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ABSTRACT

Modern high performance computing (HPC) systems, including
supercomputers, routinely suffer from substantial performance
variations. The same application with the same input can have more
than 100% performance variation, and such variations cause reduced
efficiency and wasted resources. There have been recent studies on
performance variability and on designing automated methods for
diagnosing “anomalies” that cause performance variability. These
studies either observe data collected from HPC systems, or they
rely on synthetic reproduction of performance variability scenarios.
However, there is no standardized way of creating performance
variability inducing synthetic anomalies; so, researchers rely on
designing ad-hoc methods for reproducing performance variability.

This paper addresses this lack of a common method for cre-
ating relevant performance anomalies by introducing HPAS, an
HPC Performance Anomaly Suite, consisting of anomaly genera-
tors for the major subsystems in HPC systems. These easy-to-use
synthetic anomaly generators facilitate low-effort evaluation and
comparison of various analytics methods as well as performance
or resilience of applications, middleware, or systems under realis-
tic performance variability scenarios. The paper also provides an
analysis of the behavior of the anomaly generators and demon-
strates several use cases: (1) performance anomaly diagnosis using
HPAS, (2) evaluation of resource management policies under per-
formance variations, and (3) design of applications that are resilient
to performance variability.

CCS CONCEPTS

• General and reference→ Experimentation; • Networks→
Network experimentation; • Computer systems organization →
Grid computing.
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1 INTRODUCTION

Modern high performance computing (HPC) systems routinely
encounter performance variability as a result of hardware man-
ufacturing variability, software problems, or resource contention
among or within jobs [4, 22, 28, 45]. Performance variability results
in sub-optimal scheduling, wasted compute cycles (and therefore,
loss of efficiency and higher cost), and user dissatisfaction. Early
detection of performance variability and designing methods to min-
imize the unwanted variations are among the major challenges in
production HPC systems.

One factor contributing to these challenges is the lack of an open-
source, widely-applicable method for reproducing realistic scenar-
ios that create performance variability. As a result, researchers and
system administrators have to either operate with real performance
variation data collected from production systems or create their
own models for performance variations. Real systems data is often
not available to researchers, or the available data is limited to a
few known cases where the expected performance for the majority
of the applications are unknown and/or application performance
is not recorded [14, 26]. Existing performance variation models
include simulations of systems under contention [3, 19] and syn-
thetic reproduction of performance variations (i.e., anomaly injec-
tion) [23, 31, 49, 50]. Due to the lack of a common methodology for
generating realistic performance variation causing anomalies, re-
searchers create their own methods, which results in a fragmented
research space, difficulty in repeatability/comparison of results
across different research teams, and loss of valuable research and
system time.

https://doi.org/10.1145/3337821.3337907
https://doi.org/10.1145/3337821.3337907
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In this paper, we introduceHPAS, a new HPC Performance Anom-
aly Suite, with the goal of enabling researchers, engineers and
administrators to repeatably and systematically study realistic per-
formance variability in HPC systems. We follow the scientific intu-
ition that standardized benchmarks play an important role in the
development of computer hardware and software as well as in the
evaluation of middleware and policies. Such benchmarks relieve en-
gineers and scientists from the burden of developing representative
workloads. In addition, as discussed above, coming up with realistic
examples or use cases may often be difficult—or impossible—for
many researchers. Using benchmarks, researchers can compare
different approaches in computer systems in a fair manner and help
advance science. It is our intent to advance the state-of-the-art in
reproducible HPC research with this anomaly suite contribution.

Our anomaly suite, HPAS, consists of a set of synthetic “anom-
alies” that reproduce common root causes of performance varia-
tions in supercomputers: CPU contention, cache evictions, mem-
ory bandwidth interference, memory intensive processes, memory
leaks, network contention, and contention in the shared filesystem
metadata servers and storage servers. We design these synthetic
anomalies using processes that run in userspace; thus, our suite
does not require modifications to hardware, any other applications,
or the kernel. Our anomalies can be configured for various intensi-
ties at runtime using several knobs. Furthermore, each anomaly is
designed to minimize its interference in the subsystems that it is not
targeting. The specific contributions of this paper are as follows:

• A rich suite of anomaly generators that can be used to study
performance variability in HPC systems, evaluate the perfor-
mance variability of new systems, and/or develop software
that is resilient against future performance variations1;

• an analysis of the characteristics of each of these anomalies
by themselves and their impact on various colocated appli-
cations (§ 4); and

• demonstrations of possible uses of these anomalies, includ-
ing generating synthetic data for the evaluation of anomaly
diagnosis methods and comparing the effects of performance
variability on load balancing and system management poli-
cies (§ 5).

