
Proctor: A Semi-Supervised Performance
Anomaly Diagnosis Framework for

Production HPC Systems

Burak Aksar1[0000−0003−3627−7311], Yijia Zhang1, Emre Ates1, Benjamin
Schwaller2, Omar Aaziz2, Vitus J. Leung2, Jim Brandt2, Manuel Egele1, and

Ayse K. Coskun1

1 Boston University, Boston MA 02215, USA
{baksar,zhangyj,ates,megele,acoskun}@bu.edu

2 Sandia National Laboratories, Albuquerque NM 87123, USA
{bschwal,oaaziz,vjleung,brandt}@sandia.gov

Abstract. Performance variation diagnosis in High-Performance Com-
puting (HPC) systems is a challenging problem due to the size and com-
plexity of the systems. Application performance variation leads to pre-
mature termination of jobs, decreased energy efficiency, or wasted com-
puting resources. Manual root-cause analysis of performance variation
based on system telemetry has become an increasingly time-intensive
process as it relies on human experts and the size of telemetry data has
grown. Recent methods use supervised machine learning models to au-
tomatically diagnose previously encountered performance anomalies in
compute nodes. However, supervised machine learning models require
large labeled data sets for training. This labeled data requirement is
restrictive for many real-world application domains, including HPC sys-
tems, because collecting labeled data is challenging and time-consuming,
especially considering anomalies that sparsely occur.

This paper proposes a novel semi-supervised framework that diagnoses
previously encountered performance anomalies in HPC systems using a
limited number of labeled data points, which is more suitable for produc-
tion system deployment. Our framework first learns performance anoma-
lies’ characteristics by using historical telemetry data in an unsupervised
fashion. In the following process, we leverage supervised classifiers to
identify anomaly types. While most semi-supervised approaches do not
typically use anomalous samples, our framework takes advantage of a
few labeled anomalous samples to classify anomaly types. We evaluate
our framework on a production HPC system and on a testbed HPC clus-
ter. We show that our proposed framework achieves 60% F1-score on
average, outperforming state-of-the-art supervised methods by 11%, and
maintains an average 0.06% anomaly miss rate.

Keywords: anomaly diagnosis · semi-supervised learning · high perfor-
mance computing.

2 Aksar et al.

1 Introduction

Modern High-Performance Computing (HPC) systems are massive systems that
perform many complex operations concurrently and they are critical for many
science and engineering applications. Considering these systems’ user demands
and complexity, applications even with the same input deck are subject to
substantial performance variations, such as running time changes of 100% or
higher [30, 12]. Hidden hardware problems, shared resource contention [12, 18],
fluctuating CPU frequency [39], orphan processes [16], and memory-related prob-
lems (e.g., memory leak) [2] are some common anomalies that cause performance
variations. Some of the anomalies even force executing programs to terminate
prematurely [16]. These performance variations may trigger sub-optimal schedul-
ing and waste computing power, resulting in degraded overall computing effi-
ciency and user dissatisfaction.

System administrators typically assess system health and identify the root
causes of performance variations by gathering and inspecting telemetry data.
Considering billions of telemetry data points are generated daily [1], manual
analysis of system logs or resource usage data is not feasible due to being highly
error-prone and time-consuming. Automated analytics, especially in the diag-
nosis of anomalies, are promising because they can reduce the mitigation time
of problems, leading to the prevention of wasted computing power. Although
various statistical and machine learning-based techniques have been proposed to
detect anomalies in HPC systems (e.g., [27, 45, 14, 13]), one main drawback is
that they require a human operator to understand the root causes (i.e., diagnose
anomalies) and label anomalous data. Tuncer et al.’s recent method performs au-
tomated anomaly diagnosis using supervised machine learning successfully when
labeled healthy and anomalous data is available [43]. A common disadvantage of
such fully supervised approaches is that they require a large set of labeled data
that corresponds to the normal/anomalous state of a compute node.

Borghesi et al.’s recent method is semi-supervised and focuses on detecting
anomalous runs, but without the ability to diagnose root causes for performance
anomalies since they only use normal data samples in training [15, 14]. Especially
in production HPC systems, a large amount of telemetry data is available, but
data labels are scarce. Thus, frameworks that are able to work with a limited
amount of labeled data while identifying the root cause of performance anomalies
would significantly improve the performance of production HPC systems.

In this paper, we propose Proctor , a semi-supervised performance anomaly
diagnosis framework, which detects and identifies performance anomalies in com-
pute nodes using a significantly smaller amount of labeled data compared to
supervised baselines; hence, Proctor is more suitable for HPC production de-
ployment. Proctor utilizes resource usage characteristics of applications collected
by monitoring frameworks to train machine learning models. We evaluate the
effectiveness of Proctor on a production HPC system and on an HPC testbed
using multiple real applications and benchmark suites with synthetic anomalies.
Our specific contributions are as follows:

Proctor 3

– A novel semi-supervised framework that, once trained, automatically detects
and diagnoses known anomalies that contribute to performance variations.
We argue that our proposed framework is more suitable for deployment into
production HPC systems than previous works as it requires substantially
less labeled data.3

– Demonstration of the efficacy of our framework on a production HPC system
and a testbed HPC cluster. We show that Proctor achieves 60% F1-score
on average and outperforms supervised baselines by 11% in F1-score while
maintaining an average 0.06% anomaly miss rate.

The rest of the paper starts with an overview of the related work. Sec. 3 describes
the technical details of the proposed framework, Sec. 4 explains our experimental
methodology, Sec. 5 presents our results, and we conclude in Sec. 6.

2 Related Work and Background

Detection of anomalies in high-dimensional data is a fundamental research topic
with numerous applications in the real world. Some example application fields in-
clude, but are not limited to, medical anomaly detection [44, 37], HPC telemetry
data analysis [14, 13, 43], and sensor networks anomaly detection [32].

