned a CVE [4] for our findings. Oracle con-
sidered this a Security-in-Depth issue and acknowledged our contribution in their Critical Patch
Update Advisory [8]. Google argued that it does not fall within the definition of a security vulner-
ability for the Android platform. HotFuzz automatically constructs valid instances of BigDecimal
and BigInteger that substantially slow down methods in both classes. For example, simply in-
crementing 1e2147483647 by 1 takes over an hour to compute on Oracle’s JDK even with JIT
compilation enabled. HotFuzz finds these vulnerabilities without any domain-specific knowledge
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Fig. 6. Micro-fuzzing com.sun.org.apache.regexp.internal .RE.split(String input) with IVI-derived
inputs fails to detect a zero-day AC vulnerability in the JRE, while SRI-derived inputs detect the vulnerability
correctly (see the upper-right-hand corner of Graph (b)). Observe that the y-axis for Graph (a) is 5 orders of
magnitude smaller than Graph (b).

about the Java Math library or the semantics of its classes; HotFuzz derived all instances required
to invoke methods by starting from the BigDecimal constructors given in the JRE. The underlying
issue in the JRE source code that introduces this vulnerability stems from how it handles numbers
expressed in scientific notation. Every number in scientific notation is expressed as a coefficient
multiplied by ten raised to the power of an exponent. The performance of arithmetic over these
numbers in the JRE is sensitive to the difference between two numbers’ exponents. This makes ad-
dition over two numbers with equal exponents, such as 12147483647 and 2e2147483647, return
immediately, whereas adding 1€2147483647 to 1e@, can run for over an hour on Oracle’s JVM.
The root cause of this performance overhead lies in how the JDK transforms numbers during its
arithmetic operations [6]. For example, suppose a program uses the BigDecimal class to compute
the sum x; X 109! + x, X 10%2 where y; # y,. Let x,,,;,, be the coeflicient that belongs to the smaller
exponent and x,,,x the coefficient that belongs to the larger exponent. The add method first com-
putes the difference |y; — y2| and then defines an integer x;.4/04, an instance of BigInteger which
may represent an integer of arbitrary size, and directly computes Xscajeq = Xmax X 10/%17%2], This
allows the add method to complete the addition by returning a BigDecimal represented with
a coefficient given by Xscqreqd + Xmin and an exponent given by the smaller of y; and y,. Un-
fortunately, it also opens up the possibility of a significant performance penalty while comput-
ing Xscqreq that an adversary could exploit to achieve DoS when the difference between y; and
y, is large. In the PoC given above, add must compute xs.q7eq = 1 X 102147483647 before simply
adding it to 1 with an exponent of 0. Anecdotally, the EyeVM helped pinpoint this issue by tracing
the execution of the PoC. When tracing 1 + 1 x 102147483647 " the method bigMultiplyPowerTen
started computing 1 x 1024748347 byt did not return before we manually stopped the PoC. This
method appeared to be the source of the performance penalty because it was absent when trac-
ing 2 x 102147483647 1 1 5 102147483647 which completed immediately. After observing this result, we
surveyed popular libraries that use BigDecimal internally, and developed proof of concepts that
exploit this vulnerability as shown in Figure 8. We found that several general-purpose program-
ming languages hosted on the JVM are vulnerable to this attack along with org.json, a popular
JSON parsing library. Developers face numerous security threats when they validate input values
given as strings. The vulnerabilities we discussed in this section are especially problematic because
malicious input is perfectly valid, albeit very large, floating point numbers. If a program performs
any arithmetic over a BigDecimal object derived from user input, then it must take care to prevent
the user from providing arbitrary numbers in scientific notation. Likewise, these results show that
developers must be careful when converting between these two classes, as interpreting certain
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1 import com.sun.org.apache.bcel.internal.»; 18 import com.sun.org.apache.bcel.internal .«;
2 19

3 Utility .replace("", "", ""); 20 byte y[] = {0, 0, 0};

4 21 il = new InstructionList(y);

5 import java.io.File; 22 ifi = new InstructionFinder (il);

6 import sun.tools.jar.Manifest; 23 ifi.search("");

7 24

8 String xs[] = {"","","","","" ") 25 import sun.text.SupplementaryCharacterData;
9 m = new Manifest (); 26

10 files = new File (new File(""),""); 27 int z[] = {0, 0, 0};