2 BACKGROUND ON PERFORMANCE

VARIABILITY

Realistic and systematic reproduction of performance variability is
a prerequisite for most research on its elimination, and the first step
in reproduction is an analysis of the causes and consequences of
performance variability. This section presents a general overview
of performance variability based on previous research.

It is important to note the difference between performance vari-
ability and faults. Faults include behaviors in the computer system
that result in errors in the correctness or premature termination of
the executed program. We focus on performance variability, which
results in sub-optimal execution time while still obtaining correct
results. For example, our focus on performance variability includes
anomalies, such as network contention, which do not result in

1The source code and additional documentation of the anomalies described are avail-
able at www.github.com/peaclab/HPAS.

wrong results but may lead to reduced performance in systems
where different applications share network resources.

Performance variability adversely affects supercomputers in
many ways. Users request more time than required for their jobs
because they cannot reliably predict job running time, which in
turn harms scheduling. Researchers measuring performance need
to take a large number of measurements since results may be in-
valid if insufficient measurements are taken [18, 34]. Programmers
are unable to decide whether a code change improves or degrades
performance due to high run-to-run performance variability.

Several researchers have investigated the root causes of perfor-
mance variability, which we group by the subsystem where the
performance variation causing anomaly manifests. This grouping is
useful because the method of replication depends on the subsystem.
The major subsystems affecting performance in a supercomputer
are the CPU, the cache hierarchy, the memory, the high speed
network, and the storage system. We provide examples causes of
performance variability in each subsystem below.

CPU: Several examples of performance variations stem from
the CPU. Orphan processes left from previous jobs that are still
consuming CPU cycles are among the anomalies that clog the
CPU [6, 7]. System processes may also use a high amount of CPU
because of software errors or miscalibration [8], and OS scheduling
may result in unpredictable execution times—also known as “OS
jitter”. Manufacturing variability of CPUs has also been reported to
affect the performance of HPC jobs [22, 33].

Cache Hierarchy: Modern CPUs’ cache hierarchies consist of
several levels. The cache hierarchy is a typical source of perfor-
mance variation for both distributed HPC applications and single-
server or even single-CPU applications. Some of the cache-related
performance variations are unavoidable (e.g., the cold-start effect),
while some of them are caused by software problems (e.g., false shar-
ing) or a combination of software and hardware problems [9, 36].

Memory: In systems where nodes are shared between different
applications, memory is shared as well, causing contention in the
memory. In systemswithout node-sharing, placement of application
data into different memory banks may affect performance [37].
Other examples causing performance variability in an HPC system
are memory intensive orphan processes and memory leaks.

Network: The high speed network is typically shared between
many applications, and certain usage patterns may cause network
contention, adversely affecting other applications [3, 12, 15]. The
location and severity of contention in a network depend on the
network topology, whether nodes are shared between different jobs,
the number of NICs per node, the number of links between two
nodes in the network, and other factors.

Shared Storage: Interference or other problems in shared filesys-
tems can also cause performance variations [11]. In most cases, the
Message-Passing Interface (MPI) [38] requires all of the communi-
cating nodes to have the same binaries in the same paths, and using
shared filesystems is a commonway to accomplish this. Such filesys-
tems are also used for checkpointing data and other inputs/outputs.
Both the speed of checkpointing and the speed of I/O depend on the
performance of the shared filesystem, which can vary significantly
over time depending on aggregate filesystem load.

www.github.com/peaclab/HPAS
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Table 1: A list of HPAS anomalies and their details. Every anomaly has configurable start/end times as well.

Anomaly type Anomaly name Anomaly behavior Runtime configuration options

CPU intensive process cpuoccupy Arithmetic operations utilization %
Cache contention cachecopy Cache read & write cache (L1/L2/L3), multiplier, rate
Memory bandwidth contention membw Uncached memory write buffer size, rate
Memory intensive process memeater Allocate, fill, & release memory buffer size, rate
Memory leak memleak Increasingly allocate & fill memory buffer size, rate
Network contention netoccupy Send messages between two nodes message size, rate, number of tasks (ntasks)
I/O metadata server contention iometadata File creation & deletion rate, ntasks
I/O bandwidth contention iobandwidth File read & write file size, ntasks

Our anomaly suite, HPAS, implements eight performance anom-
alies, shown in Table 1, in order to replicate the types of perfor-
mance variability mentioned above. Each anomaly targets a single
subsystem and the behavior can be configured to change the inten-
sities of the anomalies.