2.1 Anomaly Detection and Autoencoders

Machine learning is widely used in anomaly detection, with a variety of super-
vised, semi-supervised, or unsupervised approaches. Supervised models require
normal and anomalous samples to classify anomaly types. In contrast to super-
vised methods, semi-supervised anomaly detection (SSAD) methods use labeled
normal samples to identify anomalies. A common SSAD technique is to use
autoencoders trained with normal data [33, 40]. An autoencoder is an artificial
neural network (ANN) composed of three main sequential layers: the input layer,
the code layer, and the output (or reconstruction) layer. Autoencoders do not
require class/label information since all layers are operating in an unsupervised
paradigm [25]. An autoencoder with more than one hidden layer is known as a
deep autoencoder and is shown in Figure 1. A deep autoencoder learns to recon-
struct the input data through a pair of encoder and decoder mappings, which
are composed of hidden layers, as follows:

X = D(E(X)), (1)

where X is the input data, E is an encoder mapping from the input data to
the code layer, D is a decoder mapping from the code layer to the output layer,
and X is the reconstructed version of the input data. During the training stage,
the model learns to reconstruct input data by minimizing the reconstruction er-
ror, which is one way of measuring how well an autoencoder learned. During

3 Our implementation is available at: https://github.com/peaclab/Proctor

4 Aksar et al.

R
ec

on
st

ru
ct

ed
In

pu
t

Encoder
Hidden Layer 1

Decoder
Hidden Layer 2

Decoder
Hidden Layer 1

Encoder
Hidden Layer 2

Code
Layer

In
pu

t

Fig. 1. A generic representation of an autoencoder with multiple hidden layers. The
autoencoder learns to reconstruct the input data by learning the weights in the hidden
layers.

the testing stage, an autoencoder classifies a sample as anomalous if the sam-
ple’s reconstruction error is higher than the predetermined threshold. Stacked
autoencoders integrate multiple autoencoders together, where the code layer of
one autoencoder serves as the input of the other autoencoder. Deep architectures
and stacked autoencoders have been shown to produce more abstract representa-
tions, improving the classification accuracy [17, 24, 11]. To perform classification
with autoencoders, researchers use encoded features as inputs to supervised ma-
chine learning models such as support vector machines (SVM), logistic regression
(LR), or neural networks [28, 31].

In this work, we use autoencoders as unsupervised feature extractors, along
with supervised classifiers to diagnose performance variations in HPC systems.

2.2 Machine Learning for HPC Monitoring Analytics

Due to the complexity of HPC systems and the size of the telemetry data (e.g.,
billions of data points per day), HPC centers have been investing in research
on machine-learning-based approaches to automate performance anomaly anal-
ysis [26, 39]. Ates et al. design a random forest (RF) based framework for appli-
cation classification on compute nodes [6]. Klinkenberg et al. define a supervised
learning system that extracts statistical features and uses an RF classifier to
detect important node failures before they occur [27]. Baseman et al. apply a
technique named classifier-adjusted density estimation to HPC sensor data [9].
Using density estimation, they learn to generate synthetic samples. Then, both
real and synthetically generated data is used to train an RF classifier and assign
an “anomalousness” score to each data point to detect performance anomalies.
Borghesi et al. use a simple autoencoder structure trained on only normal data
instances and perform reconstruction-error-based anomaly detection in compute

Proctor 5

Data Collection

App 1

App 1

App 2

App 2

O
ffl

in
e

Tr
ai

ni
ng

R
un

tim
e

A
na

ly
si

s

Monitoring
Computing Nodes

Unsupervised Pretraining

Diagnosis Results

Node ID Diagnosis

345 Normal

346 Normal

347 memlak

599 membw

Statistical
Feature

Extraction

Tr
ai

ni
ng

 D
at

a

C
on

st
ru

ct
ed

 D
at

a

Supervised Training

Tr
ai

ni
ng

 D
at

a

Detection & Diagnosis

Anomaly

Normal

Anomaly 1

Anomaly 2

Anomaly 3

Anomaly 4

Statistical
Feature

Extraction Te
st

 D
at

a Anomaly

Normal

Anomaly 1

Anomaly 2

Anomaly 3

Anomaly 4

App 1

App 4

App 3

App 5

Autoencoder Proctor

Proctor

Fig. 2. The high-level architecture of Proctor . We collect telemetry data from normal
and anomalous application runs and apply statistical feature extraction to convert raw
time series into a suitable format for our autoencoder-based framework. We train an
autoencoder with unlabeled normal and anomalous samples during the unsupervised
pretraining stage to learn high-level characteristics. Then, we train classifiers with a
few labeled samples to diagnose anomalies. At runtime, we feed the trained model with
telemetry data and classify anomalies on compute nodes.

nodes [15]. For anomaly diagnosis, which is classifying different types of perfor-
mance anomalies as opposed to solely detecting anomalies, the most relevant
work is Tuncer et al.’s method, where they apply statistical feature extraction
along with a feature selection process to diagnose different anomaly types such
as memory leak, CPU contention, and others [43].

Existing methods either detect anomalies in a fully supervised way [43] or
they use semi-/unsupervised methods but only detect anomalies [14, 9] without
diagnosing/classifying their root cause. Our work is distinct from related work
because our proposed framework is the first to detect and diagnose performance
anomalies in a semi-supervised way using substantially less labeled data com-
pared to supervised approaches.

3 Our Proposed Framework: PROCTOR

Our main objective is to detect whether a compute node in a system exhibits
anomalous behavior (i.e., causing performance variability), and if it does, we aim
to classify the type of anomaly (e.g., memory leak or contention in a specific sub-
system) in an application-agnostic fashion. We focus on anomalies that cause per-
formance variability, where applications execute without terminating/crashing.

6 Aksar et al.

Such anomalies are often more challenging to detect and diagnose compared to
faults that lead to errors in programs or premature termination.

