
Saphire: Sandboxing PHP Applications with
Tailored System Call Allowlists

Alexander Bulekov∗ Rasoul Jahanshahi∗ Manuel Egele
∗ Equal contribution joint first authors

Boston University
{alxndr,rasoulj,megele}@bu.edu

Abstract

Interpreted languages, such as PHP, power a host of platform-
independent applications, including websites, instant messen-
gers, video games, and development environments. With the
flourishing popularity of these applications, attackers have
honed in on finding and exploiting vulnerabilities in inter-
preted code. Generally, all parts of an interpreted application
execute with uniform and superfluous privileges, increasing
the potential damage from an exploit. This lack of privilege-
separation is in stark violation of the principle of least privi-
lege(PoLP).

Despite 1,980 web app remote code execution (RCE) vul-
nerabilities discovered in 2018 alone [25], current defenses
rely on incomplete detection of vulnerable code, or exten-
sive collections of benign inputs. Considering the limitations
of bug-finding systems, the violation of the PoLP exposes
systems to unnecessarily-high risks.

In this paper, we identify the current challenges with apply-
ing the PoLP to interpreted PHP applications, and propose a
novel generic approach for automatically deriving system-call
policies for individual interpreted programs. This effectively
reduces the attack surface (i.e., set of system-calls) an exploit
can leverage to the system-calls the script needs to perform
its benign functionality.

We name our implementation of this approach, Saphire,
and thoroughly evaluate the prototype with respect to its se-
curity and performance characteristics. Our evaluation on 21
known vulnerable web apps and plugins shows that Saphire
successfully prevents RCE exploits, and is able to do so with
negligible performance overhead (i.e., <2% in the worst case)
for real-world web apps. Saphire performs its service with-
out causing false positives over automatically and manually
generated benign traffic to each web app.

Keywords: interpreted language, interpreter PHP, web ap-
plication, system-call, remote code execution.

1 Introduction

Interpreted languages, such as PHP and JavaScript, are the
foundation of modern-day computing. This is particularly true
for the web, where online social networks, eCommerce, and
online news attract the attention of billions of daily users. The
ensuing swaths of personal, financial, and otherwise sensitive
information held by these entities, make web sites attractive
targets for cyber attacks. Beyond localized leaks of informa-
tion, web apps and the interpreted languages that power them
have also been at the core of data breaches that affect society
at large. In 2015 attackers allegedly leveraged vulnerabilities
in plugins of the WordPress and Drupal web apps to leak what
has become known as the “Panama Papers” [36]. As testa-
ment to this crisis, Symantec reports [10] that in 2017, one
in every 13 web requests was malicious. What exacerbates
the situation is that, according to W3Techs [43], nine out of
ten most popular web-development languages are interpreted.
Furthermore, 2017 saw a 400% year-over-year increase [24]
of reported vulnerabilities in the top four most popular con-
tent management systems. All four are interpreted web apps
and have attracted significant attention from attackers.

Arbitrary code-executions(ACE) are the most dangerous
class of application vulnerabilities, as they allow an attacker to
take complete control over the running application. The root
issue that makes ACE so hazardous is the fact that modern
interpreted applications do not adhere to the principle of least
privilege (PoLP) [46]. An attacker’s exploit executes with
ambient authority and is constrained only by the operating
systems’ access control mechanisms.

Some at-risk projects have recognized this problem and
taken steps to intentionally reduce the run-time privileges of
their software. By relinquishing access to unneeded system
resources and API’s, the software reduces the potential impact
of a vulnerability. This practice has been widely adopted by
native applications such as Chrome, Firefox, Tor, QEMU,
and OpenSSH, but it is not in common use by interpreted
applications. The reason for this is that, by design, interpreters
introduce a layer of abstraction between the program and the

underlying system which manages the system resources and
APIs needed by the interpreted code. This leads to the status-
quo, where all interpreted scripts share the same ubiquitous
privilege with respect to the system-calls they can issue.

Existing defenses to detect and mitigate code-execution
vulnerabilities have been built on static taint analysis [62], the
analysis of code property graphs [5], or dynamic taint analy-
sis [22]. While static analysis is promising, the dynamic lan-
guage features (e.g., dynamic includes or class auto-loading
in PHP described in Sec. 4) of interpreted languages can ren-
der static analysis impractical. Dynamic analyses can, if the
induced performance overhead allows, be run in an always-on
mode of deployment where interpreted programs are pro-
tected against ACE vulnerabilities at runtime. To this end,
ZenIDS [22] is a dynamic taint analysis tool that builds an
execution profile of the PHP interpreter while processing
benign requests. Once these profiles are trained for a given
web apps, ZenIDS is switched into enforcement mode, where
it rejects requests that violate the learned profiles. Unfortu-
nately, such dynamic systems require training for each ap-
plication with a representative set of known benign requests.
Obtaining such a set of requests remains a known-hard and
open problem that affects the utility of any learning-based
defense. During the evaluation, ZenIDS raised thousands of
alerts for benign crawling traffic and requests to nonexistent
scripts. Furthermore, our best attempts involving an ensem-
ble of automated crawling, unit-testing and manual-crawling
techniques achieved an average coverage of 33% during our
evaluation over modern web apps. The difficulty of exercising
web-applications is further evidenced by [4], where after a
similar ensemble of techniques applied to a different set of
applications, 53.2% lines belonged to functions that never
executed. Comparing our line coverage with [4]’s lines after
function-debloating (an upper bound for line-coverage), we
achieved similar or higher coverage for apps shared across
our evaluations: phpMyAdmin, WordPress, and Magento.

Instead of relying on representative benign behavior or stat-
ically searching for vulnerabilities, this paper introduces an
abstraction-aware technique for applying the PoLP to inter-
preted PHP applications. We treat the capability to issue a
system call as a privilege. Thus, the PoLP dictates that each
PHP program should only be allowed to invoke the system
calls that it needs to function correctly. System call sandbox-
ing techniques have long been part of the defensive arsenal
of security researchers and practitioners, and they are com-
monly applied by native applications, such as web-browsers
(Chrome) and container-environments (Docker). However, the
generic design of interpreters, such as PHP, requires that the
sandbox be custom-tailored for each program the interpreter
executes to provide meaningful security benefits.

As existing mechanisms such as SELinux and AppArmor
cannot distinguish instances of interpreters that execute dif-
ferent scripts, these techniques are not applicable to solve the
challenges of ACE vulnerabilities in interpreted languages

(see §2.2). To improve this unsatisfactory situation, this pa-
per presents a principled approach to retrofit interpreters and
the programs they interpret to adhere to the PoLP.