11 m.addFiles (files , xs); 28 s = new SupplementaryCharacterData(z);

12 29 s.getValue (0);

13 import com.sun.imageio.plugins.common.x; 30

14 31 import java.text.DecimalFormat;

15 table = new LZWStringTable (); 32

16 table.addCharString (0, 0); 33  x = new DecimalFormat("");

17 34 x.toLocalizedPattern ();

Fig. 7. Proof of concept exploits for AC vulnerabilities that require only IVI-based inputs to trigger.

clojure=> (inc (BigDecimal. "1e2147483647")) groovy:000> 1e2147483647+1

clojure=> (dec (BigDecimal. "1e2147483647"))
JSONObject js = new JSONObject ();

scala> BigDecimal("1e2147483647")+1 js.put("x", BigDecimal("1e2147483647"));
js.increment("x");

Fig. 8. Proof of concept exploits that trigger inefficient arithmetic operations for the BigDecimal class in
Clojure, Scala, Groovy, and the org.json library.

floating point numbers as integers could suddenly halt their application. This complicates any in-
put validation that accepts numbers given as strings. Our results reveal that failure to implement
such validation correctly could allow remote adversaries to slow victim programs to a halt. Af-
ter we disclosed this vulnerability to vendors, we observed that recent releases of the JRE provide
mitigations for it. For example, in JRE build 1.8.0_242, the PoCs we present in this section immedi-
ately end with an exception thrown by the BigInteger class. Instead of naively computing xsca/ed,
the new implementation first checks to see if x5.47.4 Will exceed a threshold and, if so, aborts the
inefficient computation with an exception before it can affect the availability of the overall process.
While this defends against the original AC vulnerability, it also introduces a new opportunity for
DoS by allowing an adversary to trigger exceptions that programs may fail to properly handle.

5.2.5 Case Study: DARPA STAC Challenges. The DARPA STAC program contains a set of chal-
lenge programs developed in Java that test the ability of program analysis tools to detect AC vulner-
abilities. In this case study, we measure HotFuzz’s ability to automatically detect AC vulnerabilities
found in these challenges. We began by feeding the challenges into HotFuzz which produced a cor-
pus of test cases that exploit AC vulnerabilities contained in the challenges. However, these test
cases on their own do not answer the question of whether a given challenge is vulnerable to an AC
attack, because challenges are whole programs that receive input from sources such as standard
input or network sockets, and HotFuzz detects AC vulnerabilities at the method level. Therefore,
given a challenge that is vulnerable to an AC attack, we need a way to determine whether one of
its methods that HotFuzz marks as vulnerable is relevant to the intended vulnerability. The STAC
challenges provide ground truth for evaluating HotFuzz in the form of proof-of-concept exploits
on challenges with intended vulnerabilities. We define the following procedure to assess whether
HotFuzz can detect an AC vulnerability automatically. We start by executing each challenge that
contains an intended vulnerability in the EyeVM in tracing mode, and execute the challenge’s
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Detecting an AC Time Vulnerability in the inandout_2 STAC Challenge Detecting an AC Space Vulnerability in the calculator_4 STAC Challenge
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Fig. 9. HotFuzz detecting AC vulnerabilities in both time and space found in the inandout_2 and calculator_4
challenges from the DARPA STAC Program (see the upper-right-hand corner of Graphs (a) and (b)).

exploit on the running challenge. This produces a trace of every method invoked in the challenge
during a successful exploit. If HotFuzz marks a method M as vulnerable in the output for challenge
C, and M appears in the trace for C, we count the challenge as confirmed. When we conducted
this experiment on all the challenges contained in the STAC program vulnerable to AC time and
space attacks, we found that HotFuzz automatically marked 13 (five time and eight space) out of 61
(36 time and 25 space) challenges as vulnerable. One challenge, inandout_2 provides a web ser-
vice that allows users to order pizzas online. By running HotFuzz over this challenge, it identifies
multiple methods with AC time vulnerabilities in its code. Figure 9 visualizes HotFuzz detecting an
AC time vulnerability in the subsequentEnergy0f2 method found within the PizzaParameters
class in the challenge. When we traced the execution of an exploit that achieved DoS against the
pizza service, we observed the vulnerable method subsequentEnergy0f2 identified by HotFuzz in
the exploit’s trace. A second challenge, calculator_4 evaluates arithmetic expressions submitted
by users over a network. HotFuzz identifies an AC space vulnerability that successfully causes the
Modify.modify method to consume significant memory while altering user data. Figure 9(b) visu-
alizes how HotFuzz quickly evolves the initial population of 100 objects to find a set of inputs that
consume excessive memory. When we traced the exploit for calculator_4 which uses a patholog-
ical expression to balloon a calculator’s memory consumption, we observed the modify method
flagged by HotFuzz appear within the trace.