3 SYNTHETIC ANOMALIES

Our goal when designing HPAS is to accurately reproduce perfor-
mance variations that are commonly encountered in HPC systems.
This section first describes our design constraints for the synthetic
anomalies and then provides the details of each synthetic anomaly.
We select the sources of interference and design the anomalies
based on both discussions with experts in and a literature review
(Section 2). Four of the anomalies we present are based on those
used in our previous work [49, 50], which have also been used by
Netti et al. [39] (cpuoccupy, cachecopy, memleak, memeater in
our suite).

When designing the anomalies, we seek to balance the usabil-
ity of the anomalies with realistic reproduction. We implement
all anomalies such that no modifications to the benchmark appli-
cations, shared libraries, operating system kernel, drivers or su-
percomputer hardware are required. For example, even though a
memory leak could be more realistically reproduced by modifica-
tions to application code, such an approach would require separate
modifications to each benchmark and would reduce the reusability
of the anomaly suite. Instead, we use a separate userspace process
that has a similar impact on the system.

We also design the anomalies such that the intensity of the
anomaly can be adjusted using command line options. For example,
for anomalies that require memory allocation, the amount and
rate of memory allocated is adjustable; or, for some anomalies, a
variable amount of sleep is inserted between periods of activity
to reduce the intensity of the anomaly. This configurability also
enables composing more complicated variability patterns (e.g., [30])
by using multiple anomaly instances.

We consider each of the major subsystems in an HPC system, i.e.,
the CPU, the cache hierarchy, the memory, the high speed network,
and the storage system. For each subsystem, we design synthetic
anomalies that replicate known causes of performance variations
in that subsystem. Table 1 provides a summary of our anomalies
that will be elaborated upon in the following subsections.

3.1 CPU

We model CPU-based performance variability with the cpuoccupy
anomaly. This anomaly performs arithmetic operations on random
values in a loop and sleeps for a given percentage of the time, using
setitimer(). In this way, the activity of the anomaly has negligible
impact on the cache or memory, and the utilization of the CPU
can be adjusted to a given percentage. The CPU consists of many
components that may independently affect performance; however,
the contention in HPC systems is typically between separate pro-
cesses, and different processes contend for CPU time, which can be
adequately reproduced using cpuoccupy.

The cpuoccupy anomaly can be executed on the same node with
the application to emulate CPU contention, which may be caused
by system processes or CPU-intensive orphan processes, or it can
emulate OS jitter by setting the consumed CPU time to a low value
and impacting the scheduling behavior of the OS.

3.2 Cache Hierarchy

We model cache-related performance variations with the cache-
copy anomaly that intensively uses the cache. The anomaly gener-
ator allocates two arrays, each of which are half the size of the L1,
L2 or L3 caches, based on user-chosen parameters and repeatedly
copies the contents of one array to the other one. The two arrays are
contiguous in memory and are allocated using posix_memalign().
In this way, the specific level of the cache is effectively utilized by
the anomaly, and the cache lines belonging to applications that
share the same level of cache as the anomaly are expected to be
frequently evicted.

cachecopy can be used to emulate cache contention, other hard-
ware or software problems that may cause cache lines to be unex-
pectedly evicted, or running on a machine with a smaller cache.

3.3 Memory

We create three synthetic anomalies to model memory-related per-
formance variability: Memory-intensive orphan processes, memory
leak, and memory bandwidth contention. These anomalies can
be used to mimic different types of memory contention or dead
memory regions.

3.3.1 Memory Intensive Process. The memeater anomaly allocates
an array of a given size (35MB by default, but adjustable) and fills it
with random values. Later, it uses realloc() to increase the array’s
size by the same amount, fills the remaining area with random
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#include <xmminitrin.h>
void temporal_copy(double **orig, double **swap) {

for (int i = 0; i < SIZE; i++) {
for (int j = 0; j < SIZE; j++) {

_mm_stream_pi((__m64 *) (&swap[j][i]),
*(__m64 *) (&orig[i][j])); // MOVNTQ

_mm_empty(); // EMMS
}

}
}

Figure 1: A C code sample for creating memory bandwidth

contention.

values, and repeats until the time or size limit given by the user is
reached.