As described above, the layer of abstraction introduced
by the generic functionality of interpreters prevents the use
of existing system call sandboxing techniques. Hence, our
approach analyzes the programs that might be executed by
the interpreters, while being cognizant of this additional ab-
straction layer, and devises individual so-called system call
profiles (i.e., the set of system-calls a program is allowed to
make). This approach consists of three essential steps can be
applied to most interpreted languages. Step 1 analyzes the
API the interpreter exposes to the application identifies the
set of system-calls each API function can trigger. Step 2
identifies the API functions used by each interpreted program.
Combined with the knowledge from the first step, this cre-
ates the system-call profile for each interpreted program. The
final step 3 , enforces the system-call profile whenever the
interpreter executes the corresponding program.

Saphire does not perform anomaly-detection or explicitly
prevent bugs, but severely limits the potential severity of their
exploitation. While this PoLP-based approach can be applied
for various interpreted languages, we instantiate it in Saphire,
our prototype implementation that automatically retrofits web
apps written in PHP with a custom-tailored system call al-
lowlist for each script comprising the application. Throughout
the execution of a script, the allowlist applies to the interpreter
and any of its child-processes. Effectively, Saphire retrofits
PHP web apps to adhere to the principle of least privilege and
reduces the attack surface (i.e., the set of available system-
calls) that are available to ACE exploits.

We evaluate our Saphire prototype on six PHP web apps
and nine plugins that, in aggregate, contain 21 known ACE
vulnerabilities. Saphire prevents all these attacks from suc-
ceeding. Additionally, throughout our false-positive evalua-
tion, based on an ensemble of techniques, the recommended
configuration of Saphire raises no false alerts. Since Saphire
relies on built-in features of the kernel to enforce the system-
call allowlists, it causes only minor overhead to request pro-
cessing times.
In summary, we make the following contributions:

• We identify that effective system-call-level sandboxing
of PHP programs requires an integrated analysis over
both the PHP interpreter and the interpreter programs.

• We propose a novel 3-stage approach to identify and
enforce system-call profiles for interpreted applications
and describe viable implementations of each stage (§3).

• We present Saphire as our prototype implementation
of this approach for PHP applications (§4). Saphire is
implemented as a PHP extension and can be deployed
without modifications to the PHP runtime or the web
apps it protects. To the best of our knowledge, Saphire is

the first PHP security system to reason about the entire
execution process, including the interpreted code, the
interpreter, and all of the native libraries it relies on.

• We evaluate Saphire thoroughly for its security and per-
formance characteristics on six popular web-apps and
nine related vulnerable plugins (§5). Saphire detects and
prevents exploits against all the 21 previously known
ACE vulnerabilities in our evaluation data set. We in-
stalled Saphire alongside both the Apache and nginx
web-servers, and confirmed that it can block exploits for
both. Moreover, Saphire protects vulnerable web apps
without causing false positives during benign use of the
web-apps, with a low, < 2% overhead in the worst-case.

In the spirit of open science, we will open source our entire
implementation along with the testing and evaluation harness.

2 Background

In this section, we describe the threat of remote code exe-
cution, explain how system-calls play a key role in vulner-
ability exploitation, and discuss existing exploit mitigation
techniques. Finally, we describe interpreted programs, and the
fundamental challenges they create for existing mitigations.
These factors motivate the design of our approach, which we
use as a basis for our implementation – Saphire.

2.1 Remote Code Execution Vulnerabilities
Remote Code Execution (RCE) occurs when a network-
attacker gains the ability to execute arbitrary code (ACE) on
a target system. Since we implemented Saphire for PHP, and
PHP is used mostly for remotely-accessible web-applications,
the rest of the paper talks mostly about RCE attacks, but
Saphire’s defense does not depend on the trasmission-medium
for the attack. RCE exploits against interpreted programs gen-
erally rely on improper usage of language features. Notably,
RCE exploits commonly rely on: Code Injection (OWASP
[60] A1) , Insecure Deserialization (OWASP A8) or , Unre-
stricted File Uploads.

Once the attacker exploits an RCE vulnerability, they lever-
age the exploited process to run a payload to, generally, gain
access to additional resources. The operating system pro-
vides a system-call interface which processes must use to
access privileged resources, such as network, file system, and
process-management. Therefore, in order for the attack to
be fruitful, the payload must invoke system-calls to access
resources managed by the OS. For example, a simple payload
may try to expose a shell which the attacker can connect to
remotely. Such a payload requires, at minimum, access to the
network and process-management, to spawn a shell process.

2.2 System Calls and Mitigation Techniques
An operating system manages the resources on a computer
and provides user-space processes with mediated access to

these resources via the system-call API. Programs and pay-
load code alike can only communicate with the process’ envi-
ronment through the system-call API.

Recognizing that the system-call API is a key interface
which is used by both benign and compromised processes,
operating systems provide methods for limiting the system-
calls accessible to an attacker who has exploited a process.
For example, with Linux’ seccomp, a process can provide the
kernel with a filter, which the kernel uses to decide which
system-calls to allow from the process, in the future. Once the
filter is installed, it is enabled for the lifetime of the process,
and it is not possible to remove restrictions. If a system-call is
filtered, the kernel kills the process. seccomp is used for sand-
boxing major client and server software including, Chrome,
Firefox, Tor, QEMU, and OpenSSH. The filtering is done by
the kernel itself, so the overhead is negligible.

There is a wealth of both static and dynamic techniques to
identify the system-calls a program relies on, for filtering pur-
poses [15,18,20,28,31,32,42,55]. Some have even suggested
generating system-call filters during a binary’s build-time [17].
Past system-call filtering techniques focus on analyzing the
system-calls performed by a binary program, but interpreters
introduce a generic abstraction-layer between the system-call
interface and the interpreted program.

Linux also supports security modules (LSM), such as Ap-
pArmor and SELinux, which add support for access control
policies, including mandatory access control (MAC). MAC
rule-sets can be used to explicitly limit the “capabilities” of
a program, such as access to network or specific files. Se-
curity modules allow an administrator to manually secure
a process, if its interactions with the OS are well-defined.
Unfortunately, LSMs cannot distinguish between individual
scripts executed by an interpreter. Hence, it is difficult to
build a MAC rule-set for an interpreter while enforcing the
PoLP for individual interpreted programs. As testament to
the limited applicability of LSMs to interpreted programs,
we followed an AppArmor-based hardening procedure sug-
gested by Docker Inc, specifically for use with WordPress1.
Unfortunately, even this tailored AppArmor ruleset does not
prevent attacks against WordPress that exploit the [54] file-
upload vulnerability. To improve the status-quo for securing
interpreter processes at the OS-interface, our approach for
system-call-filtering systems considers, both the interpreter
and the interpreted program as a single principle.