5.2.6 Case Study: Slow Parsing in org.json. Over the course of our evaluation, HotFuzz detected
a previously unknown AC time vulnerability inside the popular org.json library. The org.json
library is widely used, and is found as a dependency in Google’s Closure compiler and the Spring
framework. The vulnerable method, JSONML . toJSONObject (String) converts an XML document
represented as a string into an equivalent JSONODbject. This method is public, and instructions
for its use in programs can be found in tutorials online [12]. Given the popularity of the org.json
library on Maven, application developers may unknowingly expose themselves to DoS attacks by
simply parsing XML strings into JSON. Our experimental results obtained by micro-fuzzing the
org. json library also demonstrated the utility of using SRI seed inputs over IVI seed inputs. Over
the course of our evaluation, test cases evolved from IVI seed inputs failed to successfully invoke
the toJSONObject method after 4,654 test cases. Meanwhile, the 96th SRI-derived seed input suc-
cessfully triggered the vulnerability. The second stage of our pipeline successfully validated this
SRI test case represented as a 242-character string. After our evaluation was completed, we took
the PoC program generated by HotFuzz and observed it run for 120 hours on a Debian system with
Intel Xeon E5-2620 CPUs in an unmodified Java environment with JIT enabled. The SRI strategy
that produced this test case sampled primitive values uniformly at random from the interval [0, @).
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Sampling from the normal distribution N (0, «/3) detected the bug in the JSONML package, but the
test case did not pass the witness validation stage. During our evaluation, HotFuzz started with
no prior knowledge about org.json, JSON, or XML. Nonetheless, after simply passing the org.json
library to HotFuzz as input and micro-fuzzing its methods using SRI-derived seed inputs, we
were able to uncover a serious AC time vulnerability that exposes programs that depend on this
library to potential DoS attacks. We communicated our findings to the owners of the JSON-java
project [3] who confirmed the behavior we observed as a bug. The developers immediately found
the root cause of the infinite loop after debugging the method starting with the test case produced
by HotFuzz. This test case opened an XML comment with the string <! which prompted a loop
inside the toJSONObject method to check for special characters that represent the beginning (<)
and end (>) of a comment until it reached the end of the original comment. The test case produced
by HotFuzz caused a method in this loop, nextMeta, to always return the same character, and
therefore prevented the loop from advancing. After fixing this bug, the developers included our
test case in org. json’s test suite in order to prevent the issue from occurring in future releases.
The test case that triggered this infinite loop is small (242 bytes) and demonstrates the potential
micro-fuzzing has to uncover serious AC vulnerabilities hiding in popular Java libraries. After
micro-fuzzing the toJSONObject method on the patched org. json library, we discovered six test
cases that triggered AC vulnerabilities, but these were fixed in the latest release of org. json.

