LIBSPECTOR: Context-Aware Large-Scale Network
Traffic Analysis of Android Applications

Onur Zungur
Boston University
Boston, USA
zungur @bu.edu

Abstract—Android applications (apps) are a combination of
code written by the developers as well as third-party libraries
that carry out most commonly used functionalities such as
advertisement and payments. Running apps in a monitoring
environment allows researchers to measure how much network
traffic is exchanged between an app and remote endpoints.
However, current systems currently do not have the ability to
reliably distinguish traffic that is generated by different libraries.
This is important, because while mobile users are paying for data
traffic without distinctions, some of this traffic is useful (e.g., data
for core app functionalities), whereas the rest of the traffic can
be considered a nuisance (e.g., excessive advertisements).

In this paper, we present LIBSPECTOR, a system that precisely
attributes network traffic coming from an Android app to the
library that generated it. To this end, we instrument the Android
Framework to inspect the network connections initiated by
apps, provide fine-grained information on the libraries in use,
and calculate method coverage information while performing
dynamic analysis. We then perform a measurement on 25,000
popular Android apps and investigate the relation between
different categories of apps with the use of specific libraries. We
analyze the method coverage of our dynamic analysis method,
and further characterize the endpoint connections established
by the Android apps. Our results indicate that advertisement
libraries account for over a quarter of the total data transmission.
We further observe that there is no strict 1-to-1 correlation
between the similar categories of network endpoints and libraries
which initiated the data transfer.

I. INTRODUCTION

Mobile applications, or apps, are a significant reason for
the success of mobile smart devices over the last decade.
Apps allow end-users to extend the capabilities of off-the-shelf
mobile devices with functionality that the original designers
did not anticipate. Today, the two most prominent mobile
platforms, Google’s Android and Apple’s i0S, give users
access to market places that each host in excess of 3.7
million third-party apps, many of which accumulated billions
of installations [39]—-[41]. A further testament to the success of
mobile apps is the amount of revenue that app developers can
generate. For example, SensorTower [37] reported that global
mobile app revenue for Google PlayStore apps reached $7.1
billion for the first quarter of 2019 with a 20.2% increase year
over year. In addition to revenues generated from App Store
sales, developers can also tap into alternative revenue streams
which frequently come in the form of advertising.

The popularity and diversity of the app-ecosystem has
resulted in a multitude of measurement studies that analyze

Gianluca Stringhini
Boston University
Boston, USA
gian@bu.edu

Manuel Egele
Boston University
Boston, USA
megele@bu.edu

these systems from various angles. For example, Petsas et.
al [31] investigated how rankings on app-stores affect the
install base of apps, whereas Wang et al. [45] focused on third-
party library prevalence, API levels, privileges and malware
occurrences. Most closely related to our work are the ad-
library network traffic detection by Xue et al. [47], Maier et
al. [28] and Tongaonkar et al. [42]. In their studies, Xue et al.
and Maier et al. used User—Agent field in HTTP headers,
whereas Tongaonkar et al. used hostnames for identifying ad-
library traffic.

Prior work focused on using the information contained in
the network packets to identify which libraries generated the
network traffic. Unfortunately, in general, modern mobile apps
consist of an amalgamation of developer-authored and “exter-
nal” library code, both of which can generate network traffic.
Therefore, treating all network data equal when attributing
it to an app, classifying the network traffic based on header
information or network endpoints do not adequately consider
this development, and might produce inaccurate results. For
example, the prevalence of generic identifiers in HTTP head-
ers, same hosts (i.e., companies) serving multiple apps and the
use of Content Distribution Networks render a purely network-
focused analysis of library traffic insufficient for reliable traffic
attribution.

In this paper, we are interested in answering questions
such as, how much network data that is sent or received by
an app belongs to first-party (i.e., developer-authored) code,
and how much of that data serves auxiliary purposes, such
as advertisement, or statistic usage information collection.
Additionally, we are interested in questions, such as which
library categories (e.g., development aid) are responsible for
generating what fraction of the network traffic.

To answer such detailed questions, it is not sufficient to
attribute network traffic to an individual app or use network
packets only. Instead, we argue that the attribution of network
traffic to app components requires more precise runtime infor-
mation, from which we can derive contextual information and
gain insights on network activities.

To obtain this additional contextual information, we built
LIBSPECTOR, a dynamic analysis system for Android apps.
LIBSPECTOR installs each app in an Android emulator and
exercises it while monitoring the network traffic and the app’s
execution in detail. Given that Android apps are inherently

driven by user-interface interactions, we leverage the Android
monkey [4] User Interface exerciser tool. Similar to prior
work, we record packet captures of all network communica-
tions in and out of the emulated environment. However, to
derive the information necessary to attribute network packets
to classes and methods in an app, we modify the Android
framework to capture this information at runtime. Specifically,
every time the app connects a network socket, our modified
system attributes the resulting socket-pair (i.e., the tuple of
(srcIP, srcPort, dstIP, dstPort)) with the corresponding Java
method. With this additional information at hand, we can
attribute each packet to the method that connected the cor-
responding socket. Based on this detailed attribution, we can
now measure, for each app, how much traffic is originating
from which and what kind of library, what kind of network
endpoints the packets are destined, and how much of the app
code is leading to network-related activities.

We performed a large scale analysis on 25,000 apps that
span 49 of the app categories in Google’s Play store. We ob-
served that runtime inspection provided us with more detail on
the established network connections where the network-based
classifications could lead to inaccurate results. To the best
of our knowledge, our study is the first dynamic analysis on
Android apps which can attribute network traffic to apps’ third-
party libraries using app runtime information with method-
level granularity. Furthermore, we augment our measurement
results with existing data-sources (e.g., the library categoriza-
tion efforts of LibRadar [26]) to shine additional light on the
network traffic behavior on entire library categories.

In summary, this paper makes the following contributions:

e We design and implement LIBSPECTOR, a fine-grained
measurement system that attributes network packets to the
method and library of an Android app that is responsible
for sending or receiving that packet (§1I-A).

« Based on this automated analysis capability, we ana-
lyze 25,000 Android apps via large-scale dynamic analy-
sis, where we exercise each app via Android’s monkey.

« By analyzing the resulting captured network traffic, we
demonstrate the importance of library analysis using app-
context, and make the following observations: i) ad-
vertisement libraries cause a quarter of the mobile app
network traffic, ii) 35% of apps only had advertisement
and tracker (AnT) traffic, whereas 89% of the apps had
some AnT traffic, iii) there is not always a strict 1-to-
1 correlation between libraries and connection endpoints
of the same category, and iv) estimated advertisement
traffic costs $1.17 to users and causes 18.7% more energy
consumption.

II. LIBSPECTOR OVERVIEW

In this paper we aim to collect fine grained information
on which network data is generated by which libraries in an
Android app. As such, our main goals when designing our
analysis system are to i) exercise an app to determine which
libraries and methods cause a network connection and measure
Java method coverage, ii) measure how much data flow we

______________ Android Framework
§ Application
' Pack :
| acket
! Capture i socket() method()
I
5 : T i Soﬁ(et
&
%i stackTrace <€ | supervisor
S i
1| Executed ! I
i | App Method ¢ Method Monitor
I
L____C_o_uff_____: ART

Fig. 1: Data Collection System Overview.

have in each direction per library, and iii) study the relationship
between categories of apps, libraries, and domains in terms of
network connectivity. Therefore, we design and implement a
system with the following design choices:

Dynamic analysis: Exercising apps provides network connec-
tivity and interaction between apps and the external servers,
which yields information on the mobile network traffic.
Fine-grained network library analysis: The information
contained in network packets is not fine-grained or accurate
enough to reliably attribute data flow to specific libraries [10],
[46]. Thus, the analysis environment should provide suffi-
ciently detailed information to associate libraries to individual
connections.