3.3.2 Memory Leaks. We model memory leaks using the memleak
anomaly, which allocates an array of characters of a given size (20
MB by default) and fills it with random characters in each iteration.
The addresses of the arrays are not stored and are not freed at each
iteration, causing a memory leak.

3.3.3 Memory Bandwidth. The memeater anomaly uses a large
amount of cache as well, so we also design membw to create con-
tention only in the memory bandwidth. We model memory band-
width contention by using the x86 SSE non-temporal memory in-
structions such asMOVNT*. These instructions are accessible from
intrinsic functions which are supported by most compilers. When
the data is marked with the non-temporal hint, i.e., that it will only
be used once, it is not loaded into the cache. Our anomaly, membw,
first allocates two 2D matrices in the stack and fills one of them
with random values. Then, it writes the transpose of the first matrix
into the second matrix using the non-temporal hint, as shown in
Figure 1. The transpose operation repeats for the duration of the
anomaly.

3.4 Network

There are several methods for implementing inter-node commu-
nication in supercomputers, and when designing the netoccupy
anomaly we choose the method that introduces the least software
overhead and the most emphasis on the network. MPI is the domi-
nant parallel programming model, and many MPI implementations
offer OS-bypass and other optimizations, allowing for faster com-
munication compared to using raw sockets. However, we choose
the SHMEM API since it has been shown to have a lower latency,
thus higher load on the network, compared to MPI on the Cray
Aries network [2], and it also offers similar optimizations as MPI.
We focus on the Cray Aries because it is one of the most commonly
used networks in the top 10 computers in the Top500 list (tied with
Mellanox EDR Infiniband).

Our network interference generator can be executed in any two
nodes provided that the link or router to be congested lies in the
main communication path between the nodes. The anomaly then
pairs the ranks on either node, such that the ranks on one node
send messages to their corresponding rank on the other node using
shmem_putmem(). We use 100 MB messages because we observe
that using messages smaller than 100 MB results in less contention,
while messages larger than 100 MB do not noticeably increase
bandwidth usage of the anomaly.
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Figure 2: cpuoccupy intensity vs. CPU utilization in

Voltrino. cpuoccupy uses the given percentage of the CPU.

Themain usage of thenetoccupy anomaly is to emulate network
contention. The bandwidth consumption of the anomaly can be
tuned to emulate different levels of network contention.

3.5 Shared Storage

We target a common shared filesystem architecture, where there
are one or a fewmetadata servers that manage the creation/deletion
of files and other metadata such as locks and the locations and per-
missions of the files. Each metadata operation first passes through
these metadata servers, and the actual contents of the files are lo-
cated in storage nodes. The communication between the filesystem
and the compute nodes is performed using either a separate net-
work or the same interconnect that is used for inter compute-node
communication.

Using the POSIX API, we can stress both the metadata servers
and the storage servers separately; therefore, we design two anom-
alies. The metadata server is stressed using the iometadata anom-
aly that creates and opens files, writes one character to each in a
loop, closes all open files, and deletes them after 10 iterations. The
iobandwidth anomaly uses dd [21] to copy random data into a
file. It then copies that file to another file and so on. This anomaly
causes contention in the disks of the storage servers, as well as
the interconnect between the filesystem and compute nodes. Both
of these anomalies can be used standalone, or they can be started
using MPI to achieve higher contention, in which case they use
separate files for each rank.

4 EVALUATION

To evaluate the proposed anomaly suite, we inspect the effect of
each anomaly on target subsystems and different applications. We
run our experiments on two systems: Voltrino, a Cray XC40m super-
computer located at Sandia National Laboratories, and Chameleon
Cloud [24] (whichwe use as a cluster of bare-metal servers). Voltrino
has 24 nodes with two Intel Xeon E5-2698 v3 processors with 16
cores per socket and 24 nodes with one Intel Xeon Phi 7250 proces-
sor with 68 cores. We run all of the experiment on Voltrino using
the nodes with Haswell Xeon E5-2698. Our Chameleon Cloud (CC)
experiments use two 12-core Intel Xeon E5-2670 v3 processors per
node. Both systems have 125GB memory per node.