2.3 Interpreters
Interpreted programs rely on a separate application - the in-
terpreter, for execution. Separating the binary code in the
interpreter from the actual program makes code portable and
allows for straightforward implementation of advanced lan-
guage features, such as reflection and dynamic-scoping. Es-
sentially, the interpreter is a layer of abstraction, separating

1https://github.com/docker/labs/tree/master/security/
apparmor#step-5-custom-apparmor-profile

https://github.com/docker/labs/tree/master/security/apparmor#step-5-custom-apparmor-profile
https://github.com/docker/labs/tree/master/security/apparmor#step-5-custom-apparmor-profile

the program code from the low-level details of the underlying
operating system. Since interpreted programs still need access
to system resources (e.g., files or network sockets), they must
have a means of communicating with the kernel. To bridge
the gap created by the abstraction, and provide programs with
access to OS-managed resources, interpreters provide an API
to the programs they execute.

For example, the PHP interpreter’s built-in API provides
access to the file-system, network, databases, as well as un-
privileged resources such as built-in data structures and string-
operations. When an API feature requires access to OS-
managed resources, such as network sockets or file descrip-
tors, the interpreter issues a system-call, which is handled by
the kernel. Interpreted programs can define functions in their
code, but unlike the interpreter API, these functions can never
directly issue system-calls, as this would break the interpreter
abstraction. Figure 1, shows how interpreted programs access
resources guarded by system-calls through the built-in API.

Program dependencies are a prominent feature in many
interpreters. Dependencies allow developers to organize and
reuse code and encourage good software engineering prac-
tices. Dependencies impact the APIs and system-calls re-
quired by a program, since each dependency can contain its
own API function-calls. In PHP, dependencies can be ex-
plicit (e.g., via include()), or implicit(e.g., through class
auto-loading rules). Java supports implicit dependencies, by
allowing the developer to specify a ClassLoader which dy-
namically resolves and loads undeclared classes. Explicit
includes, can have dynamic arguments. For example, Python
developers can dynamically load and execute modules using a
variable path argument to __import__(). PHP supports both
dynamic arguments to includes, and dynamic class-resolution
(through the spl_autoload_regiser() interface).

Threat Model
Our threat-model assumes that an interpreted application run-
ning atop an uncompromised OS contains an ACE vulnerabil-
ity for which the attacker has an exploit. The goal of this work
is to enforce the PoLP on interpreted programs and hence
restrict the capabilities (i.e., the set of available system-calls)
the attacker’s payload can use. Saphire is designed to restrict
an attacker exploiting an ACE vulnerability in an interpreted
program. As such this work does not focus on attacks which
leverage a compromised interpreter to obtain arbirary-code-
execution in a separate service (for example by triggering a
buffer overflow in a database daemon over a network socket).
As our evaluation (§5) shows, the vast majority of programs
comprising real-world web apps can be confined such that
existing exploits are mitigated.

3 Overview
In this section we describe our 3-stage approach for depriv-
ileging interpreted programs using automatically-generated
system-call allowlists. In Section 4 we detail Saphire – our
prototype implementation of this approach for PHP web apps.

Generic Example PHP Example Native
Program

Kernel

API1 API2 API3

Syscall3 socket

...

Prog1

use_API1()

use_API2()
...

Prog2

use_API1()

use_API3()
...

Interpreter

Syscall1 Syscall2

mysql_connect

Native
Program

links.php

fopen ...

index.php
include
'theme.php'

theme.php

index program links program

...

fopen("http://example/theme")

PHP Interpreter

fopen("/list")

open Syscalln...

movl $n %eax
int $0x80

...

Program
Code

Program
Code

Figure 1: Left: an abstract interpreter executing Prog2 in-
vokes two system-calls to service a call to API function API3.
Center: a real PHP interpreter using real APIs and system-
calls. Right, a program uses native code to invoke an system-
call. API handlers within interpreters rely on similar native
instructions. In blue, we trace an API call through the generic
and PHP interpreters.

Our method of protecting interpreted applications involves
collecting information about the system-calls invoked through
the interpreter API, finding the interpreter API functions (e.g.
fopen in Fig. 1) used by interpreted applications, and com-
bining the results to enforce a tailored system-call allowlist.

To explain the process in more detail, we first describe
the interpreters and programs to which our approach applies.
We then explain why generating meaningful system-call al-
lowlists requires consideration of both the interpreter and each
interpreted program. Finally, we describe the purpose of each
of the three stages, and explain how their functionality can be
combined to secure programs.

3.1 Interpreters

We define interpreted programs as programs which require
an ancillary application (i.e., an interpreter) to execute on
a computer. The interpreter is, generally, an application na-
tive to the computer system – i.e., it can be directly executed
within an operating system, by the hardware. Hence, inter-
preted applications can be portable across systems for which
compatible interpreters exist. In addition to parsing and ex-
ecuting programs, interpreters expose an API, which allows
programs to rely on the interpreter for built-in functionality.
The API is composed of functions, which can be invoked
by the interpreted program, and each of which can be imple-
mented natively as an interpreter API handler. In Figure 1,
API1,2,3, mysql_connect, and fopen are API functions. The
interpreter forms an abstraction layer between the program
and the system, with a natively-implemented API bridging the
gap. Thus, we make a key observation about interpreters and
interpreted applications compatible with our approach: Only
the interpreter’s code issues system-calls, commonly in re-

sponse to an interpreted program invoking the API.2 Note that
some interpreters implement just-in-time(JIT) compilation,
translating the interpreted program into native machine code
at runtime. For interpreters with JIT-support, such as Java
Hotspot and .NET CLR, the translated code still calls into a
native API to invoke syscalls, so in the context of Saphire, this
optimization is simply an interpreter implementation detail.

3.1.1 An API for all interpreted programs

The functions in the interpreter API must be generic so that
they are useful to the wide range of interpreted programs. As a
result, the interpreter provides API functions that collectively
invoke a diverse set of system-calls. Therefore, we cannot
create a meaningful system-call filter by simply enumerating
the system-calls invoked anywhere in the interpreter.

Fortunately, individual interpreted programs depend on a
small subset of all API functions provided by the interpreter,
and in extension only require a small set of system-calls to
execute correctly. For example, the generic Prog1 in Figure 1
does not rely on API3 and hence does not need Syscall1.

Thus, during the execution of Prog1, it is safe to filter ac-
cess to Syscall1, even though it occurs within the interpreter
binary. To enforce the PoLP, we must analyze the joint be-
havior of the interpreter and the program. Based on these
insights we present a three-stage process for creating tailored
system-call filters for interpreted programs.

3.2 Securing Interpreted Programs
Stage 1 maps the API exposed by the interpreter to a set
of system-calls invoked by each API function. In stage 2 ,
the interpreted program is analyzed to identify the APIs it
invokes. Composing this information with the map from stage
1 , the output of stage 2 is the list of system-calls required

by the interpreted program (i.e., the system-call filter). In the
final stage, the program is executed, and the system-call filter
is applied to the interpreter process, protecting the program.