App integrity: Apps under scrutiny should not be modified
or have their integrity broken. This ensures that the internal
structure of apps is not tampered with instrumentation and
LIBSPECTOR is compatible with existing app stores.
Scalability: The data collection system should be highly
parallelized and scalable in response to the millions of apps
available on app stores.

Coverage awareness: When measuring network data in a
dynamic analysis, it is important to measure what fraction of
the app methods our system invokes, which determines the
amount of code execution.

To this end, we implemented LIBSPECTOR, a scalable
dynamic analysis framework with fine-grained network and
Java method coverage measurement which does not require
app modification.

A. System Design

LIBSPECTOR comprises of two main high-level components
for data collection during app exercising: Socket Supervisor
and Method Monitor. The Socket Supervisor monitors the
creation of sockets, extracts information on methods that leads
to the creation of any socket and reports this information to a
data collection server. The Method Monitor keeps track of all
the Java methods that an app has executed, records observed
methods, and then provides information on what fraction of
the app’s code is covered. A general overview of the data
collection architecture is shown in Figure 1.

1) Socket Supervisor: Any network communication in An-
droid starts with a socket system call, regardless of whether
an Android app establishes the network connection from
managed Dalvik code or natively. It is therefore fundamental
for a fine-grained network-activity data collection system to
monitor and examine the creation of sockets. Here, we define
the fine-grained information (i.e., context) as the Java call
stack that is related to the socket creation, which includes
information on the libraries.

2) Method Monitor: One of the drawbacks of dynamic
analysis is achieving complete coverage. Since every app may
use different series of method calls leading to a network
connection, lower coverage rates indicate unexplored methods.
In such cases, the dynamic analysis would result in incom-
plete data for total traffic volume and missing attribution of
data transfer to libraries, as unexplored methods may cause
more network traffic or belong to different libraries than the
already executed ones. Having an accurate method coverage
measurement provides information on the lower bound of the
collected data over the course of our dynamic analysis and
quantify the accuracy of our system.

While the Socket Supervisor can provide information on
network connections (i.e., Java methods in the call stack that
leads to a socket), the Socket Supervisor cannot monitor non-
socket-related information. Therefore, we design the Method
Monitor, which monitors all the Java methods and creates a
set of methods that that the app invokes. Subsequently, the
Method Monitor disassembles the apps’ dex file under the
apk package to obtain a full set of methods that the app
includes, and calculates the Java method coverage as a ratio
of executed app methods over total app methods.

B. System Implementation

1) Method Monitor: We implemented the Method Monitor
as a combination of a modified ART runtime and Android’s
built-in debugging tools. The implementation of the ART
runtime includes an API through Activity Manager to measure
app performance with Android Profiler. This API provides pro-
visions to monitor Java method calls using the Android Debug
Bridge (adb), to register method signatures and timestamps
when a Java method is entered or exited. Hence, we use this
API to control the Android Profiler and register listeners for
method invocations. The ART runtime, by default, stores the
collected data in a user-specified buffer, which is insufficient
(i.e., filled within seconds of app initialization) for the amount
of data we collect during our experiments as listeners also
record repeated calls to a method. Therefore, we modified the
ART runtime such that Android Profiler only records unique
methods when the app calls methods for the first time.

2) Socket Supervisor: We implemented the Socket Supervi-
sor as a custom module for the Xposed Framework [35], which
provides an API to modify the behavior of user-space apps,
enabling LIBSPECTOR to monitor the creation of sockets. The
Socket Supervisor collects information on a socket consisting
of i) which app sent the data, ii) network connection’s socket

pair parameters (i.e., destination and source IPs and ports) and,
iii) the stack trace at the time a socket is created.

Upon the establishment of a network connection, the Socket
Supervisor gathers the active stack trace by invoking Java’s
built-in getStackTrace method. This method returns a
list of active stack frames that are related to the creation of
socket, and hence the network connection. Then, similar to
our previous work BorderPatrol [50], we obtain a mapping
of every active stack frame to their respective method signa-
tures. Finally, the Socket Supervisor prepends the connection
information to the list of method signatures, and sends this
data to our data collection servers using UDP packets. For
every unique socket that the app creates, the Xposed module
includes a sha256 checksum of the apk file and socket pair
parameters along with the translated stack trace.

For the above operations, the Socket Supervisor relies on
two submodules, the custom Xposed module for socket mon-
itoring and and a custom shared library for obtaining con-
nection parameters. In the following paragraphs, we describe
these two submodules in detail.

a) Xposed Framework and Custom Module: Our custom
Xposed module and framework serves as the socket call
interceptor and context extractor. This module first places post
hooks on the socket and connect method calls, and then
parses the dex files that the app’s apk package includes to
obtain detailed information on methods including their class
hierarchy and parameters. Using post hooks ensure that at
the time of program-flow interception, there is a network
connection with distinct parameters. We use the parsed dex
file information to provide a translation from method names in
a stack trace to their respective method signatures. In addition,
this module obtains the socket pair parameters. This ensures
that we can match the packet we observe in the network packet
capture with its respective socket call stack when we obtain the
contextual information from UDP packets (explained in Shared
Library section below). Subsequently, the module creates one
UDP packet per socket, which includes the method signature
translations of the stack trace we gathered. Using method
signatures ensures that we can differentiate the overloaded
variants of methods with the same name within one class when
we examine the stack traces of sockets.

b) Shared Library: LIBSPECTOR gathers socket-related
stack traces and sends them in separate UDP sockets, which
does not include the same connection parameters as the TCP
socket. Consequently, we have to associate the stack trace
information included in UDP packets with their respective
TCP socket. To associate a stack trace with its socket pair,
we use the socket’s set of connection parameters (i.e., source
and destination IP’s and ports). Since all socket pairs have
a unique set of connection parameters for any given point in
time, any packet that includes these parameters in their header
belongs to the connection of the aforementioned socket pair.
To access the connection parameters of a given socket, we
use the get sockname and getpeername system calls. For
this purpose, we compile a shared library which exposes the
required system calls to the Xposed module via the Java Native

Interface.

3) Experimental Setup: LIBSPECTOR’s data collection
framework consists of a job dispatcher and multiple workers
which run different and fresh copies of the same modified
Android 7.1.1 image (i.e., same user profile, advertising and
device IDs without account logins) in Android emulators
on CentOS 7 servers. Every worker pulls the assigned apk
from a database server and exercises the app in the Android
emulator using adb monkey [4] User Interface exerciser
with 1,000 events and 500ms throttling between events. While
the apps are exercised, we record all the network traffic of the
emulator into a packet capture file and collect the set of visited
methods in the emulator. At the end of each experiment, our
modified framework writes the set of method signatures which
the app invoked during experiment into a file and sends the
packet capture of all the network traffic of the emulator to a
central database for later evaluation. Our performance analysis
shows that, LIBSPECTOR incurs a 0.5ms (9.75%) worst-case
packet delay per request on the mobile device. Offline analysis
and heuristics, excluding external data scraping and database
activities, on average takes less than 5 seconds per app.

III. DATA

In this section, we describe the data sources that we used
as inputs to our system, and the methodology for our analysis.

A. App Collection

To collect a representative set of Android apps, we extracted
a list of the most downloaded and free Android app package
names from AndroidRank [5], which is a website that keeps
track of the Google PlayStore [16] app metadata. Then, we
cross-referenced these package names with the list of available
apps from the AndroZoo dataset [2], which is a repository
of Android apps for research purposes. For certain apps, the
AndroZoo dataset includes more than one version of the same
app, collected at different times. Each app in the dataset also
lists the date in which the app was created as specified in
the dex file as well as the date of the latest VirusTotal [44]
scan of the apk. For all the package names we collected from
the AndroidRank, we retrieved the apk from the AndroZoo
dataset with the latest dex time stamp. For packages with
the default dex time stamps (i.e., 01-01-1980), we selected
the apk that was most recently scanned via VirusTotal (VT).
At the time of our experiments, there were no apks that had
neither the non-default dex time-stamp nor a VT scan date.
We further filtered out apps that only included ARM shared
libraries, as LIBSPECTOR supports x86 compatible apps.