On Voltrino, we collect monitoring data using the open-source
Lightweight DistributedMetric Service (LDMS) [1]. LDMS onVoltrino
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uses several samplers: procstat collects processor metrics from
/proc/stat; meminfo and vmstat collects memory metrics from
/proc/meminfo and /proc/vmstat, respectively; aries_nic_mmr
collects hardware counters from the Aries Network Interface Cards
(NICs); cray_aries_r collects Cray-specific hardware counters;
and spapiHASW collects hardware counters using PAPI [47]. In
the rest of the paper, we indicate the sampler for each metric using
‘::’. For example, user::procstat indicates the metric user from
/proc/stat. In Voltrino, LDMS is configured to collect 2121 metrics
per second from each node in our experiments.

4.1 Effects of the Anomalies on Their

Respective Subsystems

We evaluate the effectiveness of each anomaly on its target sub-
systems in this section. Figure 2 shows the total CPU utilization in
one node (i.e., user::procstat + sys::procstat) against the chosen
intensity for cpuoccupy. Aside from the variability caused by the
operating system, cpuoccupy can accurately use the given percent-
age of the CPU, and can be used to model CPU contention. The
results from CC agree with Voltrino results.

The effects of cachecopy are demonstrated in Figure 3. For this
experiment, a single-rank instance of miniGhost [17] and cache-
copy is placed on the same physical core, but two different logical
cores using hyperthreading, causing them to share L1, L2 and L3
caches. We increase the working set size of the anomaly from the
size of L1 cache to the size of L3. As the working set size is increased,
more last level cache misses are observed for miniGhost. As CC
has a smaller L3 cache than Voltrino, it suffers from more L3 cache
misses with the anomaly.

Figure 4 shows the memory bandwidth as measured by the
STREAM benchmark [35] in presence of the membw or cachecopy
anomalies. We place STREAM on core 0 and place the anomalies on
cores other than 0 until we use all the other 15 cores of the socket
for the anomaly. We also report results for cachecopy, which has
negligible effect on memory bandwidth as expected, even though it
uses 15 cores. The results from CC agree with those from Voltrino.

We show the memory behavior over time for memleak and
memeater in Figure 5. While memeater behaves like a memory-
intensive application and allocates a large amount of memory at
initialization, it does not increase the total memory footprint. On
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bandwidth in presence of netoccupy anomaly in Voltrino.

the other hand, memleak displays the typical pathological memory
allocation pattern that keeps increasing. Both anomalies terminate
after the given duration. The amount of memory allocated and the
behavior over time can be tuned in our anomaly generators. The
results from CC agree with those from Voltrino.

To quantify the effectiveness of the netoccupy anomaly, wemea-
sure the bandwidth between two nodes in two different switches
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in Voltrino using the OSU benchmark [40], as shown in Figure 6.
The Aries interconnect has 4 nodes connected to each switch; thus,
we allocate the remaining 6 nodes for the network anomalies. We
use 1, 2, and 3 pairs of nodes for the anomaly (corresponding to
2, 4, 6 nodes in the figure). The anomalies reduce the effective
bandwidth of the OSU benchmark. Note that we use Cray MPI’s
MPICH_GNI_GET_MAXSIZE parameter to observe the effect of
network congestion for smaller message sizes. The reduction of
bandwidth is limited because of the topology of Voltrino, which has
many redundant links and uses adaptive routing to avoid congested
links. Another consequence of this adaptive routing is the possible
congestion caused in links not directly targeted by the anomaly. We
cannot evaluate the network anomaly in CC because of its simple
star network topology, which means that the network links are
only between the single router and the nodes.

For evaluation of the I/O anomalies, we only use Chameleon
Cloud (CC) because the filesystem in Voltrino is shared by many
systems other than Voltrino, resulting in inherent performance vari-
ability even when there are no applications running on Voltrino.
Furthermore, our initial experiments using 256 instances of iometa-
data and iobandwidth anomalies caused outages in Voltrino’s
Lustre filesystem. On CC, we use the “Network File System (NFS)
share” complex appliance of CC2 to set up one NFS server and five
clients. The storage server has one 250 GB ST9250610NS disk, and
has the same CPU as the compute nodes. We run the iometadata
or iobandwidth anomalies on four nodes (48 instances per node)
while measuring filesystem performance by running the IOR ap-
plication [32] on the remaining node. Figure 7 demonstrates that
iobandwidth reduces the effective bandwidth of IOR placed in the
other node by clogging the disk on the storage node. The iometa-
data anomaly also affects the bandwidth, since the CC filesystem
does not have a separate metadata server. The impact of ioband-
width is higher in our case because the NFS server is using a single
disk and 24 threads for metadata operations.