We propose a semi-supervised anomaly diagnosis framework called Proctor
based on an autoencoder, followed by a classification layer that diagnoses perfor-
mance variations on compute nodes. Figure 2 shows an overview of our frame-
work. We collect telemetry data from compute nodes while running applications
with and without anomalies. Note that our framework is independent of the
underlying monitoring framework. After that, we extract the raw time series’
statistical features and train an autoencoder to learn a representation (encod-
ing) of normal and anomalous samples in an unsupervised manner. In Proctor ,
a sample refers to the entire set of telemetry data collected during an appli-
cation run on a compute node. Based on the autoencoder’s encoder mapping
output and using some labeled normal and anomalous samples, we train super-
vised classifiers that are able to diagnose anomalies. At runtime, Proctor then
applies the trained model on collected telemetry samples to detect and diagnose
performance anomalies. We next explain these steps in detail.

3.1 Feature Extraction

We implement Tuncer et al.’s easy-to-compute statistical features [42] to convert
multivariate time series data into a suitable format for Proctor . Some features
are simple order statistics (e.g., 25th,75th, and 90th percentiles, and standard de-
viation), and some of them are useful for time series clustering such as skewness
and kurtosis. This step reduces the overhead that would be caused by using raw
time series metrics generated from thousands of compute nodes. The statisti-
cal feature extraction methodology is independent of the monitoring framework
and can be used across different HPC monitoring tools such as Lightweight Dis-
tributed Metric Service (LDMS) [1], Ganglia [20] or Examon [10].

3.2 Unsupervised Pretraining

We implement two different autoencoder topologies, deep autoencoders and
stacked autoencoders [31], and compare their efficacy to make a selection. Deep
autoencoders and stacked autoencoders serve as effective pretraining methods
due to their unsupervised nature for classification tasks when many unlabeled
samples are available [3, 21].

In the autoencoder, our training objective is to learn the weights for the
encoder and decoder layers so that the reconstructed input is as close to the
original input as possible. In other words, the goal is to minimize the difference
between X and X by performing the following optimization [46]:

min
D,E

||X −D(E(X))||. (2)

We train the autoencoder via backpropagation, which is a way of updating the
weights and biases of the layers to perform the optimization in Eq. (2).

We use deep autoencoders in the rest of this paper as they provide higher
prediction accuracy in our results compared to stacked autoencoders.

Proctor 7

3.3 Supervised Training

For anomaly diagnosis, we implement two different supervised training methods
that differentiate anomaly types and choose the best performing one in the
evaluation. The first one is fine-tuning. We freeze the pre-trained autoencoder’s
weights and add another fully-connected neural network layer after the encoder
part. After that, we retrain the new network to classify the anomaly types as
shown in the supervised training part of Fig. 2.

The second method uses the encoded features directly as input to tradi-
tional supervised machine-learning models such as LR, RF, and SVM. In our
experiments, the second method provides higher accuracy so we only train the
supervised models with the encoded data in the rest of the paper.

3.4 Detection and Diagnosis at Runtime

At runtime, Proctor collects telemetry data from compute nodes using a mon-
itoring framework and applies statistical feature extraction. Then, we use the
model trained on these features for diagnosis. As described earlier, Proctor has
a two-level classification process. In the first level, Proctor decides whether a
sample is normal or anomalous. If it is anomalous, we feed the sample to the
diagnosis layer to identify the anomaly type.

4 Experimental Methodology

We run controlled experiments on two different HPC systems by running syn-
thetic anomalies with a set of HPC applications. We also describe the implemen-
tation details of two baseline methods for anomaly detection and diagnosis, and
compare Proctor against these baselines. This section describes the monitoring
framework that collects system telemetry data, data sets for anomaly diagnosis,
HPC applications, and performance anomalies we use to evaluate our proposed
Proctor framework.

4.1 HPC Systems and Applications

We conduct experiments on a testbed system, Volta, and on a production HPC
system, Eclipse. We run both benchmarks and real applications to evaluate the
performance of Proctor against baselines.

Volta is a Cray XC30m testbed supercomputer located at Sandia National Lab-
oratories. Volta consists of 52 compute nodes, organized in 13 fully connected
switches with four nodes per switch. Each node has 64GB of memory and two
sockets, each with an Intel Xeon E5-2695 v2 CPU with 12 2-way hyper-threaded
cores. To cover a representative set of HPC applications in Volta, we use NAS
Parallel Benchmarks (NPB) [8] and Mantevo Benchmark Suite [23]. The Man-
tevo Suite was developed by Sandia National Laboratories for performance and
scaling experiments. In addition, we use the Kripke application, which is a proxy

8 Aksar et al.

application that simulates particle transportation [29]. We list all applications
used in our experiments in Table 1. We run each application across 4 or 32
compute nodes for 10-15 minutes using different application input decks.

Eclipse is a production HPC system located at Sandia National Laboratories.
Eclipse consists of 1488 compute nodes, and it is capable of 1.8 petaflops. Each
node has 128GB memory and two sockets, each with 18 E5-2695 v4 CPU cores.
In the experiments on Eclipse, we use six applications, LAMMPS, HACC, sw4,
ExaMiniMD, SWFFT, and sw4lite. Among them, there are three real appli-
cations: LAMMPS, a molecular dynamics simulation with a focus on materials
modeling [36]; HACC, an extreme-scale cosmological simulation [22]; sw4, a pop-
ular 3D seismic model [35]. The other three, ExaMiniMD, SWFFT, and sw4lite,
are proxy applications from the ECP Proxy Apps Suite [19]. We list all appli-
cations used in our experiments in Table 2. We run each application on 4 nodes
for 20-45 minutes.

Table 1. Applications we run on Volta for data collection.