B. Output Data Set

We exercised every app for 8 minutes using adb monkey
UI exerciser [4] and issued 1,000 random events with 500ms
delay while recording all network activity of the emula-
tor. During our dynamic analysis, we collect (i) a set of
method signatures of the methods that the app executed,
(i) stack traces of socket calls that we obtain via the
getStackTrace Java method, (iii) the respective method

signatures of each stack frame, and (iv) source and desti-
nation IPs and port numbers of each sockets. Additionally,
we use the dex1ib2 [18] library to extract all the method
signatures contained in a particular apk. Previous work by
Reyes et al. [33] found that the adb monkey tool matched
or exceeded humans’ app screen coverage 61% of the time.
However, we should note that, due to the randomness of the
monkey, the results we present constitute a lower bound on
the method coverage, and hence the extensiveness of these
apps’ network activities.

C. Traffic Attribution

In this section, we present the methodology that allows us
to determine how much data the app libraries consume.

Java classes are organized in packages according to a
hierarchical naming pattern where dots separate the levels of
hierarchy. The structure of the package hierarchy represents
the relationship between classes and methods. Similar to
Plumicke [32], we define the type signature of a method
as a unique identifier which includes all the levels of this
hierarchy, including the method signature with input and
return value types. Furthermore, a disassembled dex file (i.e.,
smali code) clearly shows this structure in type signatures'.
However, the hierarchical structure of the packages can be
arbitrarily deep (i.e, length of the package names can be
arbitrarily long). Since we can filter method and class names
from a type signature, we use our custom Xposed module
to obtain the type signatures of the respective call frame and
obtain the package name for every active method call in the
call stack.

As we are primarily interested in third-party libraries and
their respective network connections, we then eliminate the
method calls to Android’s built-in packages. To do so, we
refer to Android API 25 Class Index [15] and introduce a
regular expression rule to filter out call frames of built-in
packages®>. We then use LibRadar [26], a tool that detects
and categorizes third-party libraries in Android apps. For
the majority of applications, LibRadar is able to detect the
libraries contained in apps. However, as there are first party-
authored packages that LibRadar has not encountered before
with varying degrees of hierarchical depth, it cannot resolve all
the libraries of an app. Consequently, we determine the library
as the hierarchically greatest matching package structure (i.e.,
longest matching prefix) among all the libraries that LibRadar
has detected across 25,000 apps.

Finally, we attribute the socket activity to the library of
the chronologically first called method from a non built-in
library in the stack trace. We then define origin-libraries as the
libraries that such methods belong. While our analysis mainly
focuses on the origin-libraries and their connections, we also
provide analysis for libraries with a reduced-granularity. For
these libraries, we select only the top two levels of hierarchy,

'Smali convention for a method’s type signature is Lpackage/name/
className$innerClassName;->methodName (inputTypes) returnTypes

Zandroid.*, dalvik.*, java.*, javax.*, junit.*, org.apache.http.*, org.json.*,
org.w3c.dom.*, org.xml.sax.*, org.xml.pull.vl.*

O 0NN A WN—

and name them 2-level libraries. The reduced granularity
provides us with the information on the activities of domains
(and companies) that libraries belong.

Listing 1 shows a stack trace collected during our experi-
ments and demonstrates the logic behind origin-libraries attri-
bution. The first frame (line 1) represents the chronologically
last method invocation before the creation of the socket. The
frames on lines 13 and 14 include internal API calls, which
we eliminate with regular expression rules. Consequently, we
attribute the socket creation to the method call in line 12,
which precedes all other method invocations. As per our
library name extraction methodology, we determine the origin-
library as "com.unity3d.ads.android.cache". Con-
sequently, the two-level library is com.unity3d.

java.net.Socket.connect
com.android.okhttp.internal.Platform.connectSocket
com.android.okhttp.Connection.connectSocket
com.android.okhttp.Connection.connect
com.android.okhttp.Connection.connectAndSetOwner
com.android.okhttp.OkHttpClient$1l.connectAndSetOwner
com.android.okhttp.internal.http.HttpEngine.connect
com.android.okhttp.internal.http.HttpEngine.sendRequest
com.android.okhttp.internal.huc.HttpURLConnectionImpl.execute
com.android.okhttp.internal.huc.HttpURLConnectionImpl.connect
com.unity3d.ads.android.cache.b.a
com.unity3d.ads.android.cache.b.doInBackground
android.os.AsyncTask$2.call
java.util.concurrent.FutureTask.run

Listing 1: Stack Trace Example

D. Library Categories

To extract the categories of origin-libraries, we again rely
on the output of LibRadar. We first run LibRadar on all
the apps that we collected (§ III-A). We then construct an
aggregated list of libraries with their respective categories that
LibRadar provides. Additionally, we use Li et al.’s work [23] to
identify common advertisement/tracker (AnT) libraries, which
increases precision and ensures a more comprehensive analysis
regarding the AnT traffic.

For libraries where LibRadar cannot determine the corre-
sponding category, we apply a majority voting heuristic. List-
ing 2 is an example of our library categorization methodology
for com.unity3d.example, where LibRadar cannot provide a
category. Here, we first find the longest matching organiza-
tional structure (i.e., common prefix) across all the libraries
that LibRadar detects in our app dataset. (i.e., com.unity3d)
Then, we collect all the libraries which start with the common
prefix and their categories into a list (i.e., lines marked
with [LibRadar] in Listing 2). Afterwards, we use majority
voting within this list to predict the category of the unknown
library, and hence determine the category of com.unity.example
as Game Engine, which has the most votes. Similarly, the
category of the origin-library of the stack trace in Listing 1
solely depends on com.unity3d.ads, as it is the longest prefix
and the only matching library.

[LibRadar] com.unity3d -> Game Engine

[LibRadar] com.unity3d.ads -> Advertisement

[LibRadar] com.unity3d.plugin.downloader -> App Market
[LibRadar] com.unity3d.services -> Game Engine

[Predicted] com.unity3d.example -> {Game Engine:2,
Advertisement:1, App Market:1} -> Game Engine

[Predicted] com.unity3d.ads.android.cache ->
{Advertisement:1} -> Advertisement

Listing 2: LibRadar category results of unity3d and category
prediction for two related libraries

E. Traffic Volume

LIBSPECTOR sends a UDP packet which contains informa-
tion on a socket right after the connection is established, and
thus lacks the information on how much data is transmitted
over a particular socket during an experiment. Consequently,
we calculate the data transfer size after the connection is
closed, which is the sum of all TCP packets within the same
stream (i.e., the packets which possess the same connection pa-
rameters as the socket itself). First, we associate TCP packets
that the socket sent by traversing packet capture file of the app
run using socket parameters. Then, we sum packet sizes to find
the data transfer size. Since the established network connec-
tions need to have a unique set of connection parameters at a
given time, we ensure that stack traces of two different sockets
with the same connection endpoint are counted separately.
Finally, we associate the transfer size with origin-libraries
based on the stack trace information we collected from the
respective socket of the connection (§ III-C). We should note
that the ratio of UDP traffic (excluding LIBSPECTOR’s UDP
packets) is 0.52% of the total traffic present in the dataset, the
majority (97%) of which consists of DNS requests. Therefore,
we chose to omit UDP traffic from our analysis.