5.2.7 Case Study: Excessive Memory Consumption in the Clojure Runtime and ASM Library. Clo-
jure is a popular functional programming language that provides a modern LISP dialect for con-
temporary computing environments including the JVM, Javascript, and the Microsoft Common
Language Runtime (CLR). One way to deploy a Clojure program is to package its source files
along with the Clojure runtime which can be obtained as a standalone JAR file. At production,
the Clojure runtime parses and interprets the program within the JVM where it can take advan-
tage of features like JIT compilation. The Clojure runtime contains an optimized implementation
of a vector for holding arbitrary bytes called ByteVector. The ByteVector class holds both the
array of bytes and an integer field that denotes the amount of bytes actually stored within the
array, since a given vector may not utilize all the space that is available in the byte array. This
optimization can cause trouble later on, if an adversary is somehow able to alter the length field
to a value that is substantially larger than the length of the byte array stored in the object. While
micro-fuzzing the Clojure runtime, we observed that using SRI-derived seed inputs created a small
test case (1,608 bytes) that demonstrated a corrupted ByteVector could cause one of its methods
to inadvertently allocate gigabytes worth of memory and trigger a DoS attack (Figure 10(b)). This
demonstrates the utility of micro-fuzzing with SRI-derived seed inputs, as the corresponding run
that utilized IVI inputs failed to discover the issue, even while using more test cases (Figure 10(a)).
The method that demonstrates this vulnerability, putUTF8, attempts to place a UTF-8 string into
a ByteVector’s byte array, but the test case produced by HotFuzz causes the method to get stuck
growing the array to match the value given by the corrupted length field. A likely attack for this
bug is that some applications may parse ByteVector objects through either the popular JSON
format or a binary format protocol like Protobufs. If an adversary is able to submit their own cor-
rupted ByteVector instances through such an interface, they could easily cause benign methods
like putUTF8 to consume significant memory and achieve a DoS attack. Indeed, this is how the PoC
emitted by HotFuzz works, by parsing the test case given in JSON into a valid ByteVector object,
and then calling the putUTF8 method on the object. Furthermore, we found that the ByteVector
implementation contained in the Clojure runtime is borrowed from the widely used ASM bytecode
manipulation library [20]. We reproduced the PoC generated by HotFuzz on the latest release of
ASM (9.2) which suggests this issue impacts not only projects using ASM, but also those derived
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Fig. 10. Micro-fuzzing clojure.asm.ByteVector.putUTF8 with IVI-derived inputs fails to detect a zero-
day AC vulnerability in the Clojure runtime, while SRI-derived inputs detect the vulnerability using fewer
test cases (see the upper-right-hand corner of Graph (b)). Note that the y-axis for Graph (a) is 1 order of
magnitude smaller than Graph (b).

from ASM’s source code. In addition to testing the PoC emitted by HotFuzz on the version of Clo-
jure given in our evaluation, we also verified the same behavior occurs on the latest version of
Clojure available on Maven (1.10.3). Fortunately, a simple mitigation seems possible in this case
since the length attribute is intended to represent the number of bytes actually stored in the given
array. This means any value of length that exceeds the actual length of the array demonstrates
evidence of tampering, since an array cannot hold more bytes beyond its capacity. Upon detecting
the corruption, a method could throw an exception and avoid erroneously allocating memory. This
check does not incur significant performance overhead, since Java supports querying the length
of arrays in constant time. We reported this issue to the Clojure developers who observed that the
compiler never deserializes ByteVector objects, and furthermore, they consider the ASM library
embedded within Clojure private. Nonetheless, they periodically update the ASM sources embed-
ded in the Clojure source tree to stay up to date with the official ASM library. Upon reviewing our
findings, the ASM developers confirmed the behavior as a security issue, and merged in a patch
that implements our proposed mitigation [19]. The Clojure developers have confirmed that this
mitigation will eventually make its way into a future Clojure release as well.

6 RELATED WORK

HotFuzz relates to previous work in four categories: (i) AC Vulnerability Analysis, (ii) Test Case
Generation, (iii) Fuzz Testing, and (iv) Resource Analysis.

6.1 AC Vulnerability Analysis

Prior work for detecting AC vulnerabilities in Java programs includes static analysis on popular
libraries [42, 48, 79], object-graph engineering on Java’s serialization facilities [29], and exploit-
ing worst-case runtime of algorithms found in commercial grade networking equipment [28]. On
the Android platform, Huang et al. [38] use a combination of static and dynamic analysis to de-
tect AC vulnerabilities within Android’s System Server. Further up the application stack, Pelle-
grino et al. [57] identify common implementation mistakes that make web services vulnerable to
DoS attacks. Finally, Holland et al. [37] propose a statically-informed dynamic analysis for finding
AC vulnerabilities. Prior work for detecting AC vulnerabilities is custom-tailored to specific do-
mains (e.g., serialization, regular-expression engines, Android Services, or web applications) and
therefore often requires human assistance. HotFuzz differs from these approaches in that it is
generically applicable to any Java program without human intervention, intuition, or insight.
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6.2 Test Case Generation

Program analysis tools can generate test cases that exercise specific execution paths in a program
and demonstrate the presence of bugs. When the program source is at hand, property-based and
generative testing tools apply techniques popularized by QuickCheck [26] in order to determine
whether a given function deviates from a specification given as a logical formula. When working
directly on JAR files, several tools perform symbolic execution within the Java Pathfinder plat-
form [34, 40, 49] in order to increase code coverage in Java test suites. Toffola et al. [75] introduced
PerfSyn which uses combinatoric search to construct test programs that trigger performance bot-
tlenecks in Java methods. Symbolic execution has found serious security bugs when applied to
whole programs [23, 53] and in under-constrained settings [60] similar to HotFuzz. More recent
work in this area utilizes information given in compiler error messages to iteratively refine inputs
to polymorphic Rust functions [72].