3.2.1 Mapping the interpreter API to syscalls

The goal of stage 1 is to identify the system-calls invoked by
each API function. As mentioned in Section 3.1, interpreters
provide programs with access to a generic API, parts of which
perform system-calls to expose system-managed resources.
Generally, interpreter APIs which depend on system-calls are
implemented natively, conforming to the OS-specific system-
call interface (see Fig. 1).

Both static and dynamic analysis techniques can be used
to map API functions to system-calls. For example, APIs
can be mapped to system-calls through a static control-flow

2Some interpreters provide the means for programs to execute native code
within the interpreter’s process(e.g., JNI for Java). Such native additions can
be treated as extensions to the interpreter’s API. None of the applications in
our evaluation rely on this feature, so we do not implement it in our prototype.

analysis of the interpreter. The analysis involves labeling the
API function handlers as sources, the system-call invocations
as sinks, and calculating the reachability between the two
sets in the interpreter’s call-graph. A dynamic analysis can be
used to refine this statically-obtained mapping.

The result of stage 1 is a mapping of interpreter API
functions to required system-calls. This mapping is generated
once, for each version of the interpreter.

3.2.2 Identifying API calls within an interpreted pro-
gram

In stage 2 we identify the API functions invoked by an in-
terpreted program. Incorporating the mapping from stage 1 ,
this stage determines the system-calls needed by the program.
We define a program as the body of interpreted code that can
be executed by an interpreter process from an entry-point. For
example, in the PHP example in Fig. 1, the index program
includes the code defined both in index.php and in the in-
cluded theme.php. Note that a single script can be included
in multiple places, and therefore belong to multiple programs.

There are two steps to identify API calls by a program:

1. Identify all the code comprising the interpreted program.

2. Analyze the program’s code to determine the interpreter
API calls it can perform.

Identifying the program’s code requires a consideration
of the interpreted language features which create code-
dependencies. In addition to “includes”, dependencies can
arise from implicit sources, such as customizable auto-loading
rules. Once the dependency analysis is complete, we scan the
code in the program for API function calls (step 2).

As in stage 1 , both static and dynamic techniques can be
applied to the program. The result of stage 2 is a set of API
functions referenced by the interpreted program, which com-
posed with the mapping of API calls to system-calls produces
the final mapping of programs to system-calls, which is used
as a allowlist in the final stage.

3.2.3 Protecting the Program

In stage 3 , to protect the program, the interpreter (or pro-
gram) is modified to load the corresponding allowlist, prior
to execution. This dynamic protection can be facilitated by
built-in low-overhead support for filtering system-calls, which
is present in operating systems such as Linux, FreeBSD and
Windows. The implementation of the protection depends on
the execution model of the interpreter. For example, the way
protections are applied may differ for programs invoked on
the command-line and ones executed by a web-server. In Sec-
tion 4 we describe our implementation of system-call filtering
of the PHP interpreter, on Linux. Our filtering mechanism
works with both the Apache and nginx webservers, as well as
the standalone php-cli interface.

Applying the Model to Real Interpreters

The model of interpreted languages and the three stage al-
lowlisting process described in this section is applicable to a
variety of interpreted languages. The major Lua, Perl, Python
and PHP interpreters all rely on native API handlers in an
interpreter binary. Additionally, runtimes which operate over
an intermediate representation/bytecode, such as Java JRE,
Mono, ActionScript, or Dalvik all rely on native code for APIs
which is contained in a separate interpreter, or linked into in-
dividual program binaries. As such, the steps we described
can be applied to a wide range of interpreted languages.

4 Implementation

We implemented the three steps outlined in the previous sec-
tion for the PHP language and interpreter in our prototype –
Saphire. We choose PHP due to its dominance among web
apps, which are major targets of RCE attacks, and because
it represents an interpreted language with advanced dynamic
features. PHP is dynamically typed, with dynamic binding of
function and class names, dynamic name resolution, dynamic
symbol inspection, reflection, and dynamic code evaluation
support. We explain how Saphire combines static and dy-
namic analysis techniques in stage 1 . We describe the static
web app analysis performed in stage 2 . Finally, we detail
how Saphire uses seccomp to sandbox the PHP interpreter
on a live web app in stage 3 . Figure 2 details Saphire’s
implementation of the three stages introduced in Section 3.

4.1 Mapping built-in PHP functions to system-
calls

PHP refers to API functions as built-in PHP functions. Hence
Saphire’s stage 1 maps built-in PHP functions to system-
calls. To this end, Saphire generates an initial mapping, by
performing a static call-graph analysis over the PHP inter-
preter. To refine the statically-collected mapping, we use
Linux ptrace , which allows us to inspect the system-calls
invoked by a running PHP process. Note that ptrace is only
used, offline, for 1 and is not used for any active defense.
Moreover, Saphire blocks ptrace for all scripts in the web
apps we evaluated, by default, as we found no built-in PHP
functions that invoke the ptrace system-call.

4.1.1 Static analysis over the PHP Interpreter

The PHP 7.1 build we use in the evaluation relies on 55
pre-compiled, dynamic shared libraries. Since PHP generally
invokes system-calls through libraries (e.g. libpthread and
libc), Saphire builds a static call-graph over the interpreter
and all included libraries. Note that the debugging symbols
for the interpreter and the 55 libraries are readily available in
the Debian repositories. Saphire uses these symbols to facili-
tate the analysis in stage 1 and the production-binary used
in stage 3 is stripped. Using the symbols, Saphire builds

a call-graph, where each node is a function and each edge
is a direct function call. Saphire annotes the function nodes
with the system-calls they invoke. To identify the nodes corre-
sponding to the built-in PHP function handlers, we augment
get_defined_functions() (which lists currently defined
functions) to output the address of the handler for each built-
in PHP function. Similar techniques are applicable to any
interpreter with a symbol table, such as Python (where func-
tions can be enumerated with dir() and global()). Saphire
performs a reachability analysis over the call-graph, where
the built-in PHP function handler nodes are the sources, and
nodes annoted with system-calls are sinks.

Saphire’s rudimentary call-graph analysis is purpose-built
to cover libraries and identify system-calls. While this step
can be implemented as a static source-code analysis and might
yield a more precise call-graph, the analysis needs to operate
over dozens of code-bases(for the interpreter, and 55 libraries)
using different languages and build-processes.

4.1.2 Refining the mapping through dynamic analysis

The reachability analysis performs an exhaustive search over
the code within a PHP process, but does not handle indirect
calls, which can occur in built-in PHP functions. For exam-
ple, PHP’s fopen(), can access remote files over HTTP (see
Figure 1). Based on the URI, fopen sets a function pointer
which specifies whether to use an encrypted HTTPS, or un-
encrypted connection handler. The static call-graph does not
contain edges to either of these functions, which leads to an
incomplete mapping of built-in PHP functions to system-calls.
Furthermore, some built-in PHP functions execute external
programs. mail() executes the sendmail binary. In order
to apply to PoLP to the mail, the mapping of system-calls
should contain the system-calls performed by sendmail. The
static analysis over CG does not reason about the system-
calls that occur in external processes.