FE. Determining DNS Domain Categories

As part of our analysis, we analyze which domains were part
of the DNS resolution requests at the time of our experiments.
To this purpose, we collected domain categories provided by
VirusTotal [44] using their public API. For every domain,
VirusTotal returns a list of domain categories aggregated
from five different cybersecurity companies. As there are
no universal baselines for domain category naming, it is
possible to see multiple different classifications for the same
domain. Hence, similar to the methodology of AVClass [36],
we chose to simplify and tokenize various domain categories
into 17 generic-categories. For every domain category that
VirusTotal provides, we search for a list of hand-curated words
(with regular expression rules) and classify it under a generic
category. Table I shows the generic categories, number of
domains that fall under each generic-category and the regular
expression patterns used for the tokenization of categories.

To find the category of a domain, we first tokenize all the
categories that VirusTotal returns. Then, we apply majority
voting among the list of generic-categories for each domain
and select the most occurring generic-category.

IV. RESULTS AND ANALYSIS

In this section, we present the analysis of the extracted data
and answer the following research questions:

TABLE I: Tokenization of Domain Categories

| Generic Category | Count | Regular Expression Pattern(s) |

adult,sex,obscene,personals,
adult 206 dating,porn,violence,lingerie,
marijuana,alcohol,gambling
advertisements 1,336 ads,advert,marketing,exposure
analytics 419 analytics
busines,financ,shop,bank,
business_and_finance 3,394 trading,estate,auctions,
professional
cdn 77 proxy,dns,content,delivery
L im,chat,mailtext,radio,tv,
communication 472
forum,telephony,portal,file
education 413 education,reference
entertainment 481 enterla'inmem,sporl,videos,
streaming,pay-to-surf
games 288 game
health 40 health,medication,nutrition
information,technology,
info_tech 1,525 computersandsoftware,
dynamic content
hosting, url-shortening,
search, download,collaboration,
internet_services 374 parked, online, infrastructure,
storage,security, surveillance,
government
blog,hobbies, lifestyle,travel,
lifestyle 558 cultur,religi,p(?litic,
restaurant,vehicles,
philanthropic,event,advice
malicious,infected,bot
L. not recommended,illegal,
malicious 23 X
hack,compromised,
suspicious content
news 415 news,tabloids,journals
social_networks 55 social
unknown 4064 (all remaining)
Total 14,140

« RQ1 What are the properties of data transfer and flow
ratios in terms of total and average transfer for different
categories of apps, libraries, and domains?

« RQ2 Is it necessary to track data flows based on origin-
libraries instead of using network analysis only?

« RQ3 How comprehensive is the empirical analysis in
terms of Java method coverage?

« RQ4 What is the monetary and energy cost of third-party
libraries to an average user?

First, we present the aggregated data transfer sizes, and
investigate the data flow for different categories of apps,
libraries and DNS domains. Secondly, we analyze average
data transfer sizes per aforementioned categories, extract mean
values, calculate the ratio of data transfer flows and present the
prevalence of advertisement and tracker library traffic. Then,
we investigate the Java method coverage of our experiments.
Finally, we estimate the monetary and energy consumption
cost of advertisement libraries based on our empirical results
and previous studies.

A. Data Transfer Across Categories

Our apps generated a total of 30.75 GB of data from
monitored sockets, where 29.13 GB was received and 1.62
GB was sent. The total number of flows (i.e., number of
distinct sockets) was 617,400, sending data originating from
8,652 origin-libraries across 13 categories to 14,140 different
DNS domains with 17 generic (i.e., tokenized) categories.

Figure 2 shows aggregate data transfer size of the origin-
libraries’ categories per app category, as well as the ratio of
data transfer per origin-libraries.

As for the origin-libraries, the most data transferring cat-
egory was “Advertisement”, which initiated 28.28% of the
total traffic, effectively amounting for more than a quarter of
the total data sent by any origin-libraries with 8.69 GB of
total data transfer. Surprisingly, we observe that the highest
activity by ”Advertisement” origin-libraries in gaming apps,
even more dominant than "Game Engine” libraries, which
mostly manifested themselves in simulation and action games.
The second most data transferring library category is “Devel-
opment Aid”, which accounted for 26.34% of the data transfer
with 8.1 GB. The libraries classified under “Development
Aid” often include third-party development libraries such
as okhttp3 or companies’ development infrastructure/API-
related libraries such as com.amazon.whispersync (for
Kindle). Finally, we see libraries with Unknown categories
initiating connections that cause 25.3% of the total data
transfer (7.75 GB), which includes app-specific, first-party
developer code as well as the library traffic that could not
otherwise be attributed.

Figure 3 demonstrates the top data transferring origin-
libraries. Here, we see that com.unity3d.player is the
top data transferring origin-library with 1.59 GB, which is
classified as a Game Engine library. Based on our method-
ology of library name extraction (§ III-C), it is possible
to see the same prefixes across different origin-libraries.
We therefore also classify origin-libraries into more generic
library names, and use the 2-level libraries. Among the
origin-libraries, Google’s internal libraries (com.google
and com.android) transferred 2.84 GB and 452 MB data,
respectively, followed by the Advertisement/Game Engine?
libraries com.unity3d and com.gameloft with 2.82 GB.
We finally observe that 2-level libraries transmitted 4.96 MB
data on average, where the top 25 of the 4,793 2-level libraries
accounted for 72.5% of the total data transmitted.

Figure 4 demonstrates the Cumulative Distribution Function
of sent and received network data amount for apps, origin-
libraries and DNS domains. We observe that all apps, origin-
libraries and DNS domains always received more data than
they sent, and the data transfer flow size is between 400B
and 1GB. We then examine the ratio of data transfer flows.
Figure 5 shows the ratio of sent data over received data
per apps, origin-libraries libraries and DNS domains. We
observe that on average, apps and origin-libraries receive 81
and 87 times more data than sent, while servers of domains
send 104 times more data than received. The similar average
ratios between apps and libs indicate a uniform distribution
on origin-libraries across the apps we tested. The discrepancy
between app and DNS transfer flow ratios is due to 25,000
apps sending data to 14,100 domain names only. In terms
of the distribution, top 5,057 (out of 25,000) apps, 2,299

3 Although primarily a Game Engine library, unity3d also includes adver-
tisement classes, which manifested themselves during our experiments

Advertisement (28.28%)
App Market (0.03%)

1.75 -

1.50 -

Development Aid (26.34%)
Development Framework (0.08%)

1.25 -

Digital Identity (0.39%)
GUI Component (1.98%)

1.00 -~

Game Engine (10.2%)
Map/LBS (0.19%)
Mobile Analytics (1.71%)

0.75

Payment (0.7%)
Social Network (1.43%)

Data Size (Bytes)

o
@
o

o
N
o

Unknown (25.3%)
Utility (3.36%)

\\\A$ N
ORI ‘2~o$<z~
/‘\<§5’\ (’\éye@ NOSPX ‘°° <&

,4 »«N\‘W«we S
P E RN 7
S TR

‘\1-

0 N
BN NN
0

N &2
‘&v\?\ /\\% @‘k 4’/"; 0"/&\ BN
SO <&‘\n ’& 0%0 GRS
f:\ & X ;ng v§0
@‘7’ ©

$°’\

(é\‘\\c @0 ,& @QQ* Q‘* o‘k 50 «5“,& Y\o\“/\\o\\ \“\{o\ :/\\0‘\\\\4;@‘»\\% é'/*o
3 \,\Q,/{o \3\0 CRNXD <<3‘ <<$
Sy %\0 X
o 4‘?‘/
N\ A
[C
R

R COR NS
& %@@“O/‘“v
o7 <7D

RO N A
(?y;b?y?. P7C
>

e &
2 2N
> e @?Qp
R
<07
< N
Q\V’

App Categories

Fig. 2: Data transfer size of origin-libraries’ categories per app category. Ratio of total data transfer per origin-libraries

categories are presented in the legend.

com.unity3d.player
com.vungle.publisher
com.google.android.gms.internal
*-Advertisement
com.chartboost.sdk.impl
com.google.android.gms.internal.ads
com.bumptech.glide.load.engine.executor
com.ironsource.sdk.precache
com.unity3d.ads.android.cache
com.unity3d.ads.cache
com.squareup.picasso
com.android.volley
com.applovin.impl.sdk
okhttp3.internal.http
com.nostral3.universalimageloader.core

0.0 0.5 1.0

Data Size (Bytes)

1.5
1le9

1e9

Data Size (Bytes)

‘oe
Libraries (2-Level)

Fig. 3: (Top) Top data transferring origin-

libraries. x—Advertisement represents total data transfer
through sockets created by Android’s built-in libraries which

sends data to DNS domains categorized under Advertisement.