Benchmark Application Description

NAS bt Block tri-diagonal solver
cg Conjugate gradient
ft 3D Fast Fourier Transform
lu Gauss-Seidel solver
mg Multi-grid on meshes
sp Scalar penta-diagonal solver

Mantevo miniMD Molecular dynamics
CoMD Molecular dynamics
miniGhost Partial differential equations
miniAMR Stencil calculation

Other Kripke Particle transport

4.2 Monitoring Framework

We use LDMS to collect telemetry data from different subsystems. LDMS is
a low overhead monitoring framework for HPC systems with a high sampling
rate. LDMS collects data simultaneously for each subsystem component (e.g.,
memory-related metrics, network counters, etc.) across the whole system [38].
At every second, LDMS collects hundreds of metrics per node in the categories
as described below:

– Memory (e.g., currently free, active, inactive memory)
– CPU (e.g., per-core and overall idle time, I/O wait time)
– Network (e.g., received/transmitted packets, average packet size, link status)
– Shared File System (e.g., open, read, write counts)
– Cray performance counters (e.g., power consumption, write-back counters)
– Virtual Memory (e.g., free, active and inactive pages)

Proctor 9

LDMS is deployed on both systems and it constantly monitors the health of the
systems [1, 38]. We collect 806 metrics and 721 metrics from Eclipse and Volta,
respectively. We fill out any missing metric values using linear interpolation and
calculate the difference of cumulative counter values since we are interested in
the change. We also exclude the first and last 60 seconds of the collected time
series for each application to avoid any fluctuations during the initialization and
termination phases.

Table 2. Applications we run on Eclipse for data collection.

Benchmark Application Description

Real Applications LAMMPS Molecular dynamics
HACC Cosmological simulation
sw4 Seismic modeling

ECP Proxy Suite ExaMiniMD Molecular dynamics
SWFFT 3D Fast Fourier Transform
sw4lite Numerical kernel optimizations

4.3 Synthetic Anomalies

To learn individual anomaly signatures and detect them at runtime, Proctor
needs a few labeled samples that exhibit anomalous characteristics. To system-
atically train and test our framework, we use synthetic anomalies from the HPC
Performance Anomaly Suite (HPAS) [7] to mimic anomalous behavior during
an application run. HPAS is an open-source performance anomaly suite to re-
produce performance variations. Synthetic anomalies in HPAS, target five ma-
jor subsystems: CPU, cache, memory, network, and shared storage. We inject
anomalies with multiple configurations to mimic different performance variation
levels, as listed in Table 3. While running a multi-node application, we run a
synthetic anomaly on a single node in Volta, and we run a synthetic anomaly
on every node that the application uses in Eclipse. Each compute node data is
labeled with an anomaly type if an anomaly is injected, otherwise labeled as
normal.

Table 3. A list of the HPAS anomalies used in our experiments.

Anomaly type Anomaly behavior Configuration

CPU intensive process Arithmetic operations -u 100%, 80%
Cache contention Cache read & write -c L1, L2 / -m 1, 2
Memory bandwidth contention Uncached memory write -s 4K, 8K, 32K

Memory leakage
Increasingly allocate

& fill memory
-s 1,3,10 M / -p 0.2,0.4,1

4.4 Baselines

We implement two baseline methods to compare against Proctor . The first one is
the framework proposed by Tuncer et al. [43] (referred to as RF-Tuncer), which

10 Aksar et al.

uses statistical feature extraction and a fully supervised RF classifier. The second
one is the autoencoder-based anomaly detection approach proposed by Borghesi
et al. [14] (referred to as AE-Borghesi).

RF-Tuncer [43] uses statistical feature extraction and feature selection strate-
gies and combines them with an RF classifier to diagnose anomaly types [43].
They use LDMS to collect different metrics (e.g., memory metrics, CPU metrics)
while applications run with and without anomalies at every second. They label
each node with the injected anomaly type during the application run. Appli-
cation runs without injected anomalies are labeled “normal”. During an offline
training phase, they train supervised models and test the saved models at run-
time after statistical feature extraction and feature selection are applied.

AE-Borghesi [15] trains an autoencoder with only normal samples and de-
tects anomalies according to a statistically determined threshold. It is important
to note that their method is limited to anomaly detection instead of classifying
anomaly types. Proctor can also detect anomalies by slightly modifying the net-
work in the supervised training stage. Borghesi et al. use the Examon [4] data
collection infrastructure to monitor the D.A.V.I.D.E [10] HPC system which
has 45 compute nodes. Examon collects up to 170 metrics with 5s and 10s
granularity for Intelligent Platform Management Interface (IPMI) and Open-
POWER POWER8 on-chip controller (OCC) metrics, respectively. They use
coarse-grained aggregated telemetry data with a 5-minute aggregation time win-
dow. To mimic their data collection schema, we apply the same aggregation tech-
nique. The authors inject three anomalous policies that change CPU frequency,
clock speed, and power consumption to mimic anomalous behavior (e.g., power-
save sets the CPU frequency to the lowest available). They train an autoencoder
with only normal data (i.e., intervals without anomaly injection) and select a
threshold to detect anomalies. To select this threshold, they vary the percentiles
of the reconstruction error observed in the training data and select the value
that gives the best F1-score in the validation data. At runtime, if a sample has
a higher reconstruction error than the threshold, it is labeled as anomalous.

4.5 Implementation Details

Proctor: We implement our framework in Tensorflow. We create a hyperpa-
rameter space using the following values and search the space to find the best
values for the autoencoder:

1. Batch size: 32, 64, 128, and 256
2. Number of neurons in hidden a layer: 200, 500, 1000, 2000
3. Number of hidden layers: 1, 2, 3, 5
4. Number of epochs: 50, 100, 300, 500, 1000, 5000
5. Optimizer: Adam, Adadelta, SGD
6. Dropout: 0, 0.1, 0.2, 0.3

Proctor 11

After finding the best parameters for the autoencoder, we stack them to exper-
iment with stacked autoencoders. For the supervised training stage, we exper-
iment with a neural network, an SVM, and an LR. All classifiers are trained
using the one-versus-rest strategy, which creates an individual classifier for each
class. For the neural networks, we use Adam optimizer and minimize Categorical
Cross-Entropy loss.

