
1556-6056 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCA.2017.2784416, IEEE Computer
Architecture Letters

JOURNAL OF COMPUTER ARCHITECTURE LETTERS, VOL. 16, NO. 2, JULY-DECEMBER 2017 1

Nile: A Programmable Monitoring Coprocessor
Leila Delshadtehrani, Schuyler Eldridge, Sadullah Canakci, Manuel Egele, and Ajay Joshi

Department of Electrical and Computer Engineering, Boston University
{delshad, schuye, scanakci, megele, joshi}@bu.edu

Abstract—Researchers widely employ hardware performance counters (HPCs) as well as debugging and profiling tools in processors
for monitoring different events such as cache hits, cache misses, and branch prediction statistics during the execution of programs. The
collected information can be used for power, performance, and thermal management of the system as well as detecting anomalies or
malicious behavior in the software. However, monitoring new or complex events using HPCs and existing tools is a challenging task
because HPCs only provide a fixed pool of raw events to monitor. To address this challenge, we propose the implementation of a
programmable hardware monitor in a complete system framework including the hardware monitor architecture and its interface with an
in-order single-issue RISC-V processor as well as an operating system. As a proof of concept, we demonstrate how to
programmatically implement a shadow stack using our hardware monitor and how the programmed shadow stack detects stack buffer
overflow attacks. Our hardware monitor design incurs a 26% power overhead and a 15% area overhead over an unmodified RISC-V
processor. Our programmed shadow stack has less than 3% performance overhead in the worst case.

Index Terms—Hardware Coprocessor, Programmable Hardware, Shadow Stack, Stack Buffer Overflow Attack
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1 INTRODUCTION

Microprocessor hardware usage information, gleaned dur-
ing software execution, provides valuable information that
can be utilized for optimizing and analyzing processor be-
havior, for example, this information could be used for pow-
er/thermal management or malicious program detection.
Software tools that capture hardware usage information,
like Intel Processor Trace [11] using dedicated hardware or
VTune [14] and PERF [6] that rely on Hardware Performance
Counters (HPCs), do exist. Dedicated hardware or HPCs
enable the monitoring of a variety of events, but, due to
their fixed nature, limit the tracking of new, complex events
selected to elide specific information necessary for new
optimizations or analyses.

This limited view of run-time hardware information is
starkly contrasted with the old system simulator SimOS [16].
SimOS allowed system designers to expose arbitrary low-
level hardware events and compose these into high-level
software actions. The utility of such an event–action model
for the composition of hardware events that drive run-time
optimization and analysis is evident. However, SimOS is
a simulation environment. Flexible, software-based tech-
niques, like DynamoRIO [3], enable similar introspection
but at extreme cost. Nonetheless, such introspection must,
for certain applications like security analysis, be transparent
and out-of-band to the microprocessor.

Towards a model like SimOS, that enables flexible and
programmable event monitoring and action taking at low
performance and power overheads, we propose the imple-
mentation of a new hardware monitoring coprocessor, Nile.1

Nile provides a collection of programmable event/action
units that can be composed to track complex semantic
events. We demonstrate an implementation of Nile as a co-
processor of a RISC-V microprocessor. We minimally modify
the RISC-V core to expose a design-time specified commit
log that exposes information about instruction execution.

1. The Nile monitor is a member of the monitor lizard genus.

Internally, Nile contains a number of configurable Match
Units (MUs) that process the commit log. We provide a
software library consisting of a set of functions for con-
figuring and programming Nile and, additionally, modify
the Linux Operating System (OS) to support Nile. A user
can then program each of the MUs to monitor a separate
event, count the number of event occurrences, and take a
corresponding action. Furthermore, MUs can communicate
with each other through a shared memory structure to allow
for more complex event definition. Overall, we make the
following contributions:

• Design: We propose a novel, flexible and pro-
grammable hardware mechanism as well as the soft-
ware and OS support for monitoring the execution of
programs in real time.

• Application: We demonstrate the flexibility and pro-
grammability of our mechanism to track complex
events via a security case study—detecting stack buffer
overflows with a shadow stack.

• Implementation: We implement a prototype of our
hardware monitor as a coprocessor of RISC-V processor
and evaluate it running Linux on an FPGA. Our pro-
grammed shadow stack incurs overheads of less than
3% in performance, 26% in power, and 15% in area.

2 PROGRAMMABLE HARDWARE MONITORS

In this section, we describe the microarchitectural design of
Nile, the software library for accessing it and the required
changes in the Linux OS for communicating with Nile.