(Bottom) Top data transferring 2-level libraries. Traffic from

Android built-in apps is shown red.

1.0 /’_
0.8 ? ////
w 0.6 / /
o
@]
0.4 / - App: Sent
/ ~— App: Received
— Lib: Sent
0.2 / —— Lib: Received
—— DNS: Sent
—— DNS: Received
0.0 T t t
10! 10?2 10° 10* 105 10° 107 10® 10°

Data Size (Bytes)

Fig. 4: CDF of data transfer flow sizes across apps, origin-
libraries, and DNS domains

DNS domains
0 2000 4000 6000 8000 10000 12000 14000
Libraries
0 2000 4000 6000 8000
103 ¥ —— Apps

o —-~ Libs
© --- DNS
= 10?
2
K=l
=
o 1
Q@ 10
(%]
C
©
—
= 100 I

0

10000 15000 20000

Apps
Fig. 5: Data transfer flow ratios across apps, origin-libraries,
and DNS domains. Red diamonds indicate the average flow

ratios for each X-axis.

5000

Transfer ratio (%)
5

i
£

o !
10 i
|

|

0 2500 5000 7500 10000 12500 15000 17500 20000
Apps
Fig. 6: Data transfer ratio of Advertisement and Tracker (AnT)
libraries and Common Libraries. Means of transfer ratios are
marked with red dots.

origin-libraries (out of 8,746) and 4,010 (out of 14,140) DNS
domains are associated with half of the total data transfer,
which suggests that a minority of libraries and domains cause
the majority of network traffic in apps. We also see that the
top 10% of origin-libraries received over 260 times data than
they sent, which shows that the libraries which receive the
most traffic can be more than 3 times as aggressive (i.e., higher
flow ratio and more data consuming) as the average.

As a next step, we also investigate the prevalence of Adver-
tisement and Tracker (AnT) libraries and the most common li-
braries (CL) that previous studies observed in their dataset [23]
More specifically, we study if AnT and CL libraries appeared
in the network stack and initiate connections to remote servers.
Figure 6 shows the ratio of data which originated from AnT
libraries and common libraries over total data transfer size per
apps based on the library lists provided by Li et al. For AnT
libraries, over ~2,500 apps do not send any data due to such
libraries, whereas the network traffic of ~8,750 apps entirely
consisted of AnT-related origin-libraries. Similarly, ~13,500
apps manifested network activity due to common libraries.
On average, AnT libraries received 54.8 times more data than
sent, which is more than twice the average of common libraries
with a ratio of 24.4.

We finally investigate the average data transfer sizes for
apps, origin-libraries, and DNS domains as neither are uni-
formly distributed among their respective categories. Figure 8
shows the average data transfer per app category. We observe
that, the ”"Music and Audio” and “News and Magazines”
categories transmit the most data on average, which indicates
that the aggregate data transfer size from these categories is
not only due to the higher number of apps in our dataset
but because of their network-dependent functionalities. Fig-
ure 7 shows average data transfer per origin-libraries (left)
and DNS domain categories (right). We see that Mobile
Analytics, Game Engines and Advertisements are the top 3
data transmitting library categories, with averages of 35.6MB,
27.91MB and 12.66MB per library. On the other hand, the
DNS domain categories where apps send the data portrays
a profile much different than a 1-to-1 correlation between
similar categories. That is, CDN domains receive an average

46.27MB per domain, which is almost 11 times more data
than advertisements (4.32MB per domain). While previous
approaches classified advertisement library traffic by name-
based indicators of advertisement domains, CDN-bound traffic
would cause inaccuracies during network traffic attribution. In
comparison to other domain categories, there are very few
social-network-related domains that apps had interaction with.
That is, with 3.42MB, social network related domains are third
highest data transferring libraries in average data transfer per
domain rankings.

In summary we observed that: 1) Over a quarter of the
mobile network traffic originates from advertisement libraries,
2) Google’s internal libraries cause the most traffic, 3) apps
receive more data than send in general, 4) AnT libraries receive
twice as more data as common libraries, 5) 35% of app traffic
was caused by AnT only, whereas 10% of apps were free
of any AnT traffic, and 6) on average, CDN domains receive
the most traffic, almost 11 times more than advertisement or
gaming domains.

B. Library vs DNS Domain Categories

Previous studies ([28], [42], [43], [46], [47]) make use
of the User-Agent field, domain names, hostnames, and URL
parameters to identify and categorize the network traffic of
apps. However, we see that the network traffic does not
always originate and end up in similar categories of origin-
libraries and domains (i.e., advertisement, mobile analytics,
social media and games). For instance, advertisement libraries
send ~29% of their traffic to CDN servers. Therefore, a
system which simply examines the network traffic without
the contextual information from within the app can mis-
classify the nature of a network connection. To confirm this
intuition, we present the correlation of origin-libraries and
DNS domains in the from of aggregate data transfer size
from the former to the latter in Figure 9. It can be clearly
seen from the heatmap that advertisement-related domains not
only receive traffic from advertisement libraries, but also from
development aid and mobile analytics libraries. Conversely, the
traffic originating from advertisement libraries also ends up in
CDN and business/finance domains. Similarly, the traffic from
mobile analytics libraries often end up in business and finance
related domains, instead of commonly known analytics-related
domains. Consequently, the answer to RQ.2 is that when
classifying a network traffic flow, it is necessary to analyze
the origin-libraries in conjunction with the DNS domains.

C. Method Coverage

One of the challenging aspects of dynamic analysis is to
achieve complete method coverage. Since we analyze apps at
a large scale, we are bound by the effectiveness of automated
user input generators for our experiments.

As data measurements with dynamic analysis are closely
coupled with the amount of executed code, we modified
the method tracing of the Android framework to provide
information on which methods execute during experiments.
To this end, we first extract and compile all available method

Data Size (Bytes/App)

Library Categories

Data Size (Bytes/App)

@ o PO
SV eV &

S 2 0 & @O &
& @z & 0& z(\@c &R0 o W

<
N A A A S I NS
Q"‘)e g < \é 065 2,60 \\é&?e PN

&

RE
Q)

LA (&
e XS
SO '\
OIS B &£
o‘;\(\ N
N

Domain Categories

Fig. 7: Average data transfer per origin-libraries (left) and DNS domain (right) categories.