The final structure of Proctor includes a deep autoencoder with 2000 neu-
rons in the code layer and uses SVM and LR for the supervised training part.
Stacked autoencoders perform similarly to deep autoencoders, but we choose
deep autoencoders because of their lower false alarm rate. We use the Adadelta
optimizer, which enforces a monotonically decreasing learning rate and mini-
mizes Mean Squared Error during the training with a 20% validation split. We
also set EarlyStopping callback, which stops when the chosen performance mea-
sure stops improving.

AE-Borghesi: We adopted the following network topology according to the
descriptions of Borghesi et al. [15]:

1. An input layer,
2. A dense code layer with a number of neurons ten times larger than input

neurons with Rectified Linear Units [34] activation and an L1 norm [5]
regularizer,

3. An output layer with a number of neurons equal to input features with
Linear activations.

We train the AE-Borghesi model with the Adam optimizer, which finds individ-
ual learning rates for each parameter by minimizing the Mean Absolute Error
for 100 epochs with a batch size of 32. We conduct a hyparameter search for the
number of neurons in the code layer so as not to put AE-Borghesi at a disadvan-
tage. We also implement their approach with Dropout [41] layers as the authors
suggested [14]. However, our implementation with dropout layers gives slightly
worse results than the original topology, so we only present the best results.

RF-Tuncer: We implement feature extraction and feature selection using scipy-
stats module. We choose the best performing classifier, RF, and set the number
of decision trees to 100 after hyperparameter search. For RF, we use scikit-learn
implementation.

5 Evaluation

In this section, we first explain the metrics and data sets we use in our eval-
uation. Then, we compare the anomaly detection and diagnosis results of our
framework against the baselines. We also evaluate the performance in cases when
a previously unseen anomaly type exists in the test data.

12 Aksar et al.

5.1 Performance Metrics

We report our evaluation results with 5-fold stratified cross-validation for each
experimental scenario and observe the F1-score, anomaly miss rate (i.e., false
negative rate), and false alarm rate (i.e., false positive rate) for different per-
centages of labeled data. F1-score is the harmonic mean of precision and recall
and it is widely used in multiclass classification problems. We calculate the macro
average F1-score, which does not take label imbalance into account, hence treat-
ing all classes equally. Note that this is important in imbalanced data sets where
the number of normal data points is in the overwhelming majority compared
to anomalous data points. To assess anomaly detection performance (i.e., dis-
tinguishing between normal versus anomalous) of the models, we use the false
alarm rate which indicates the percentage of normal runs identified as one of
the anomaly types, and the anomaly miss rate, which indicates the percentage
of anomalous runs (any anomaly) identified as normal. To improve confidence
in our results, we run each classifier ten times and average the results.

False Alarm Rate =
False Positives

False Positives + True Negatives
(3)

Anomaly Miss Rate =
False Negatives

False Negatives + True Positives
(4)

5.2 Data Set Preparation

We devise three experimental scenarios to evaluate the performance of Proctor ,
AE-Borghesi, and RF-Tuncer. While preparing data sets for the proposed exper-
imental scenarios, we use 5-fold stratified cross-validation, and we ensure that
any training or testing data set contains every application and anomaly type.
The Eclipse data set has 1526 normal samples and 2304 anomalous samples,
where each anomaly type is equally represented among the anomalous samples.
We use 611 normal samples and 68-70 anomalous samples in training, represent-
ing an anomaly ratio of 10% (i.e., anomaly ratio is the number of anomalous runs
divided by all runs). This anomaly ratio mimics a production system scenario
where anomalous runs are rare compared to normal runs. The Volta data set
has 18980 normal samples and 1932 anomalous samples. We use 5694 normal
samples and 618-620 anomalous samples in training, representing an anomaly
ratio of 10%. In both data sets, samples that are not used during training are
placed in the testing data set. We fit a MinMax scaler to the training data set,
where each feature value is scaled between 0 and 1, and then use the same scaler
in the testing data set.

For the supervised training part (only for Proctor and RF-Tuncer), we mimic
a case where labeled data are accumulating over time, i.e., we start from having
only a few labeled data (e.g., 1-2 labeled example per class) and increase the
number of labeled data gradually. Chosen labeled data percentages are the fol-
lowing: 2%, 3%, 4%, 5%, 6%, 8%, 10% for Eclipse, and 0.1%, 0.15%, 0.2%, 0.25%,
0.30%, 0.35% for Volta data sets. Chosen labeled data percentages are different

Proctor 13

due to the size of the data sets. In the Eclipse data set, when the labeled data
percentage is 10%, it corresponds to approximately 65 labeled samples in total;
in the Volta data set, when the labeled data percentage is 0.35%, it corresponds
to approximately 25 labeled samples in total.

5.3 Anomaly Detection Results

The main goal in anomaly detection is to compare Proctors performance with
AE-Borghesi and RF-Tuncer for anomaly detection across different labeled data
percentages. For the anomaly detection task, all anomalies are labeled with the
same label (i.e., without diagnosing the type of anomaly) regardless of their
types. In the unsupervised pretraining part, Proctor uses the whole training
data set without any supervision (i.e., data are unlabeled). In the supervised
training part, we train RF-Tuncer and Proctor with the selected labeled data
and evaluate their performance in the same testing data set. Then, we repeat
the same procedure for each predetermined labeled percentage value.

We train AE-Borghesi by using normal data in the training data set. It is
important to note that AE-Borghesi does not have a supervised training part
like Proctor and RF-Tuncer. We choose the 63th percentile of the mean absolute
reconstruction error as a threshold since it achieves the best F1-score in the
validation data in our experiments. This threshold is used to classify whether a
run is anomalous or not.

As shown in Fig. 3, Proctor outperforms the baselines in F1-score and anomaly
miss rate for most cases even with very few labeled data points. Both Proctor
and RF-Tuncer perform similarly in terms of the false alarm rate. Proctor out-
performs RF-Tuncer by 50% on average in the anomaly miss rate.