2.1 Nile Microarchitecture
We implement Nile as a coprocessor that interfaces with the
RISC-V Rocket processor [1]. Figure 1 illustrates the com-
munication between the Rocket processor and Nile through
the Rocket Custom Coprocessor (RoCC) interface. We have
extended this interface to carry instruction execution infor-
mation in the form of a commit log. We collect the commit
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Fig. 1. Nile as a RISC-V Rocket Custom Coprocessor (RoCC). Nile
consists of several Match Units (MUs) and an Action Unit. Each MU
monitors for an event while the Action Unit manages actions via inter-
rupts or memory reads/writes.

log from the write-back stage of the processor, which allows
us to decouple the program execution from our monitoring
process. Note that for an out-of-order processor, we can col-
lect the commit log information in parallel with the commit
stage to reduce the performance overhead. Additionally, we
expect Nile to incur less area and power overheads when
integrated with an out-of-order core.

The commit log consists of five separate entries includ-
ing the undecoded instruction (inst), the current Program
Counter (PC) (pc_src), the next PC (pc_dst), the memo-
ry/register address used in the current instruction (addr),
and the data accessed by the current instruction (data).
The inst entry is the length of an instruction (32-bit nor-
mally, 16-bit for compressed instructions) while all the other
entries of the commit log are the processor’s word length
(usually 64-bit). Nile receives the incoming commit log trace
from the processor and broadcasts this to all MUs.

Each of the MUs is programmed to monitor a dis-
tinct event indicated by a wildcard match on the commit
log. Whenever the matching condition evaluates to true,
a counter in the corresponding MU increases. Once the
counter reaches a programmed threshold, it triggers an
activation signal. The MU sends an activation packet to
the Nile Action Unit (discussed below). This packet con-
sists of an address (MU_addr), some data (MU_data), and
an MU identification number (MU_id). The MU_data is
programmable and can contain any of the contents of the
commit log while MU_addr contains the current value of
PC (pc_src).

An MU may be programmed by a user process (to
monitor only its own execution) or by a supervisor/hy-
pervisor to monitor processes with lower permissions. MU
configuration then becomes part of a process’ context and
is preserved across context switches by the OS. There is a
trade-off between the number of MUs and the performance,
power, and area overheads of Nile. However, the user can
monitor more events than the available number of MUs

through time-multiplexing the MUs (similar to HPCs).
The Nile Action Unit consists of control, storage, and an

activation queue (see Figure 1). The activation queue stores
the incoming activation packets from MUs. As long as the
activation queue is not empty, the control unit dequeues a
packet and takes a corresponding action in two different
ways:

1) Nile triggers an interrupt over the RoCC interface
and a supervisor handles it.

2) Nile performs a configurable matching operation,
which can trigger an interrupt, between the MU_data
of the dequeued packet and a data stored in a shared
memory space. More than one MU can take an action
by reading/writing over the shared memory space,
where the address is specified by MU_addr of the
packet or an address stored in the Action Unit local
storage.

For the purposes of concrete examples, we briefly de-
scribe the usage of these actions to monitor different high-
level events:

• Sensitive Data Protection: Using the first action type,
any access to a specific memory region results in an
interrupt.

• Stack Buffer Overflow Protection: Using the second
action type, a shadow stack is built in memory from
one MU writing data on function calls and another MU
checking data on function returns.

Note: these examples are intended to be instructional and
not definitively encompassing of the capabilities of the Nile
event–action model.

The second example highlights the intended capability
of communication between two or more MUs through a
shared memory space. In this case, the OS allocates a shared
memory space (as a user-space memory, which is protected
by one of the MUs as a sensitive data region) and provides
base/bounds information of this region to Nile. The usage
of this shared memory region is up to the designer, e.g.,
multiple MUs may all write to the shared memory. Addi-
tionally, the designer can configure the control unit to per-
form a matching operation based on a difference value,
e.g., the difference between a read request data and a
value written in the shared memory space. In Section 3, we
elaborate on the shadow stack example and describe the
programming of Nile to achieve this result.