3500000
a 1.
23000000
<
% 2500000 -
[]
S
& 2000000 -
.g 1500000 1R A N N M
wn
© 1000000 -
8
©
A socccol NEEEEEEE NN
04
A A N R RTINS
RS S R Y U N RGN
Q ARTASIRSAIN PSR R R R RRNTANA Y
O gwé’ &, 28 VOTSS SR
7 7 7
RS @%} S LW & e (,0@ o ®
¥ ogE O CHT TSe?
& OV RS W

App Categories
Fig. 8: Average data transfer per app category.

signatures from dex files that an apk includes. We then obtain
a method trace file from Android Profiler at the end of app’s
evaluation, which lists all the methods that the app has called
including native API calls. To distinguish overloaded variants
of methods which share the same name within a class, we use
the method type signatures. Finally, we compute the method
coverage as the ratio of method signatures which are listed in
the method trace file and available in the app’s respective dex
file divided by the total number of methods in the dex file.
Before our large-scale experiments, we conducted a study
where we ran a subset of 100 random apps from our dataset
with 10, 100, 500, 1,000, 5,000, 10,000 UI input events. Our
empirical analysis showed that exercising an app beyond 1,000
UI input events did not provide any significant benefits over
the number of methods called, as the startup activities often
include AnT library loading activity that uses network as well.
Figure 10 shows the method coverage percentages per app.
On average, apks in our dataset contain 49,138 methods, with
27.3% of apps including more than the average. The average

method coverage of our experiment is 9.5%, where 40.5% of

the exercised apps had above-average coverage. This result is

consistent with other studies such as Zheng et al.’s [48], where
the authors observed 10.3% coverage after using monkey for
18 hours. We should note that, the network traffic we obtained
during our analysis constitutes a lower bound for the app
network activities with an coverage method coverage of 9.5%,
and consists of app activities before login screens.

D. Estimating the Cost to Users

Two of the major impacts of apps’ network traffic on users
are: 1) the cost of data transmission over mobile plans and
2) energy consumption. To study the impact to users, we rely
on current prices of mobile data plans and energy consumption
measurements of previous studies.

Based on our results, average network traffic due to Adver-
tisements and Mobile Analytics origin-libraries account for
15.58 and 2.2 MB of data transfer over 8 minutes of app
runtime in our setup. As of 2019, Google Fi’s mobile data
plan charges $10 per GB [17]. Therefore, the network traffic
volumes we observed translate to an average of $1.17 and
$0.17 worth of data usage every hour only due to non-app
related Advertisements and Mobile Analytics traffic, respec-
tively. Social Network and Digital Identity origin-libraries
accounted for 1.92 MB of data transfer on average, costing
users $0.14 per hour*. Another costly origin-libraries category
is Game Engines, with an average cost of $3.02 per hour. As
gaming apps have large initial file downloads, the total data
transmission ratio of apps with GAME_ » categories is higher
than all the other categories combined.

To estimate the energy consumption of mobile advertising
libraries, we rely on a study by Vallina et al. [43]. Although
authors do not provide the energy cost of mobile advertise-
ments per byte, the average advertisement content is presented
as 31kB/day and the average current drain for four major ad
libraries is 229mA with 20s refresh rate while idle current
drain is reported as 144.6mA. Using the time series throughput

4This cost can be subsidized when there are zero-cost traffic agreements
between the Internet Service Providers and social network websites.

3500

adultd 92 00 626 01 00 00 254 41 01 03 08 191 89
advertisements 0.1 04 16 31 2233 04 612 183 131 360 457
analytics4 35 00 973 00 10 99 49 01 1906 28 08 56 33 3000
E business_and_finance {16333 5.8 12800 81 820 1986 1833 188 404 148 365 [2221 0P ZER
5 cdn LR 04 7112 40 01 01 4655 00 1.0 51 23.6 1000.6 29.6 2500 g
o communication 4 236 01 1954 00 02 03 22 02 195 06 142 376.6 14.2 o
% education 4 47 00 3078 00 03 01 22 24 27 10 346 1331 7.4 =
o entertainment 42752 00 5621 1.3 02 14 02 05 11 254 96 6293 158 2000 3
c games - 47 00 183 00 15 00 [5155 00 00 00 19 11 1860 2
@© health4 o1 00 116 00 00 00 00 00 01 00 00 14 403 L 1500 @
g info_tech 48925 0.2 6156 18 147 369.5 2458 29 608 715 936 89.9 g
ke internet_services 4 322 00 4748 33 01 14 2320 14 125 09 28 880 586 =
) lifestyle { 187 00 3007 01 09 05 253 05 08 323 31 2250 22.8 - 1000 m™
2 ifestyle =
a malicious 4 00 00 94 00 00 00 00 00 00 00 00 65 03
newsd 52 00 1979 04 02 37 00 03 34 94 15 1108 46 L 500
Socia|_netw0rks— 0.1 0.0 241 0.0 0.1 0.0 1.1 0.0 0.0 0.1 160.0 1.5 156
unknown 4177.4 1.1 13780 43 169 21.5 209.7 282 1326 33.6 43.9 1061.4 241.9 0
T T T T T T T T T T T T T —
X geb o0
AR ‘“o‘\‘“) (\e(‘ N \\,?;’“ \;x\ ((\e \NO(0* o
(‘é\se Qg\’a N\ a«\e \\(ya & wl\ Qb‘* \AG (\\@)
¢ P kGt ‘oo S o
0 © W
\OP
e
N
08

Library categories

Fig. 9: Correlation of library categories with DNS categories

o *'4,/
SH ///x———‘/ i
0 100 E
© / .
o 107! :
S i
Y 1
QO 10 r
|

0 5000 10000 15000 20000
Apps

Fig. 10: Method coverage percentages per app

data by Vallina et al., we estimate active download time for
advertisement libraries to be 9.3 seconds per minute. Rosen
et al’s study [34] indicates that apps continue to transmit
data even when they are sent to background and 80% of
the background traffic is sent within the first 60 seconds,
conforming with the Pareto Principle. Therefore, we assume
5 minutes of runtime will be a good approximation of the
app’s overall power consumption resulting from advertise-
ment libraries®. Hence, based on a typical smartphone battery
(11.55Wh/3000mAh 3.85V), we calculate the power
consumption of advertisement libraries while they are active
((229mA—144.6mA) x 3.85V = 0.325W), data transmission
rate ((31kB x 0.95)/(5min x 9.3sec/min) = 635B/sec)
and the energy consumption per byte of transmitted data
(0.325W/635B/sec = 5 x 10°.J/B). We have observed that
advertisement libraries send 15.6 MB data on average, which
costs 7794 Joules of energy, or 2.16Wh. For a typical 11.55Wh
battery, that is 18.7% more energy consumption only because

SPareto lower cumulative distribution (P) with scale and shape parameters
Tmin=1, *m=1 and a=1 yields P=0.8 for x=5 and P=0.95 for x=21. We
consider x€[1,5] as one minute of execution.

10

of advertising-related activities. The impact of the remaining
categories of libraries can also be calculated with isolated
energy consumption measurements of such libraries, which is
out of scope of this study. However, prior empirical analysis of
Li et al., [22] suggests that network components consume the
most energy with over 40% of non-idle energy consumption.

E. Applications of LIBSPECTOR

Security: LIBSPECTOR associates network data flows with
origin-libraries and predicts library categories to reveal net-
work activities of third-party libraries. Policy control systems
such as BorderPatrol [50] implement policy actions including
blacklisting, where the level of enforcement can be selected
as a library. In such cases, a-priori knowledge of the to-be-
blacklisted library is required to determine policies. The in-
formation obtained from LIBSPECTOR can provide insights on
which library to blacklist, and hence augment the capabilities
of such policy enforcement systems.

Measurement: LIBSPECTOR can evaluate the connections
at a finer granularity than conventional DNS based systems
and categorize libraries with better accuracy. From Figure
9, we determine that a purely DNS based approach would
misclassify all CDN-bound traffic from known origin-libraries
(19.3% of the total traffic) and not all traffic has a 1-on-1 corre-
lation between similar categories of DNS and origin-libraries.
Hence, it is essential to use the app context information in a
network traffic analysis, which LIBSPECTOR provides.