Due to the simple thresholding used in AE-Borghesi, as well as the existence
of multiple anomaly types in our data sets, AE-Borghesi performs poorly com-
pared to others. In addition, AE-Borghesi needs to be trained with only normal
data points, so a system administrator or subject matter expert needs to en-
sure that system health status is normal to train AE-Borghesi. On the other
hand, Proctor can be directly deployed and continuously trained with available
telemetry data regardless of the system’s health status. After training Proctor
with unlabeled telemetry data, when a subject matter expert labels some anoma-
lous events, these labeled data can be used in the supervised training part of
Proctor .

5.4 Anomaly Diagnosis Results

The main goal in anomaly diagnosis analysis is to compare Proctor ’s classifica-
tion F1-score with RF-Tuncer for anomaly diagnosis across different percentages
of available labeled data. In the unsupervised pretraining part, Proctor uses the
whole training data without any supervision. In the supervised training part, we
train RF-Tuncer and Proctor using a percentage of the labeled data and evaluate
their performance in a constant testing data set. We repeat the process for each
labeled data percentage value.

14 Aksar et al.

4 6 8 10
Labeled Data Percentage (%)

0.5
0.6
0.7
0.8
0.9
1.0

F1-Scores

4 6 8 10
Labeled Data Percentage (%)

0.0

0.1

0.2

0.3

False Alarm Rate

4 6 8 10
Labeled Data Percentage (%)

0.02

0.04

0.06

0.08
Anomaly Miss Rate

Proctor RF-Tuncer AE-Borghesi

Fig. 3. Comparison of the anomaly detection performance of Proctor with AE-Borghesi
and RF-Tuncer using the Eclipse data set. Proctor performs better than the baselines
in F1-score and anomaly miss rate, while maintaining a similar false alarm rate with
RF-Tuncer.

4 6 8 10
Labeled Data Percentage (%)

0.50

0.55

0.60

0.65

F1-Score

4 6 8 10
Labeled Data Percentage (%)

0.0

0.1

0.2

0.3

False Alarm Rate

4 6 8 10
Labeled Data Percentage (%)

0.01

0.02

0.03

0.04

Anomaly Miss Rate
Proctor RF-Tuncer

Fig. 4. Comparison of the anomaly diagnosis performance of Proctor with RF-Tuncer
using the Eclipse data set. Proctor performs better in F1-score and false alarm rate
while maintaining a stable anomaly miss rate.

Figure 4 shows the macro average F1-scores for our method and RF-Tuncer
for the Eclipse data set. Proctor outperforms RF-Tuncer by 4.5% on average
(and up to 11%) while maintaining a low false alarm rate and anomaly miss
rate. RF-Tuncer performs slightly better in terms of anomaly miss rate when
the labeled data percentage is less than 5%. However, the anomaly miss rate of
RF-Tuncer increases when the labeled data percentage increases, whereas the
anomaly miss rate of Proctor is stable and keeps below 2.5%.

Figure 5 shows the macro average F1-scores for Proctor and RF-Tuncer for
the Volta data set. In terms of the F1-score, Proctor outperforms RF-Tuncer by
25% on average (and up to 50%) and maintains similar alarm and miss rates
to RF-Tuncer. Proctor outperforms RF-Tuncer for most of the cases in terms
of all categories until we have approximately 20 labeled data samples in total.
After this point, the fully supervised RF-Tuncer method has sufficient labeled
anomalous data for training to achieve accurate predictions. RF-Tuncer achieves
a similar F1-score to Proctor faster in the Volta data set compared to the Eclipse
data set. The main reason behind this is less complex application characteristics
in the Volta data set.

Proctor 15

0.10 0.15 0.20 0.25 0.30 0.35
Labeled Data Percentage (%)

0.1

0.2

0.3

0.4

F1-Score

0.10 0.15 0.20 0.25 0.30 0.35
Labeled Data Percentage (%)

0.5

0.6

0.7

0.8

0.9

False Alarm Rate

0.10 0.15 0.20 0.25 0.30 0.35
Labeled Data Percentage (%)

0.05

0.10

0.15

0.20

Anomaly Miss Rate
Proctor RF-Tuncer

Fig. 5. Comparison of the anomaly diagnosis performance of Proctor with RF-Tuncer
using the Volta data set. Proctor outperforms RF-Tuncer for most of the cases across
all categories.

0 0.2 0.4 0.6 0.8 1
Confidence Threshold

0.0

0.1

0.2

0.3

0.4

0.5
F1-Scores

Proctor
RF-Tuncer

Fig. 6. Choosing a threshold that gives the highest F1-score by sweeping confidence
thresholds.

5.5 Impact of Previously Unseen Anomalies

Our primary goal in this scenario is to evaluate the performance of Proctor and
RF-Tuncer when there are unknown (i.e., previously unseen) anomalies in the
testing data set. Since a variety of performance anomalies exists in the production
environment, it is common to observe anomalies other than those used during
training. We follow the same unsupervised pretraining and supervised training
approaches described above, except for one difference: we remove a selected
unknown anomaly type from the training set during the supervised training
stage and keep the other anomalies. After training, we first test the model on
the same training data, this time including the removed anomaly, to determine
a confidence threshold. We vary the threshold and choose a threshold value that
provides the highest F1-score, and then, evaluate the trained model on a testing
data set that consists of all anomalies. We label the sample as unknown if the
model’s highest confidence score for normal and anomalous classes is lower than
the selected threshold. RF-Tuncer uses a multiclass RF, and it requires all classes
to exist in the training data set; thus, not to put RF-Tuncer at a disadvantage,
we apply a one-versus-rest strategy to their RF classifier as well.