6.3 Fuzz Testing

State-of-the-art fuzzers [13, 81] combine instrumentation on a program under test to provide feed-
back to a genetic algorithm that mutates inputs in order to trigger a crash. Active research topics
include deciding optimal fuzzing seeds [63] and techniques for improving a fuzzer’s code cover-
age [24, 78]. Prior work has seeded fuzzing by replaying sequences of kernel API calls [33], com-
mands from Android apps to smart IoT Devices [25, 64], input provided by human assistants [68],
or generating device I/O from hypervisor semantics [21]. Recent techniques for improving code
coverage during fuzz testing include introducing selective symbolic execution [71], control- and
data-flow analysis on the program under test [62], reducing collisions in code coverage measure-
ments [31], and altering the program under test [58]. Prior work applies existing fuzz testers to
discover AC vulnerabilities in whole programs [47, 59], and in Java programs by combining fuzz
testing with symbolic execution [54] or seeding black box fuzzing with information taken from pro-
gram traces [50]. Instead of adapting existing fuzzers to detect AC vulnerabilities, the Singularity
tool implements a genetic algorithm over programs in a domain specific language that represent
a method’s input in order to search for inputs that trigger a Java method’s worst-case execution
time [76]. In contrast, HotFuzz micro-fuzzes entire libraries without any manual set up and uses a
genetic algorithm on individual Java objects of arbitrary type in order to detect AC vulnerabilities
in a library’s methods. This departs from prior approaches that restrict fuzzing individual methods
with either bitstreams, or a simple domain specific language that expresses integer arithmetic and
list operations.

6.4 Resource Analysis

Recent interest in AC and side-channel vulnerabilities have increased the focus on resource anal-
ysis research. In this area, Proteus [80] presented by Xie et al. and Awadhutkar et al. [15] study
sensitive paths through loops that might represent AC vulnerabilities. Meanwhile, Kothary [44, 66]
investigates how human-machine interaction can improve program analysis by better detecting
critical paths and side channels. Further work identifies side-channels by solving the trace-set
discrimination problem in individual programs [74]. In Comb [36], Holland et al. propose the
Projected Control Graph (PCG) as a technique for computing relevant program behaviors
for analysis. Another approach to resource-oriented static analysis formalizes how programs
consume resources within an interactive proof assistant. This enables programmers to derive con-
crete resource bounds over integer programs using Automatic Amortized Resource Analysis
(AARA) [22, 35]. This line of work computes a program’s resource usage using a combination of

ACM Transactions on Privacy and Security, Vol. 25, No. 4, Article 33. Publication date: July 2022.



33:32 W. Blair et al.

formal proofs and constraint solving over linear programs. In contrast, HotFuzz provides quanti-
tative measurements of program behavior over concrete inputs in a dynamic, empirical fashion.

7 CONCLUSION

In this work, we present HotFuzz, a fuzzer that detects AC vulnerabilities in Java libraries through
a novel approach called micro-fuzzing. HotFuzz uses genetic optimization of test artifact resource
usage seeded by Java-specific Identity IVI and SRI techniques to detect AC vulnerabilities in meth-
ods under test. We evaluate HotFuzz on the JRE, challenge programs developed in the DARPA
STAC program, and the 100 most popular Maven libraries. In conducting this evaluation, we dis-
covered previously unknown AC vulnerabilities in production software, including 52 (26 Time and
26 Space) in the JRE, 165 (132 Time and 33 Space) in 47 Maven libraries, as well as both known and
unintended vulnerabilities in STAC evaluation artifacts. Our results demonstrate that the array of
testing techniques introduced by HotFuzz are effective in finding AC vulnerabilities with respect
to both time and space in real-world software.
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