V. RELATED WORK

Earlier works focused on distinguishing apps [1] and user
activities [9] using mobile app traffic. Chung et al. [8] studied
mobile network traffic volume and flow characteristics while
attributing traffic to different types of origin devices. They

performed an app-level traffic classification where network
traffic volumes are divided into business-related categories of
apps. They also characterized devices with commonly used OS
fingerprinting techniques. ProfileDroid [46] is an app monitor-
ing and profiling architecture. Authors here have performed
a static analysis on app’s apk and a dynamic analysis on
input events, intent usage, system calls using network layer
information. However, the authors have attributed the origin
of network activities to individual apps, measured traffic flow
ratios and determined third-party traffic based on network
connection endpoints. Fukuda et al. [11] investigated network
traffic volumes for WiFi and 3G networks on user devices
and characterized usage patters for different times of the
day. Further studies of Xu et al [47] and Maier et al [28]
attributed traffic to ad-libraries using HTTP header and host
information, while Tongaonkar et al. [42] used hostnames.
Finally, authors of SmartGen [51] conducted a large-scale
study to identify URL’s that mobile apps connect to with
symbolic execution and identified malicious links, however
did not associate potential connections to libraries.

There are also studies on app markets and app characteris-
tics. Petsas et al. [31] collected data from various app stores
and studied app popularity, number of updates, comments, app
categories, download counts and app pricing. Wang et al. [45]
studied Chinese app markets for app categories, download
counts, API levels, as well as most popular third-party libraries
across different markets. However, these works did not focus
on the network traffic analysis at large scale.

Some studies linked the network traffic to mobile energy
consumption. Hao et al., [19] estimated mobile app energy
consumption at code level with various granularity. How-
ever, they had to rely on manual analysis for estimating the
implemetation-dependent network-related method invocations.
Kundu et al. [21] analyzed malicious energy drainage on
mobile systems, while Gao et al., [12] studied methods and
attacks that can mislead energy consumption models, and
built E-Android [13] as a defensive profiler. Falaki et al. [10]
characterized smartphone traffic flow and investigated traffic
size, network latencies and power consumption of wireless
components of smartphones. Similar to other related works,
they attributed traffic generation to different categories of
applications as well. Rosen et al. [34] conducted a two-year
user study to identify network energy efficiency of mobile
apps. The authors studied network energy consumption per
app, quantified the impact of background data transmission and
provided case studies across different categories of apps with
data flow analysis. Vallina et al. [43] studied data transfer flows
and energy consumption of advertisement networks that are
used in most popular apps on a purpose-build app. Their study
identified advertisement traffic based on DNS lookups and
HTTP traffic and studied data connection refresh intervals as
well as presenting current drain statistics for cached/uncached
data across different types of ads. Unfortunately, these works
could not attribute network packets to individual libraries.

As for the ad-library focused studies, AdDroid [30] pro-
posed a new API for privilege separation, AdDetect [29]

11

used ML-based approach to identify advertisement libraries,
AdSplit [38] and Aframe [49] identified and isolated ad
processes and iframe displays, respectively. A similar cost
analysis is performed in Adrob [14], where authors captured
network data and studied the revenue loss and related impacts
of app cloning due to advertisement libraries. These works
primarily focused on isolating third-party processes and did
not perform a large-scale analysis.

In the literature, there are other large-scale app evaluation
frameworks such as Bierma et al.’s Andlantis [7]. Similar
works such as Andrubis [25] focuses on malware detection
with both static and dynamic analysis, and includes similar
features with our framework such as method tracing. However,
these works did not analyze the contextual information with
respect to network activities, but rather focused on malware
detection. Additionally, authors of CHIMP [3] developed a
crowd sourced Ul exercising framework, whereas authors of
PUMA [20] and Dynodroid [27] used app and framework
instrumentation respectively to increase monkey coverage.

Finally, previous efforts of LibScout [6], LibD [24], Li-
bRadar [26] and Li et al.’s work [23] on detection of third-party
libraries provided us with the insights to attribute traffic to li-
braries. However, the hierarchical organization of Java libraries
and inclusion of developer-authored (i.e., app-specific and
first-party) code in apps created a lack of comprehensiveness
for classification. We tackled this problem by a multitude of
heuristics combined with the fine-grained information we ex-
tracted from the apps during execution-time, and demonstrated
the correlation of such categories with classes of domains.

VI. CONCLUSIONS

In this paper, we designed and built a data collection
framework which extracts fine-grained network-context infor-
mation from app activities while recording method coverage.
Using our framework, we analyzed 25,000 Android apps from
Google PlayStore in a parallelized execution environment. We
then presented our methodology and heuristics on how the
data is categorized and important features are selected. Finally
we demonstrated the trends on data transfer sizes, flows and
usage statistics of Android libraries, DNS domains and app
behavior by categories. We find that (i) 35% of apps only
had advertisement and trackers (AnT) traffic, whereas 89% of
the apps had some AnT traffic, (ii) AnT libraries are twice
as aggressive as the common libraries in terms of data flow
ratios, (iii) advertising libraries constitute 28.3% of the overall
data traffic, costing an estimated $1.17 per hour to the user
and causing 18.7% more energy consumption, and (iv) there
is not always a strict 1-to-1 correlation between libraries and
domains of the same category, and traffic often ends up on
CDN domains, requiring a contextual analysis of the traffic.

ACKNOWLEDGMENTS

This work was partially funded by ONR under grants
NO00014-19-1-2364 and N00014-17-1-2541. We would like to
thank the reviewers and our shepherd Timothy Wood for their
insightful feedback in improving the final version of our paper.

[1]

[2

—

[5

[ty

[6]

[7]

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

(16]
[17
[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

H. F. Alan and J. Kaur. Can Android applications be identified using
only TCP/IP headers of their launch time traffic? In Proceedings of
the 9th ACM conference on security & privacy in wireless and mobile
networks, pages 61-66, 2016.

K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. Androzoo:
Collecting millions of Android apps for the research community. In
Working Conference on Mining Software Repositories (MSR), pages
468-471. IEEE/ACM, 2016.

M. Almeida, M. Bilal, A. Finamore, I. Leontiadis, Y. Grunenberger,
M. Varvello, and J. Blackburn. Chimp: Crowdsourcing human inputs
for mobile phones. In Proceedings of the World Wide Web Conference
on World Wide Web, pages 45-54, 2018.

Android. ADB Monkey UI Exerciser. https://developer.android.com/
studio/test/monkey.html, 2019.

AndroidRank. Most downloaded free Android applications. https://www.
androidrank.org/app/ranking/all?sort=4&price=free, 2019.

M. Backes, S. Bugiel, and E. Derr. Reliable third-party library detection
in Android and its security applications. In Proceedings of the Confer-
ence on Computer and Communications Security, pages 356-367. ACM
SIGSAC, 2016.

M. Bierma, E. Gustafson, J. Erickson, D. Fritz, and Y. R. Choe.
Andlantis: Large-scale Android dynamic analysis. arXiv preprint
arXiv:1410.7751, 2014.

J. Y. Chung, Y. Choi, B. Park, and J. W.-K. Hong. Measurement
analysis of mobile traffic in enterprise networks. In Asia-Pacific Network
Operations and Management Symposium, pages 1-4. IEEE, 2011.

M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde. Analyzing
Android encrypted network traffic to identify user actions. [EEE
Transactions on Information Forensics and Security, 11(1):114-125,
2015.

H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin.
A first look at traffic on smartphones. In Proceedings of the Internet
Measurement Conference, pages 281-287. ACM, 2010.

K. Fukuda and K. Nagami. A measurement of mobile traffic offloading.
In International Conference on Passive and Active Network Measure-
ment, pages 73-82. Springer, 2013.

X. Gao, D. Liu, D. Liu, and H. Wang. On energy security of
smartphones. In Proceedings of the ACM Conference on Data and
Application Security and Privacy, pages 148150, 2016.