To address these issues, we extend the statically-built pro-
file, by tracing the system-calls performed by the PHP inter-
preter, while executing its test-suite. The test-suite is packaged
with PHP’s source. We rely on a PHP extension TE , which
exposes the name of the currently running built-in PHP func-
tion through shared memory. A companion tracer, TR uses
Linux ptrace functionality to intercept system-calls. While
the interpreter is executing the test-suite, TR intercepts each
system-call, and examines the current PHP function, exposed
by TE . This allows Saphire to easily detect whether the
currently running built-in PHP function relies on any system-
calls missing from the statically-generated mapping. TE also
traces system-calls in external programs called by PHP, to
account for built-in PHP functions, such as mail() which
rely on external programs. The test-suite achieves a 73.4%
line coverage over the PHP interpreter, allowing Saphire to
discover additional system-calls used by 137 out of 4,655
built-in PHP functions.

PHP Interpreter
Tracing
Extension

ptracer
 constants

 includes

 variables

 class instatiations

 class definitions

Current PHP
Function

Parser

 function calls

String
Processor

Kernel

PHP Functions

System Calls

PHP Interpreter

seccomp
extension

system calls

Intrusion attempt detected

Dependency
Graph

Mapping of
built-in PHP
Functions to
System Calls

PHP Tests PHP Application

1 2 3

TE

TR

SE

AA

AST

CG

HTTP Requests

Figure 2: Saphire builds a mapping of built-in PHP functions to system-calls, acquires a list of built-in built-in PHP function
calls in application scripts, and uses this information to protect the web app using seccomp system-call filters.
4.2 Creating system-call filters for web apps

In Stage 2 , Saphire identifies each script’s dependencies
and determines the built-in PHP functions the interpreter can
invoke while running the script. Composing this information
with the mapping from 1 , Stage 2 outputs a set of possible
system-calls invoked for each script in the web app.

To achieve this outcome, we built AA to perform a
lightweight, flow-insensitive analysis, as a limited form of con-
stant folding over strings that compose includes. AA iterates
over all of the PHP files in web apps. We use php-parser [50]
to parse each PHP script into its abstract syntax tree (AST).
AA scans the AST for function or method calls to identify

possible built-in PHP function calls. If a function call’s name
matches a built-in PHP function, AA infers that the script
contains a call to the built-in. In the case of method calls,
AA looks for all assignments of the object within the current

scope to identify the class type, and checks whether the type
and method combination corresponds to a built-in PHP func-
tion. To infer script-dependencies AA identifies AST nodes
representing: (1) constant definitions, which frequently occur
within include paths (2) class definitions/instantiations, which
are essential for creating edges for auto-loaded classes, and
(3) includes via the include/require operations. AA also
identifies strings in all variable assignments, as these variables
are often referenced in include statements. For each include,
AA assembles an internal representation for each of these

nodes, optimized for static and string content.

4.2.1 String representation

PHP strings can be composed of literals, and references to
constants, variables, and function return values. When AA
locates a node representing such a component, it notes its
location. Once AA finds all nodes which compose strings,
it iterates over the includes in a script. Saphire handles ar-
guments to an includes, differently, depending on the node’s
type:
Literals: For literal strings, nothing needs to be done.

Constant Reference: Since Saphire keeps a record of all
constants in the web app, it replaces the reference with the
nodes the constant was defined with, and recurses over them.
Magic Constants: The interpreter automatically defines spe-
cial constants, such as __DIR__ and __FILE__, which de-
scribe the location of the current script. AA derives the script
locations and filenames from the file-system hierarchy and
translates them to literal values.
Variables: If the node is a reference to a variable, AA checks
whether the variable is defined in the current scope. As with
constants, AA replaces the reference with the nodes used in
the assignment. If the variable was assigned multiple times,
AA explores each possibility.

Function Calls: If the function is a known common API, such
as dirname, realpath, or strtoupper, AA reproduces the
functionality over the argument. Otherwise AA marks the
result as unknown.

For each include, AA applies this procedure, recursively,
until the include is composed of only literals and unknowns,
and the PHP string concatenation operators (. and .=). Then
AA translates the sequence of nodes into a regular expres-

sion, substituting the unknowns with regex wildcards (.*).
Figure 3 demonstrates how AA handles includes built with
multiple components. If the include refers to variables with
multiple assignments, AA joins the regular expressions for
each possibility with the “|” operator. AA handles relative
path elements, such as ../, by removing the preceding por-
tions of the expression. If the immediately preceding expres-
sion is dynamic (i.e. .*), AA replaces all content before the
relative path element with a wildcard. Once each include is
represented as a regular expression, AA resolves includes by
evaluating the regular expression against the paths of the PHP
scripts in the web app. For each match, AA stores an edge in
a dependency graph, where the nodes are PHP scripts.

Saphire handles auto-loaded classes in scripts by checking
if a class with a matching name is declared in the resolved set
of dependencies. If not, Saphire searches for matching class
declarations in the rest of the web app and creates dependency

edges to the corresponding scripts.
4.2.2 Unresolved Includes
In practice, AA resolves 74% of includes to a single file, stat-
ically. Additional includes can be "fuzzy-resolved" – i.e., re-
solved to a subset of the files in the web app, such as all files in
a subdirectory. Some include statements do not contain any in-
formation amenable to static analysis. In these cases, Saphire
cannot determine a subset of PHP scripts which can satisfy an
include statement. To address this, Saphire provides an option
(Conservative Includes or CI) to resolve such includes to all
scripts in the application. Enabling CI decreases the probabil-
ity of false-positives due to missing edges in the dependency
graph, but increases the number of allowlisted system-calls
in scripts containing unresolved includes. We examine the
effects of this option on false-positives and false-negatives in
Section 5.

4.2.3 Building system-call profiles for Scripts

After identifying the built-in PHP function calls in the script
files and building the dependency graph, AA calculates the
transitive closure of dependencies for each script, to obtain
the list of built-in PHP functions called by the script or any
of its dependencies. AA builds the system-call profiles by
replacing each of the built-in PHP functions in the list with
the set of corresponding system-calls obtained in Stage 1 .
The output of AA , and Stage 2 is a system-call profile (i.e.,
a allowlist) for each script, representing the system-calls for
the built-in PHP functions used within the script, and all its
dependencies. AA marks each script path with its profile. The
paths are relative to the root of the web app, so the output of
2 is independent of the server and location of the application

on the filesystem.