We experiment on Eclipse data with all labeled data percentages in Sec. 5.2
and report F1-scores, anomaly miss rates, and false alarm rates for selected la-

16 Aksar et al.

2.0 4.0 6.0 8.0 10.0 Average

Labeled Data Percentages (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
F1-Score

2.0 4.0 6.0 8.0 10.0 Average

Labeled Data Percentages (%)

0.00

0.05

0.10

0.15

0.20

0.25

False Alarm Rate

2.0 4.0 6.0 8.0 10.0 Average

Labeled Data Percentages (%)

0.00

0.01

0.02

0.03

0.04

Anomaly Miss Rate

Proctor RF-Tuncer

Fig. 7. When there are unknown anomaly types in the testing data set, Proctor per-
forms better than RF-Tuncer in terms of F1-score and false alarm rate.

beled data percentages. Figure 6 shows the F1-score across different confidence
thresholds. We choose 0.45 as a threshold and compare both methods’ anomaly
diagnosis performance in Fig.7. Here, Proctor outperforms the baseline by 10%
on average in terms of the F1-score while maintaining a 66% lower false alarm
rate on average. RF-Tuncer’s anomaly miss rate is better than Proctor’s, how-
ever, both rates are very close to zero.

6 Conclusion

Performance variation in HPC systems degrades user satisfaction, reduces the
efficiency of resource utilization, and wastes computing power. Considering the
growing size and complexity of HPC systems, automated performance anomaly
diagnosis has become increasingly crucial for robust and efficient service. How-
ever, existing automated methods rely on large labeled data sets for training.
This paper proposed Proctor , a semi-supervised performance anomaly detection
and diagnosis framework for limited labeled data scenarios in production sys-
tems. We evaluated our framework using data collected from two different HPC
systems, including a production HPC system. We demonstrated that our ap-
proach is superior to state-of-the-art approaches in terms of F1-score, anomaly
miss rate, and false alarm rate when only a limited set of labeled data is avail-
able. We also showed that Proctor is robust in presence of previously unseen
anomalies and it successfully labeled them as “unknown” in our experiments.

As a next step, we will focus on deploying our framework into a production
HPC machine and integrating a user/system administrator feedback system that
allows us to label suspicious application runs for continuous model improvement.
Furthermore, we will focus on generative machine learning models to syntheti-
cally generate anomalous application runs to achieve a higher diagnosis perfor-
mance with our proposed framework.

Proctor 17

Acknowledgment

This work has been partially funded by Sandia National Laboratories. Sandia National

Laboratories is a multimission laboratory managed and operated by National Technol-

ogy and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell

International, Inc., for the U.S. Department of Energy’s National Nuclear Security Ad-

ministration under Contract DE-NA0003525. This paper describes objective technical

results and analysis. Any subjective views or opinions that might be expressed in the

paper do not necessarily represent the views of the U.S. Department of Energy or the

United States Government.

References

1. Agelastos, A., Allan, B., Brandt, J., et al.: The lightweight distributed metric ser-
vice: A scalable infrastructure for continuous monitoring of large scale computing
systems and applications. In: SC ’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. pp. 154–165
(2014)

2. Agelastos, A., Allan, B., Brandt, J., et al.: Toward rapid understanding of produc-
tion HPC applications and systems. In: IEEE International Conference on Cluster
Computing. pp. 464–473 (2015)

3. Agrawal, P., Girshick, R., Malik, J.: Analyzing the performance of multilayer neural
networks for object recognition. In: European conference on computer vision. pp.
329–344. Springer (2014)

4. Ahmad, W.A., Bartolini, A., Beneventi, F., et al.: Design of an energy aware
petaflops class high performance cluster based on power architecture. In:
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). pp. 964–973 (2017)

5. Alain, G., Bengio, Y.: What regularized auto-encoders learn from the data-
generating distribution. The Journal of Machine Learning Research 15(1), 3563–
3593 (2014)

6. Ates, E., Tuncer, O., Turk, A., Leung, V.J., Brandt, J., Egele, M., Coskun, A.K.:
Taxonomist: Application detection through rich monitoring data. In: European
Conference on Parallel Processing. pp. 92–105. Springer (2018)

7. Ates, E., Zhang, Y., Aksar, B., et al.: HPAS: An HPC performance anomaly suite
for reproducing performance variations. In: ACM Proceedings of the 48th Intl.
Conference on Parallel Processing. p. 110 (Aug 2019)

8. Bailey, D.H., Barszcz, E., Barton, J.T., et al.: The NAS parallel benchmarks sum-
mary and preliminary results. In: Supercomputing’91: Proceedings of the 1991
ACM/IEEE conference on Supercomputing. pp. 158–165 (1991)

9. Baseman, E., Blanchard, S., DeBardeleben, N., Bonnie, A., Morrow, A.: Inter-
pretable anomaly detection for monitoring of high performance computing sys-
tems. In: Outlier Definition, Detection, and Description on Demand Workshop at
ACM SIGKDD. San Francisco (Aug 2016) (2016)

10. Beneventi, F., Bartolini, A., Cavazzoni, C., Benini, L.: Continuous learning of HPC
infrastructure models using big data analytics and in-memory processing tools. In:
Design, Automation Test in Europe Conference Exhibition (DATE). pp. 1038–1043
(2017)

11. Bengio, Y.: Learning deep architectures for AI. Now Publishers Inc (2009)

18 Aksar et al.

12. Bhatele, A., Mohror, K., Langer, S.H., Isaacs, K.E.: There goes the neighborhood:
performance degradation due to nearby jobs. In: SC’13: IEEE Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis. pp. 1–12 (2013)

13. Bodik, P., Goldszmidt, M., Fox, A., Woodard, D.B., Andersen, H.: Fingerprinting
the datacenter: automated classification of performance crises. In: Proceedings of
the 5th European conference on Computer systems. pp. 111–124 (2010)

14. Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: A semisupervised
autoencoder-based approach for anomaly detection in high performance computing
systems. Engineering Applications of Artificial Intelligence 85, 634644 (Oct 2019)