X. Gao, D. Liu, D. Liu, H. Wang, and A. Stavrou. E-android: A new
energy profiling tool for smartphones. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), pages 492-502.
IEEE, 2017.

C. Gibler, R. Stevens, J. Crussell, H. Chen, H. Zang, and H. Choi.
Adrob: Examining the landscape and impact of Android application
plagiarism. In Proceedings of the annual international conference on
Mobile systems, applications, and services, pages 431-444. ACM, 2013.
Google. Android API 25 Class Index. https://developer.android.com/
reference/classes.

Google. Google Play Store. https://play.google.com/store.

Google. Fi data plan. https:/fi.google.com/about/plan/, 2019.

B. Gruver. dexlib2 library. https://github.com/JesusFreke/smali/tree/
master/dexlib2, 2017.

S. Hao, D. Li, W. G. Halfond, and R. Govindan. Estimating mobile
application energy consumption using program analysis. In [EEE
Proceedings of the International Conference on Software Engineering,
pages 92-101, 2013.

S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan. Puma:
programmable Ul-automation for large-scale dynamic analysis of mobile
apps. In Proceedings of the annual international conference on Mobile
systems, applications, and services, pages 204-217. ACM, 2014.

A. Kundu, Z. Lin, and J. Hammor. Energy attacks on mobile devices.
https://arxiv.org/pdf/1704.04464.pdf, 2017.

D. Li, S. Hao, J. Gui, and W. G. Halfond. An empirical study of the
energy consumption of Android applications. In IEEE International
Conference on Software Maintenance and Evolution, pages 121-130,
2014.

L. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon. An investigation into
the use of common libraries in Android apps. In International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
volume 1, pages 403-414. IEEE, 2016.

12

[24]

(25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and
W. Huo. Libd: scalable and precise third-party library detection in
Android markets. In International Conference on Software Engineering
(ICSE), pages 335-346. IEEE/ACM, 2017.

M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. Van Der Veen, and C. Platzer. Andrubis—1,000,000 apps later: A view
on current Android malware behaviors. In Third International Workshop
on Building Analysis Datasets and Gathering Experience Returns for
Security (BADGERS), pages 3-17. 1IEEE, 2014.

Z. Ma, H. Wang, Y. Guo, and X. Chen. Libradar: fast and accurate
detection of third-party libraries in Android apps. In Proceedings of
the international conference on software engineering companion, pages
653-656. ACM, 2016.

A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation
system for Android apps. In Proceedings of the Joint Meeting on
Foundations of Software Engineering, pages 224-234. ACM, 2013.

G. Maier, F. Schneider, and A. Feldmann. A first look at mobile hand-
held device traffic. In International Conference on Passive and Active
Network Measurement, pages 161-170. Springer, 2010.

A. Narayanan, L. Chen, and C. K. Chan. Addetect: Automated detection
of Android ad libraries using semantic analysis. In International
Conference on Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), pages 1-6. IEEE, 2014.

P. Pearce, A. P. Felt, G. Nunez, and D. Wagner. Addroid: Privilege
separation for applications and advertisers in Android. In Proceedings
of the Symposium on Information, Computer and Communications
Security, pages 71-72. ACM, 2012.

T. Petsas, A. Papadogiannakis, M. Polychronakis, E. P. Markatos, and
T. Karagiannis. Rise of the planet of the apps: A systematic study of
the mobile app ecosystem. In Proceedings of the Internet Measurement
Conference, pages 277-290. ACM, 2013.

M. Pliimicke. Java type unification with wildcards. In Applications of
Declarative Programming and Knowledge Management, pages 223-240.
Springer, 2007.

I. Reyes, P. Wijesekera, J. Reardon, A. E. B. On, A. Razaghpanah,
N. Vallina-Rodriguez, and S. Egelman. “won’t somebody think of the
children?” examining COPPA compliance at scale. Proceedings on
Privacy Enhancing Technologies, (3):63-83, 2018.

S. Rosen, A. Nikravesh, Y. Guo, Z. M. Mao, F. Qian, and S. Sen.
Revisiting network energy efficiency of mobile apps: Performance in
the wild. In Proceedings of the Internet Measurement Conference, pages
339-345. ACM, 2015.

rovo89. Xposed Framework APIL
packages.html, 2019.

M. Sebastian, R. Rivera, P. Kotzias, and J. Caballero. Avclass: A tool
for massive malware labeling. In International Symposium on Research
in Attacks, Intrusions, and Defenses, pages 230-253. Springer, 2016.
SensoTower. Global app revenue for q1-2019. https://sensortower.com/
blog/app-revenue-and-downloads-q1-2019, 2019.

S. Shekhar, M. Dietz, and D. S. Wallach. Adsplit: Separating smartphone
advertising from applications. In {USENIX} Security Symposium
({USENIX} Security), pages 553-567, 2012.

Statista. Combined global app down-
loads. https://www.statista.com/statistics/604343/
number-of-apple-app-store-and- google-play-app-downloads-worldwide/,
2019.

http://api.xposed.info/reference/

Statista. Number of available apps in apple
app store. https://www.statista.com/statistics/779768/
number-of-available-apps-in-the-apple-app-store-quarter/, 2019.

Statista. Number of available apps in google-
play store. https://www.statista.com/statistics/289418/

number-of-available-apps-in-the- google-play-store-quarter/, 2019.

A. Tongaonkar, S. Dai, A. Nucci, and D. Song. Understanding mo-
bile app usage patterns using in-app advertisements. In International
Conference on Passive and Active Network Measurement, pages 63-72.
Springer, 2013.

N. Vallina-Rodriguez, J. Shah, A. Finamore, Y. Grunenberger, K. Papa-
giannaki, H. Haddadi, and J. Crowcroft. Breaking for commercials:
characterizing mobile advertising. In Proceedings of the Internet
Measurement Conference, pages 343-356. ACM, 2012.

VirusTotal. Malware Scanner. https://www.virustotal.com, 2019.

H. Wang, Z. Liu, J. Liang, N. Vallina-Rodriguez, Y. Guo, L. Li,
J. Tapiador, J. Cao, and G. Xu. Beyond Google play: A large-scale

[46]

(471

(48]

[49

[50]

[51]

comparative study of Chinese Android app markets. In Proceedings of
the Internet Measurement Conference, pages 293-307. ACM, 2018.

X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Profiledroid: multi-
layer profiling of Android applications. In Proceedings of the annual
international conference on Mobile computing and networking, pages
137-148. ACM, 2012.

Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman.
Identifying diverse usage behaviors of smartphone apps. In Proceedings
of the conference on Internet measurement conference, pages 329-344.
ACM, 2011.

X.Zeng, D. Li, W. Zheng, F. Xia, Y. Deng, W. Lam, W. Yang, and T. Xie.
Automated test input generation for Android: Are we really there yet in
an industrial case? In Proceedings of the International Symposium on
Foundations of Software Engineering, pages 987-992. ACM, 2016.

X. Zhang, A. Ahlawat, and W. Du. Aframe: Isolating advertisements
from mobile applications in Android. In Proceedings of the Annual
Computer Security Applications Conference, pages 9-18. ACM, 2013.

O. Zungur, G. Suarez-Tangil, G. Stringhini, and M. Egele. BorderPatrol:
Securing BYOD using fine-grained contextual information. In Interna-
tional Conference on Dependable Systems and Networks (DSN), pages
460-472. IEEE/IFIP, 2019.

C. Zuo and Z. Lin. Smartgen: Exposing server urls of mobile apps with
selective symbolic execution. In Proceedings of the International Con-
ference on World Wide Web, WWW ’17, pages 867-876. International
World Wide Web Conferences Steering Committee, 2017.

13