4.3 Sandboxing the Interpreter and Web App

The goal of stage 3 (Sec. 3.2.3), is to sandbox an interpreted
program when it executes. Our implementation, Saphire ap-
plies the allowlists from Stage 2 to a live web app using

include GETID3_INCLUDEPATH . 'module.' . $name . '.php';

define('GETID3_INCLUDEPATH', dirname(__FILE__).DIRECTORY_SEPARATOR);

literal variable literalconstant

magic

function call

magic

dirname(wp-includes/ID3/getid3.php) wp-includes/ID3 /

wp-includes\/ID3\/ module\. .* \.php

p
re

vi
ou

sl
y

in
 t

h
e

sc
ri

p
t.

..

Figure 3: Saphire inspects a WordPress include. The include
references a constant defined in the script. Saphire reasons
about the dirname() built-in API function, so it resolves the
value of the constant. The variable $name is an argument to
the function where the include occurs – Saphire cannot the
possible contents, so it translates it to regex as a wildcard .*

seccomp. Specifically, Saphire deprivileges the PHP inter-
preter process, before it executes a web app scripts. Internally,
Saphire relies on a PHP extension (labeled SE in Figure 2)
that invokes Linux’ seccomp facility.

To use seccomp, a process provides the kernel with a filter
to enforce over future system-calls made by the process. Upon
startup, the PHP interpreter loads the SE extension into the
process. SE determines which script the interpreter is about
to execute, and provides the kernel with a system-call allowlist
– a set of allowed system-calls. After providing the kernel
with the filter, SE ’s task is complete, since the kernel is
responsible for enforcing the seccomp allowlist.

SE is activated twice during the lifetime of the interpreter.
When the PHP process is starting, it loads the SE extension.
SE uses this opportunity to load the system-call allowlists

from the disk into memory. Once the interpreter receives a re-
quest, it hands control to SE . SE loads the allowlist for the
requested script from memory, and provides it to the kernel, as
a filter program. Internally, SE uses libseccomp’s bindings
to convert a set of system-calls into a allowlist [38]. PHP usu-
ally accepts web requests from a separate program - the web-
server. Web-servers such as nginx and Apache implement
advanced features such as reverse proxying, static resource
caching, and load-balancing. When a Web-server receives a
request that must be handled dynamically, it communicates
with a PHP interpreter using an API, such as FastCGI. With
a common nginx web-server using FastCGI to invoke PHP,
the extension and allowlist are only loaded once, by a master
process which forks workers to process requests. In our evalu-
ation we installed Saphire’s SE plugin for a PHP interpreter
accessible behind both major web-servers on Linux: nginx
and Apache. We also deployed the same plugin for PHP’s
cli API, which allows executing PHP scripts from the com-
mand line (similar to Python or Perl). We did not evaluate this
configuration, as the vast majority of PHP apps (and exploit
targets) are web apps.

If a PHP script does not trigger seccomp violations, the in-
terpreter process terminates once script execution concludes.
Usually, the process cannot be reused to process other scripts,
since different scripts have different system-call privileges,
and seccomp does not allow a process to replace its system-
call filters. This is a problem for interpreters that handle many
short requests, since APIs such as php-fpm reuse the inter-
preter for many requests. There are two options to deal with
this: (1) Configure the PHP API to only use a PHP interpreter
process for a single request. While functional, this approach
results in request latency, when the server is under high load.
(2) Allow PHP workers to handle many requests, but ensure
that each worker only handles requests for the same script.
The worker loads a seccomp profile for the first request it re-
ceives, and this allowlist applies to all subsequent requests to
the same script. For an application with many scripts, such as
a CMS, dedicated workers handle scripts in high demand, and

general workers handle the uncommon requests (restarting
after each one). We evaluate both of these options in section
5.4.4. This issue is specific to interpreters that handle many
short-lived requests, such as PHP. For longer lived executions,
the one-time overhead of applying the system-call profile is
negligible, but if reusing the interpreter is beneficial, rout-
ing requests to minimize Saphire overhead is a generic and
effective (see Sec. 5.4.4) solution.

5 Evaluation
We evaluate Saphire’s ability to mitigate remote code exe-
cution attacks on a set of popular PHP web apps and plu-
gins. Additionally, we assess Saphire’s stages, individually.
Specifically, we examine the capabilities of Saphire’s include-
resolution, the reduction of system-call privileges due to the
analysis in stage 2 , and the performance of stage 3 . Our
experiments provide answers to three research questions:

RQ1 How precise is Saphire’s dependency resolution (§5.2)?
RQ2 For each PHP script in a web app, what is the reduction

in privilege/available system-calls with Saphire. How does
the setting for CI affect the reduction (§5.3)?

RQ3 Does the retrofitted PoLP protect from known exploits,
without causing false positives? How does the setting for
CI impact the accuracy of the system (§5.4)?

5.1 Web Apps and Plugins in our dataset
We evaluate Saphire on six of the most popular PHP web
apps. Our set includes the four most popular open-source
content management systems: Wordpress, Joomla, Drupal
and Magento. According to W3Techs, these systems comprise
70.5% of the market share among CMS systems, and 38.4%
of the market for all websites [44]. Additionally, we include
one of the most popular administration tools: phpMyAdmin
[26], and Moodle, a popular course-management system.

In practice, administrators customize CMS deployments by
installing plugins. To reflect this, we install nine vulnerable
WordPress plugins: NMedia contact form, Wysija newslet-
ter, Foxy Press, Photo Gallery, WP-Property, Reflex Gallery,
Slideshow gallery, WP Symposium, WPtouch. As we are most
interested in Saphire’s capability to mitigate RCE attacks, we
selected plugins and web app versions with the most-recently
published RCE vulnerabilities and readily available proof-of-
concept exploits. Additionally, to evaluate false-positives for
plugins, we installed 9 of the most popular freely-available
plugins. In total, our evaluation was conducted over 12 vul-
nerable versions of web apps, 9 vulnerable and 9 popular
freely-available plugins.

5.2 Dependency Resolution (RQ1)
In stage 2 , Saphire scans a PHP web app to determine the
built-in PHP functions which might be invoked within each
script. The accuracy of the system-call profile depends on the
results of this stage. One of the main challenges for Saphire

is resolving the dependencies between scripts. To address this
challenge, Saphire performs include and class resolution to
discover the dependencies.

Table 1 presents the include resolution statistics for the web
apps in our dataset, collected after Saphire’s static analysis.
The literal column shows the number of include statements
with a string literal argument. The dynamic column shows
the number of include statements with arguments that are not
string literals. The resolved, fuzzy-resolved and unresolved
provide a breakdown of how the static analysis in 2 re-
solved these includes. Namely, the resolved column contains
the number of includes resolved to a single script within the
web app. The fuzzy-resolved column specifies the number of
includes that are resolved to a subset of all web app scripts.
That is, the regular expression generated by SE matched to
multiple scripts. On average Saphire resolves 74% includes
and fuzzy-resolves 22%.