4.2 Effect of Anomalies on HPC Applications

We analyze the impact of our synthetic anomalies on a diverse set
of eight benchmark applications shown in Table 2. Among them,
Cloverleaf, CoMD, miniAMR, miniGhost, and miniMD are from
the Mantevo Benchmark Suite [17], which are proxy applications

2https://www.chameleoncloud.org/appliances/25/

mimicking different scientific computation kernels. Kripke is a
proxy application for a particle transport simulation developed to
study the performance characteristics of data layouts and sweep
algorithms [29]. MILC represents part of the codes written by the
MIMD Lattice Computation collaboration to study quantum chro-
modynamics [48]. SW4lite is also a proxy application containing
the computational kernels of SW4 which solves an elastic wave
equation for seismic simulations [44].

To first understand how intensively the benchmark applica-
tions use certain system resources, we analyze the characteris-
tics of the selected benchmark applications based on collected
performance metrics (without any anomalies). We evaluate CPU-
intensiveness by instruction per second (IPS) through the metric
INST_RETIRED:ANY::spapiHASW; we evaluate memory-intensive-
ness by observing cache misses through the metric L2_RQSTS:-
MISS::spapiHASW. We evaluate network-intensiveness by a net-
work traffic counter through the metric AR_NIC_NETMON_ORB_-
EVENT_CNTR_REQ_FLITS::aries_nic_mmr. Based on our analy-
sis, we summarize the characteristics of the benchmark applications
in Table 2.

Figure 8 shows the running time of applications when they are
run with the anomalies. We use application running time as a
measure of application performance. Each anomaly affects appli-
cation performance in different ways. The anomalies that affect
performance the most are cachecopy, cpuoccupy and membw. For
example, CPU-intensive applications, including CoMD, miniMD,
and SW4lite, are all heavily affected by cachecopy and cpuoccupy.
The memory-intensive applications, including Cloverleaf, MILC,
miniAMR, and miniGhost, are more impacted by membw than other
anomalies. None of the applications are affected significantly by
the network anomaly because of the highly connected network
of Voltrino, that is designed for much larger supercomputers with
adaptive routing. Also, memory anomalies such as memleak and
memeater do not visibly affect performance because Voltrino does
not use swap and applications are killed when they run out of mem-
ory. Indeed, if the size of the memory anomalies are set too large,
they result in application crashes.

5 USE CASES FOR HPAS

In this section, we show, using experiments on Voltrino, that our
anomaly suite can be used in the following three example cases:
(1) Evaluate tools that diagnose performance deviation on HPC
systems, (2) systematically evaluate the performance of system
management policies under the conditions of resource contention,
and (3) develop applications and systems resilient to performance
variability. We envision that the usage of HPAS will be advanta-
geous in many other performance or resilience studies as well.

5.1 Evaluating Anomaly Diagnosis Tools

Anomaly detection and diagnosis are widely researched areas [23,
26, 31, 49, 50]. Some of thesemethods are based onmachine learning
algorithms and require a considerable amount of training data to
use and evaluate. Since collecting ground truth anomaly data on
HPC systems is not an easy task, data generated using our anomaly
suite can be used instead. Furthermore, using the same methods for
anomaly generation can make it easier for researchers to compare
anomaly diagnosis methods.

https://www.chameleoncloud.org/appliances/25/
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Table 2: Characteristics of the benchmark applications.

Cloverleaf CoMD Kripke MILC miniAMR miniGhost miniMD SW4lite

CPU-intensive ✓ ✓ ✓
Memory-intensive ✓ ✓ ✓ ✓
Network-intensive ✓ ✓ ✓ ✓ ✓
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Figure 8: Execution time of each application with each anomaly on Voltrino.

To demonstrate the use of our anomaly suite in evaluating anom-
aly diagnosis tools, we use our previous work on anomaly detec-
tion [49, 50]. Our framework contains an offline training phase
and a runtime diagnosis phase. In the offline training phase, we
first use resource usage and performance counter data from known
healthy and anomalous runs to extract useful statistical features cal-
culated from time series. Then, these features are used to train the
tree-based machine learning algorithms. At runtime, we generate
statistical features from resource usage and performance counter
data. Using these features, the machine learning model predicts
the root cause (e.g., CPU contention, memory leak, network con-
tention) of performance variations occurring at certain times. In a
very similar manner to our previous work [49], we collect similar
metrics using LDMS and generate the statistical features mentioned
in the paper. We use decision tree, AdaBoost, and random forest
algorithms for training and prediction.