2.2 Nile Software Interface

We provide a set of functions for configuring the Nile
MUs and communicating with them. These functions utilize
“custom” instructions in the RISC-V ISA, which are in-
tended to interface with accelerators/coprocessors. Table 1
lists these functions and specifies whether each of them
is accessible through a user-space program, OS, or both.
A user configures the matching pattern of a specific MU
using the MU_id and a matching input for a specific process
or all processes. The matching input defines the matching
conditions for each of the commit log entries. A matching
condition consists of matching and wildcard masking bits.
As an example, according to the RISC-V ISA, a ret instruc-
tion is a pseudo-instruction defined by JALR when rd=x0
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TABLE 1
Nile Application Programming Interface (API)

Function Description Accessibility

set pattern(MU id, *mask, pid) Set the MU’s matching pattern User
comm(MU id1, MU id2, *comm) Set the communication type of two MUs User

reset(MU id) Reset the match counts for a specific MU User/OS
enable(MU id) Enable monitoring for an MU User/OS
disable(MU id) Disable monitoring for an MU User/OS

set thresh(MU id, count) Set the match threshold to trigger an action User/OS
count = rd count(MU id) Read the value of an MU User/OS
wr count(MU id, count) Write the value of an MU OS

wr sm base(*addr) Write the base address of the shared memory OS
wr sm offset*addr) Write the offset of the shared memory OS

wr sm size(size) Write the size of the shared memory OS
base sm = rd sm base Read the base address of the shared memory OS

offset sm = rd sm offset Read the offset of the shared memory OS
size sm = rd sm size Read the size of the shared memory OS

and rs1=x1. Subsequently, we can monitor a ret (“jalr
x0,x1,0”) using the following matching condition:

ret : inst = 0x00008067; mask = 0x00000000

Accordingly, the matching condition for inst evaluates
to true when the current instruction is an exact match with
the value of a ret instruction. For all the other entries of
the commit log (pc_src, pc_dst, addr, and data), we set
the masking value to 0xffffffffffffffff, indicating all
these fields are “don’t cares”.

The OS utilizes the last seven functions listed in Table 1
for managing the shared memory allocated for communica-
tion between MUs. In the next section, we will emphasize
the importance of these functions and describe how we
employ them to program our sample use case.

2.3 Operating System Support for Nile

We extend Linux to support Nile and provide a full system
configuration. This configuration offers the flexibility of
monitoring different processes through programming Nile
MUs. However, this integration demands equipping the OS
with specific support for communicating with the hardware,
which we provide at the process level. To this end, we alter
the task_struct in the Linux Kernel to save/restore the
Nile configuration of each process.

We modify the Linux kernel to initialize the Nile in-
formation before the process starts its execution. Once the
user configures Nile for monitoring a process, we set a flag
for that process. As mentioned earlier, the OS allocates a
shared memory space for communication between MUs.
After allocation, the OS stores the base address, the offset,
and the size of the shared memory as part of the Nile
information for the process stored in the task_struct.
During a context switch, the OS reads the MU information
(counter and threshold values) from Nile and stores them
as the Nile information of the previous process. Before the
OS context switches to a monitored process, it reads the MU
information of the next process and writes it to Nile registers
using the functions provided in the Nile software library.

The OS is responsible for handling an incoming interrupt
triggered by one of the MUs. We configure our RISC-V
processor to delegate the interrupt to the OS. In our current
implementation, the OS terminates the process that caused
the interrupt based on the assumption that an anomaly or
violation has triggered the interrupt.

3 EXAMPLE APPLICATION: SHADOW STACK

Due to the programmable design of Nile, a user can employ
it in diverse applications such as attack detection, anomaly
detection, and online profiling. In this section, we discuss
our implementation of one possible use case for Nile: a
shadow stack for detecting stack buffer overflow attacks.

A shadow stack is a secondary stack, dedicated for
storing the return addresses to protect them from being
tampered with by an attacker. A stack buffer overflow attack
occurs when a program writes data to a memory address on
the program’s call stack, such that the data is larger than an
allocated buffer on the stack. A number of schemes, includ-
ing shadow stack, have been developed for preventing stack
buffer overflow and return-oriented programming attacks.

We use Nile for implementing a hardware shadow stack
for protecting against stack buffer overflow attacks. To this
end, we program one of the MUs for monitoring call and
another one for monitoring ret instructions. We specify the
communication method between these two MUs through
the shared memory: the first MU writes the pc_src of
the call while the second MU reads the written value
in the shared memory and compares it with the pc_dst
of the ret. The shared memory address is determined by
the base/offset information programmed to act as a shadow
stack pointer. We configure the difference for the match-
ing operation to be equal to 4 (note that call and ret are
32-bit instructions in RISC-V ISA). If the difference between
the pc_src and pc_dst values is not equal to 4, the control
unit triggers a RoCC interrupt. The OS handles the interrupt
by terminating the process that caused the interrupt.