In the same table, we show Saphire’s class resolution statis-
tics. On average, 85% of classes are resolved. Unresolved
classes can occur when web apps define classes dynamically.
For example, for historical reasons, Joomla dynamically cre-
ates an alias for each defined class by prefixing the class name
with “J” (e.g., the original Http class will trigger the creation
of JHttp as an alias)3. As the Joomla code-base uses both no-
tations interchangeably, Saphire detects dependencies only if
the original notation is used and does not detect dependencies
if classes are referred to via their alias. While this behav-
ior could be easily emulated in the analysis by duplicating
the alias-generating logic in Saphire, we chose to elide any
program-dependent modifications to the system. The effect
of unresolved classes is the possibility of false-positives due
missing edges in the dependency graph, if the application
relies on an autoloader. As we will see, the only false posi-
tives we encountered during our evaluation are caused by the
Joomla idiosyncrasy described above.

5.3 System-Call Profile Size (RQ2)
The security benefits provided by Saphire hinge on its ability
to restrict access to system-calls – specifically those that are
likely to be used by attackers. In this section, we examine
the reduction of attack-surface, in terms of the number of
system-calls in the allowlists. For qualitative measure, Sec-
tion 5.4.2 further examines the dangerous system-calls (as
defined by Bernaschi et al. [8]) that exploits can still use. We
collected the data presented here by running stages 1 and
2 on a system running Linux Kernel 4.17 which provides

333 system-calls. Figure 4 shows the number of system-calls
allowed for each script in WordPress 4.6, phpMyAdmin 4.8.1,
Joomla 3.7, and Drupal 7.58. The colored regions represent
profile sizes with the CI option enabled. The bottom-most,
Available Dangerous, region represents the dangerous system-

3This is implemented in Joomla’s class auto-loader. If the script instanti-
ates a class with the name JHttp but the auto-loader cannot find it, the loader
trims the “J” prefix and looks for a class with the name Http instead.

Application Includes Classes

Total Literal Dynamic Resolved Fuzzy-resolved Unresolved Total Resolved Unresolved

Drupal 7.0 263 9 254 175 57 31 (11.7%) 40 30 10 (25%)
Drupal 7.5 265 9 256 174 60 31 (11.6%) 48 39 9 (18.75%)
Drupal 7.26 214 1 213 171 42 1 (0.5%) 44 34 10 (22%)
Drupal 7.57 217 1 216 172 43 2 (0.9%) 24 28 6 (25%)
Drupal 7.58 218 1 217 173 43 2 (0.9%) 35 29 6 (17.1%)
Joomla 2.5.25 348 2 346 179 149 20 (5.7%) 252 229 23 (9.1%)
Joomla 3.7 265 5 260 102 152 11 (4.2%) 481 441 40 (8.3%)
Magento 1,190 271 918 971 175 42 (3.5 %) 3,339 3,120 219 (6.6%)
Moodle 7,548 877 6,671 5,605 1,876 67 (0.9%) 2,241 2,149 92 (4.1%)
phpMyAdmin 3.3.10 753 677 76 704 33 16 (2.1%) 49 48 1 (2.0%)
phpMyAdmin 4.8.1 292 222 70 254 32 6 (2.1%) 438 402 36 (8.2%)
WordPress 1,892 517 1,375 1,747 109 36 (1.90%) 215 193 22 (10.2%)

Table 1: Dependency Resolution statistics. We break-down the static and dynamic includes for each web app and the number of
include Saphire resolves precisely, and approximately. We also present similar data for class references.

calls available to each script. The Available region represents
additional system-calls available to each script, which are not
considered dangerous. Hence, the allowlist for a given file con-
sists of the system-calls contained in these two regions. The
upper-two regions represent blocklisted system-calls and dan-
gerous system-calls, respectively. The black line represents
the system-call profile sizes when the CI option is disabled
(no dependency edges for unresolved includes).

As the graphs illustrate, Saphire generates system-call al-
lowlists that significantly reduce the attack surface. The over-
all reduction of the attack surface in the number of system-
calls is 80.5% on average, with the most permissive profile
(i.e., the left-most script in Joomla) still removing 72% of
system-calls from the allowlist. More important than the bare
number of system-calls, Saphire reduces the number of avail-
able dangerous system calls also by 80% on average.

We note that “shelves” of system-calls occur in most of
the graphs, indicating that many files require the same num-
ber of system-calls. This phenomenon is due to the fact that
sets of scripts share the same dependencies. For example,
Saphire finds that WordPress’ wp-includes/option.php is
included in 383(28%) of scripts. This leads to many files
sharing similar system-call profiles.

When CI is enabled, scripts with unresolved includes in-
clude all other scripts in the web app. This results in “shelves”
at the maximum profile-size, indicating that the scripts can in-
voke any system-call used in the entire web app. This reduces
the possibility of false-positives due to missing dependency
edges, but increases potential attack surface.

5.4 Defense Capabilities (RQ3)
We evaluate Saphire’s protection against 21 remote code exe-
cution exploits. To this end, we created 12 Docker containers
running vulnerable versions of the web apps in the evaluation
dataset. As mentioned in Section 5.1, our WordPress installa-
tion contains 9 vulnerable plugins, for a total of 11 WordPress
vulnerabilities. We attack the web apps using exploits from

the Metasploit Framework [37], and consider an attack as
successful if it exposes a shell to the attacker via the network.
Of course, we first verified that all exploits work against un-
protected versions of the web apps and plugins. In Table 2, we
present the results of our experiments. Specifically, we eval-
uate the defense capabilities of Saphire when CI is enabled,
and disabled.

5.4.1 Is Saphire too restrictive?

To properly apply the PoLP, Saphire should not prevent nor-
mal operation of the web apps. A false-positive for Saphire is
a system-call blocked during benign execution of application
code. Saphire does not rely on any benign web app traces to
build the allowlists, but we exercise the web apps evaluate
how prone Saphire is to false positives through an ensemble

0

100

200

300

0 500 1000

Scripts

S
ys

ca
lls

WordPress 4.6

0

100

200

300

0 300 600 900

Scripts

S
ys

ca
lls

phpMyAdmin 4.8.1

0

100

200

300

0 1000 2000

Scripts

S
ys

ca
lls

Joomla 3.7

0

100

200

300

0 100 200

Scripts

S
ys

ca
lls

Drupal 7.58

Labels Available Dangerous Available Denylisted Denylisted Dangerous

Figure 4: The sizes of the system-call allowlists for web apps
in our test-set. The shaded areas represent allowlist sizes,
when CI is enabled The black line shows the allowlist size
when CI is disabled