We run eight benchmark applications with and without our
anomalies and use the data generated to evaluate the diagnosis
framework using 3-fold cross-validation. The F1-scores for individ-
ual anomalies are reported in Figure 9 and the confusion matrix
which shows accuracy for each class is reported in Figure 10. While
the framework is good at identifying whether there is an anom-
aly or not, the cachecopy, cpuoccupy, and membw anomalies are
sometimes mistaken for each other. This could be due to the lack of
metrics representing memory bandwidth in the monitoring data. In
general, the results are compatible with our earlier results, demon-
strating the usability of our suite in the evaluation of anomaly
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Figure 9: Results for classification of the anomalies. The

overall F1-score using Random Forest algorithm is 0.94.

diagnosis methods. Our new anomalies also demonstrate room for
improvement for better diagnosis of cache and CPU anomalies in
Figure 10.

5.2 Evaluating System Management Policies

System management policies on HPC systems, such as job sched-
uling, job allocation, or task mapping, play a vital role in efficient
usage of system resources [51, 52]. Anomalies in a system may af-
fect the behavior of a systemmanagement policy. Knowing how the
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Figure 11: Allocation of SW4lite with two policies.
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Figure 12: Evaluating the impact of anomalies on two dif-

ferent job allocation policies. Figure shows average running

times for two allocation policies in the presence of anom-

alies.

scheduling/allocation of jobs changes when there are performance
anomalies helps evaluate system management policies in a more
realistic manner and select a policy that is resilient to anomalies.

In the following, we demonstrate how two job allocation policies
react differently under presence of CPU and memory anomalies.

The two policies are the Round-Robin (RR) policy and the Well-
Balanced Allocation Strategy (WBAS) by Yang et al. [52]. The RR
policy simply allocates a job to the available nodes in the system
following the label order. The WBAS policy prioritizes selecting
the nodes with lower CPU load and larger free memory. To accom-
plish this, the WBAS policy calculates a computing capacity (CP )
value for each node by CP = (1 − Load%) × Memf r ee . Here, the
CPU load Load% is derived from both current load and the aver-
age load of the recent several minutes according to the formula
Load = 5

6Loadcurrent +
1
6Load5minAvд . In our system, we collect

the current CPU load of the node using the metric user::procstat,
and we monitor the free memory (Memf r ee ) by the metricMem-
free::meminfo.

In our case study, we run the SW4lite application on 4 nodes of
Voltrino out of 8 available nodes (referred to as Nodes [0..7]), as
shown in Figure 11. To create an anomaly, we run cpuoccupy on
Node 0, and run memleak on Node 2. cpuoccupy can be used to
change the CPU load to any given value between 0% and 100% for
each core, we set it to 100% for one core. memleak can be used to
reduce free memory on Node 1 to any given value, we set it to 1GB.
The WBAS policy avoids using the two nodes with the anomalies
and allocates the job to Nodes [1, 3..5] instead. Meanwhile, the RR
policy allocates the job to Nodes [0..3].

With each of the two allocation policies, we run the SW4lite
application 3 times and report the execution time in Figure 12. On
average, the job execution time is 322 s with the WBAS policy, and
it is 436 s with the RR policy. These results show that for this case,
compared to the RR policy, the WBAS policy reduces the execution
time by 26% on average through actively avoiding the anomalous
nodes. This experiment provides an example of how our synthetic
anomaly suite can be utilized to evaluate and compare different job
allocation policies in the presence of these types of anomalies.HPAS
brings the ability to independently change the Load% andMemf r ee
components of theCP equation, enabling a systematic evaluation of
the equation andmotivatingmore complicatedmodels perhapswith
cache or network components as well. Without the usage of our
suite, it is more difficult to systematically test and compare different
system management techniques under controlled anomalies.

5.3 Developing Applications that are Resilient

to Performance Variability

One way of developing applications resilient to performance varia-
tions is to be aware of how much a given application is affected by
anomalies in different subsystems. As an example, we show the use
of HPAS in demonstrating the effect of a load balancing algorithm
by using the Charm++ runtime system.

We use a simple 3D stencil application given in the Charm++
examples and execute it on one node while changing the intensity
of the cpuoccupy anomaly from zero to 100% of 32 CPUs. Figure 13
shows the performance of two load balancers: LBObjOnly that
only uses object properties and GreedyRefineLB load balancer
that measures CPU capacity before scheduling tasks. The two load
balancers perform similarly when there are no anomalies (utiliza-
tion = 0), and when more than 16 CPUs are used by the anomaly.
However, in most cases where the anomaly uses fewer than 16
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Figure 13: Performance of 3D stencil with different load bal-

ancers with increasing cpuoccupy intensity on Voltrino.