Recently, Intel has implemented a hardware shadow
stack as part of the control-flow enforcement technology.
As opposed to Intel’s rigid shadow stack implementation,
we can program Nile to achieve the same functionality with
moderate performance overhead. Furthermore, Nile’s flexi-
bility and the genericity of the event–action model allows
the user to perform a variety of new monitoring tasks
without new dedicated hardware, e.g., Nile can act as a code
coverage engine by monitoring all taken branches.

4 EVALUATION

In this section, we discuss our approach to validate the
functionality of Nile as well as our evaluation of Nile using
performance, power, and area metrics.

4.1 Experimental setup
We implement Nile as a RoCC (using Chisel HDL [2]) and
connect it to the RISC-V Rocket processor [1]. We use the Xil-
inx Zynq Zedboard evaluation board [15] for prototyping.
We use a modified RISC-V Linux port of the Linux kernel
4.6.2 in all of our experiments.

We compare the Nile design with a baseline implemen-
tation of the Rocket processor and program Nile to act as
a shadow stack using two of the available MUs in our
design. For measuring the performance, we calculate the run
time of 12 applications from MiBench [10] benchmark suites
running in the Linux OS. We use Cadence ASIC toolflow
for 45nm NanGate process [13] to design Nile to operate at
1 GHz. We then measure the average power consumption
and the area of our system (post place and route).
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Fig. 2. The performance overhead of Nile for MiBench applications.

4.2 Results
We verify the correct functionality of our programmed
shadow stack using benchmarks and buffer overflow vul-
nerable programs. All of our benchmark programs run
successfully with shadow stack, thus Nile caused no false
positives. We develop simple buffer overflow vulnerable
programs using strcpy and memcpy functions. We exploit
this vulnerability by choosing specific inputs for our devel-
oped programs with the intention of gaining the control for
performing arbitrary computations. However, Nile is able to
detect the mismatches between calls and rets, triggering
an interrupt, and terminating the process.

Figure 2 shows the performance overhead of Nile over
our baseline RISC-V Rocket processor. Adding Nile incurs
0.78% performance overhead on average for our evaluated
MiBench benchmark applications while our worst case per-
formance overhead (for Stringsearch) is less than 3%. The
main sources of performance overhead for Nile are increas-
ing the number of cache requests and storing/recovering the
Nile information to/from OS. Cache latency can be reduced
by writing to higher levels in the memory hierarchy. The
power consumption of Nile is 0.009 mW/MHz while its
area is 0.06 mm2. In comparison to our baseline RISC-V
processor [12], Nile incurs about 26% power and 15% area
overheads.2

5 RELATED WORK

A wide range of dedicated hardware monitors have been
proposed for different use cases such as performance evalu-
ation of real-time systems [17], measuring cache eviction in-
formation [4], and secure program execution [5], [9], [7], [8].
Among monitoring mechanisms for security, HAFIX [5]
provides hardware support against ROP and buffer over-
flow attacks. Our programmed shadow stack is capable of
detecting ROP attacks, which we did not discuss due to the
limited space. PUMP [9] extends an in-order processor with
programmable software policies for tag-based monitoring;
however, it brings about invasive and drastic changes to
the processor pipeline. Nile provides flexible monitoring by
only applying minimal non-invasive changes to the pro-
cessor. FlexCore [7] architecture is a re-configurable fabric

2. Our baseline Rocket processor has 0.034 mW/MHz power con-
sumption and its area is 0.39 mm2 using TSMC 40GPLUS technol-
ogy [12]. Not having access to this process, we measured the power
and area of Nile using the 45nm NanGate technology process.

decoupled from the processor, which provides a range of
monitoring and bookkeeping techniques for detecting se-
curity and reliability errors. Similar to Nile, Harmoni [8]
employs a co-processor designed for monitoring and ana-
lyzing the instruction trace from the processor. Harmoni can
be utilized for applying different run-time tagging-based
monitoring techniques. Note that unlike these monitoring
mechanisms, Nile is not restricted to providing security, and
has other usage including application fuzzing and power
management.

6 CONCLUSION

In this work, we presented the design and implementa-
tion of Nile, a programmable hardware monitor coproces-
sor capable of tracking complex semantic events. Nile has
broad usage including security, application fuzzing, and
power management. For security use case, when Nile is
programmed to behave as a shadow stack, it incurs less
than 3% performance overhead. For the future work, we
plan to provide more possible actions upon detecting a
match, e.g. executing a function specified by the user. We
will also develop programmable features for monitoring
memory and cache accesses.
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