15. Borghesi, A., Bartolini, A., Lombardi, M., et al.: Anomaly detection using autoen-
coders in high performance computing systems. Proceedings of the AAAI Confer-
ence on Artificial Intelligence 33, 94289433 (Jul 2019), arXiv: 1811.05269

16. Brandt, J., Chen, F., et al.: Quantifying effectiveness of failure prediction and
response in HPC systems: Methodology and example. In: IEEE Intl. Conf. on
Dependable Systems and Networks Workshops (DSN-W). pp. 2–7 (2010)

17. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. In: IEEE conference on computer vision and pattern recogni-
tion. pp. 3642–3649 (2012)

18. Dorier, M., Antoniu, G., Ross, R., et al.: Calciom: Mitigating i/o interference in
HPC systems through cross-application coordination. In: IEEE 28th International
Parallel and Distributed Processing Symposium. pp. 155–164 (2014)

19. Exascale proxy applications, https://proxyapps.exascaleproject.org/
20. Ganglia monitoring system, http://ganglia.info/
21. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for ac-

curate object detection and semantic segmentation. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 580–587 (2014)

22. Habib, S., Morozov, V., Frontiere, N., Finkel, H., Pope, A., Heitmann, K.: Hacc:
Extreme scaling and performance across diverse architectures. In: SC’13: Proceed-
ings of the International Conference on High Performance Computing, Networking,
Storage and Analysis. pp. 1–10. IEEE (2013)

23. Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C.,
Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improv-
ing performance via mini-applications. Sandia National Laboratories, Tech. Rep.
SAND2009-5574 3 (2009)

24. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural computation 18(7), 1527–1554 (2006)

25. Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length and
helmholtz free energy. In: Proceedings of the 6th Intl. Conference on Neural Infor-
mation Processing Systems. p. 310. NIPS’93, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (1993)

26. Ibidunmoye, O., Hernández-Rodriguez, F., Elmroth, E.: Performance anomaly de-
tection and bottleneck identification. ACM Computing Surveys (CSUR) 48(1),
1–35 (2015)

27. Klinkenberg, J., Terboven, C., Lankes, S., Müller, M.S.: Data mining-based analysis
of HPC center operations. In: IEEE International Conference on Cluster Comput-
ing. pp. 766–773 (2017)

28. Kunang, Y.N., Nurmaini, S., Stiawan, D., Zarkasi, A., Jasmir, F.: Automatic fea-
tures extraction using autoencoder in intrusion detection system. In: IEEE Inter-
national Conference on Electrical Engineering and Computer Science (ICECOS).
pp. 219–224 (2018)

Proctor 19

29. Kunen, A.J., Bailey, T.S., Brown, P.N.: Kripke-a massively parallel transport mini-
app. Tech. rep., Lawrence Livermore National Lab.(LLNL), Livermore, CA (United
States) (2015)

30. Leung, V.J., Bender, M.A., Bunde, D.P., Phillips, C.A.: Algorithmic support for
commodity-based parallel computing systems. Tech. rep., Sandia National Labo-
ratories (2003)

31. Liu, G., Bao, H., Han, B.: A stacked autoencoder-based deep neural network for
achieving gearbox fault diagnosis. Mathematical Problems in Engineering (2018)

32. Luo, T., Nagarajan, S.G.: Distributed anomaly detection using autoencoder neural
networks in wsn for iot. In: IEEE Intl. Conference on Communications (ICC).
pp. 1–6 (2018)

33. Minhas, M.S., Zelek, J.: Semi-supervised anomaly detection using autoencoders.
arXiv:2001.03674 [cs, eess, stat] (Jan 2020), http://arxiv.org/abs/2001.03674

34. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: ICML (2010)

35. Petersson, N., Sjögreen, B.: Sw4 v1.1 [software] (2014).
https://doi.org/http://doi.org/10.5281/zenodo.571844

36. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. Journal
of computational physics 117(1), 1–19 (1995)

37. Sato, D., Hanaoka, S., Nomura, Y., et al.: A primitive study on unsupervised
anomaly detection with an autoencoder in emergency head ct volumes. In: Medical
Imaging: Computer-Aided Diagnosis. vol. 10575, p. 105751P. International Society
for Optics and Photonics (2018)

38. Schwaller, B., Tucker, N., Tucker, T., Allan, B., Brandt, J.: HPC system data
pipeline to enable meaningful insights through analysis-driven visualizations. In:
IEEE International Conference on Cluster Computing. p. 433441 (Sep 2020)

39. Snir, M., Wisniewski, R.W., Abraham, J.A., Adve, S.V., Bagchi, S., Balaji, P.,
Belak, J., Bose, P., Cappello, F., Carlson, B., et al.: Addressing failures in exascale
computing. The International Journal of High Performance Computing Applica-
tions 28(2), 129–173 (2014)

40. Song, H., Jiang, Z., et al.: A hybrid semi-supervised anomaly detection model for
high-dimensional data. Computational intelligence and neuroscience (2017)

41. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research 15(1), 1929–1958 (2014)

42. Tuncer, O., Ates, E., Zhang, Y., et al.: Diagnosing performance variations in HPC
applications using machine learning. In: Intl. Supercomputing Conference. pp. 355–
373. Springer (2017)

43. Tuncer, O., Ates, E., Zhang, Y., et al.: Online diagnosis of performance varia-
tion in HPC systems using machine learning. IEEE Transactions on Parallel and
Distributed Systems 30(4), 883–896 (2018)

44. Wang, K., Zhao, Y., Xiong, Q., Fan, M., Sun, G., Ma, L., Liu, T.: Research on
healthy anomaly detection model based on deep learning from multiple time-series
physiological signals. Scientific Programming (2016)

45. Yu, L., Lan, Z.: A scalable, non-parametric method for detecting performance
anomaly in large scale computing. IEEE Transactions on Parallel and Distributed
Systems 27(7), 1902–1914 (2015)

46. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. pp. 665–674 (2017)