CPUs, GreedyRefineLB, which measures CPU capacity, outper-
forms the other one. Notably, a degradation in performance where
the anomaly uses 4 CPUs may indicate room for improvement in
the load balancing strategy, as anomaly intensities at 5 or 6 CPUs
can be mitigated successfully.

This example use case illustrates how our anomaly suite can be
used to inform the choice of the load balancer, the development of
new load balancers, or the decision to use a load balancer or not.

6 RELATEDWORK

Performance variations on HPC systems have been studied bymany
researchers. Skinner et al. report more than 100% slowdown com-
pared to the average in production supercomputers [45]. They
examine several different systems and report that cache contention,
network contention, file system contention, kernel process sched-
uling, and system activity are the main causes of performance
variations. Bhatele et al. show that on a Cray XE system, the exe-
cution time of communication-intensive applications ranges from
28% faster to 41% slower than the average performance [4]. They
investigate various causes for this performance variability such as
operating system activity and job allocation strategy, and concur
that interference on network links is the principal cause.

Several recent approaches detect and analyze the cause of perfor-
mance variations. Varbench is a tool for measuring the performance
variation experienced by applications [27]. Our previous work in-
troduced a framework that relies on tree-based machine learning
algorithms to diagnose the causes of performance variations given
that there are available training data [49, 50]. Similarly, Klinkenberg
et al. use descriptive statistics and machine learning to predict node
failures, relying on monitoring data [26]. Kasick et al. diagnose
performance variations in parallel file systems by comparing the
probability distribution functions of various performance coun-
ters [23]. To evaluate their tools, researchers generate their own
synthetic anomalies [16, 23, 31, 49, 50]. However, since synthetic
anomaly generation is not the focus of these studies, the methods
for performance variability generation are not explained in suffi-
cient detail to replicate the results and they have not released their
codes for generating these synthetic anomalies.

There are various existing tools for creating performance vari-
ability on computer systems. Delimitrou et al. build a workload suite
for data centers called iBench that induces interference in various
shared resources, mostly architectural CPU components [10]. Their
tool helps quantify the contention created by applications as well as
the contention that can be tolerated by the applications. However,
the released version is substantially limited compared to the tool
described in the publication. Specifically for networked systems,
Sato et al. build a tool called NINJA that mimics network noise by
injecting sleep before MPI calls and, thus, creates a message race
for MPI applications [42]. They demonstrate their tool can manifest
subtle message races in MPI applications more frequently; how-
ever, their approach is not applicable for most forms of anomaly
diagnosis since no actual network contention occurs. Netti et al.
introduce a framework called FINJ that enables injecting anomalies
into HPC systems [39], but their focus is on the mechanism for
injecting anomalies, not the anomalies themselves; thus, they do
not analyze the behavior and effect of the anomalies. Gremlins is
a suite for emulating future HPC systems, e.g., power constrained
systems, on current hardware [43]; their methodology is not explic-
itly targeting performance variability, thus they miss significant
components such as network and I/O contention.

Another topic related to performance anomalies is fault injec-
tion [20]. Some approaches propose creating faults by flipping bits
in registers or memory [25, 41, 46]. For networked systems, one
way to create failures is to disable some nodes, links, or blades.
Formicola et al. inject faults in this way and demonstrate the anal-
ysis of failure events using log data, Cray network performance
counters, and benchmark application performance [14]. Another
way to inject faults into networks is by creating timing delays, mes-
sage omission, or message corruption. Some works propose tools
for injecting these kinds of faults into MPI applications [5, 13]. As
we have clarified in Section 2, faults affect the correct execution of a
program and they are not the focus of this work. Meanwhile, our fo-
cus is on performance variation that does not affect the correctness
of a program but affects its execution time.

7 CONCLUSION

We have presented HPAS, a suite of anomaly replication tools that
realistically replicate performance variability in specific subsystems
such as the CPU, cache, memory, network, or storage. We demon-
strated compelling use cases for HPAS, including performance vari-
ation diagnosis and evaluation of system management policies and
applications. In many of the use cases, HPAS has shown that there
is room for improvement in the state-of-the-art. We believe that
the adoption of this suite will have a positive impact on research
and development efforts on resolving performance variability in
HPC systems.
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