Exploits Blocked False Positives Benign Traces Dangerous System Calls Available to Exploits
Application Vulnerability CI off CI on CI off CI on Line Coverage
Drupal 7.0 CVE-2014-3704 y y 0 0 †39.22% openat, unlink
Drupal 7.5 drupal_restws_exec y y 0 0 †28.50% chmod, openat, rename, symlink, unlink
Drupal 7.26 CVE-2014-3453 y y 0 0 †37.12% chmod, openat, rename, symlink, unlink
Drupal 7.57 CVE-2018-7600 y y 0 0 †42.51% chmod, openat, rename, symlink, unlink
Drupal 7.58 CVE-2018-7602 y y 0 0 †43.63% openat, unlink
Joomla 2.5.25 CVE-2014-7228 y y 2 0 12.67% chmod, openat, rename, unlink
Joomla 3.7 CVE-2017-8917 y y 1 0 †27.95% chmod, openat, rename, unlink
Magento 2.0.5 CVE-2016-4010 y y 0 0 †40.61%
Moodle 3.4 CVE-2013-3630 y y 0 0 †28.00% chmod
phpMyAdmin 3.3.10 CVE-2011-4107 y y 0 0 13.72% chmod, openat, rename, symlink, unlink
phpMyAdmin 4.8.1 CVE-2018-12613 y y 0 0 †49.28% chmod, openat, rename, unlink
Wordpress 4.6 11 Vulnerabilities y y 0 0 †∗36.18%

∗Wordpress & Plugins Vulnerabilities The WordPress vulnerabilities: WPVDB-7896, WPVDB-6680, WPVDB-6231, CVE-2014-9312,
WPVDB-6225, CVE-2015-4133, CVE-2014-5460, CVE-2016-10033, WPVDB-7716, WPVDB-7118 wp_admin_shell_upload. Coverage
including the vulnerable plugins is 17.88%. See Sec. 5.4.3 for evaluation over popular plugins.
Complete list of dangerous system-calls: chmod, fchmod chown, fchown, lchown, execve, mount, rename, open(at), link, symlink, unlink,
setuid, setresuid, setfsuid, setreuid, setgroups, setgid, setfsgid, setresgid, setregid, create_module

Table 2: Exploits blocked for each configuration of Saphire. Coverage annotated with † was collected with the aid of unit-tests
available for the web app.

of three complementary techniques:

• We replay browsing traces collected while one of the
authors explored the web-app as a user and administrator.
The traces exercise functionality available to privileged
and unprivileged users.

• We crawl the application with a web crawler included
in the Burp Suite. The crawler is authenticated and has
access to privileged web app functionality.

• When available, we execute test-suites packaged with the
web-apps. The test-suites are collections of PHP scripts,
which exercise portions of the web app code.

We measure the combined line coverage of the three methods
using the XDebug PHP debugger [45] and present the cover-
age as a percentage of total lines of PHP code (as determined
by sloccount [59]) in Table 2. Our measurement accounts
for possible coverage overlap between the three techniques
and registers each covered line only once. However, sloc-
count greedily counts source lines that are not considered
executable, and are consequently not tracked by XDebug.
Hence, the average coverage of 33% is a strict lower bound of
the true coverage that our mechanisms achieve. We selected
Azad et al.’s work as, to the best of our knowledge, it is the
most recent work to collect comprehensive coverage data over
PHP web apps [4]. Unlike Saphire, Azad et al. collect cov-
erage during an exploration stage to prune unused functions,
thus cutting back on a web app’s attack-surface. Azad et al.
presents coverage as the percentage of lines in functions with
any lines covered during the exploration stage. I.e. for any
partially-covered functions, no lines are pruned. To mirror this
technique, we calculated the percentage of lines contained

in functions with any lines executed. According to this met-
ric, Saphire covers 64% of WordPress, while [4] covers 57%.
Additionally, we obtained the Selenium traces collected by
Azad et al. and executed them on our instance of WordPress.
These Selenium traces increased our coverage by 1%, without
raising any false-positives. In summary, we found that our
coverage is in-line with state-of-the art PHP research. More-
over, the difficulty in obtaining high dynamic coverage over
web apps highlights the utility of using a static analysis for
Saphire’s implementation of 2 , which can generate profiles
even for uncovered code.

The center column-group of Table 2 shows the number of
false positives for different settings of CI. With CI enabled,
Saphire did not raise any false positives during our evaluation
as it conservatively assumes that an unresolved include can
refer to any script within the web app. While this conserva-
tive setting reduces false positives, it results in slightly larger
allowlists (see the bottom two regions of the Figure 4 plots).
When CI is disabled, system-call profile size is decreased (i.e.,
system-calls under the black line in Figure 4), but false posi-
tives do occur. Specifically, we encounter three false positives
all within Joomla version 2.5.25 and 3.7. The reason for all
three false positives is the automatic generation of aliases as
explained in §5.2. Concretely, administrator/index.php
instantiates JHttp which in turn relies on the built-in PHP
function curl_exec. Although, Saphire’s stage 1 correctly
determines that curl_exec requires the getpeername and
setsockopt system-calls, stage 2 misses the dependency
introduced by instantiating the Http Joomla-class via its
alias JHttp. The simple, yet Joomla-specific, modification
to Saphire described above would remove these false posi-
tives. Saphire handles calls to APIs that depend on external

https://nvd.nist.gov/vuln/detail/CVE-2014-3704
https://www.rapid7.com/db/modules/exploit/unix/webapp/drupal_restws_exec
https://nvd.nist.gov/vuln/detail/CVE-2014-3453
https://nvd.nist.gov/vuln/detail/CVE-2018-7600
https://nvd.nist.gov/vuln/detail/CVE-2018-7602
https://nvd.nist.gov/vuln/detail/CVE-2014-7228
https://nvd.nist.gov/vuln/detail/CVE-2017-8917
https://nvd.nist.gov/vuln/detail/CVE-2016-4010
https://nvd.nist.gov/vuln/detail/CVE-2013-3630
https://nvd.nist.gov/vuln/detail/CVE-2011-4107
https://nvd.nist.gov/vuln/detail/CVE-2018-12613
https://wpvulndb.com/vulnerabilities/7896
https://wpvulndb.com/vulnerabilities/6680
https://wpvulndb.com/vulnerabilities/7716
https://nvd.nist.gov/vuln/detail/CVE-2014-9312
https://wpvulndb.com/vulnerabilities/6225
https://nvd.nist.gov/vuln/detail/CVE-2015-4133
https://nvd.nist.gov/vuln/detail/CVE-2014-5460
https://nvd.nist.gov/vuln/detail/CVE-2015-4133
https://wpvulndb.com/vulnerabilities/7716
https://wpvulndb.com/vulnerabilities/7118
https://www.rapid7.com/db/modules/exploit/unix/webapp/wp_admin_shell_upload

binaries. For example, Drupal relies on the mail() API dur-
ing user registration. Since Stage 1 tracks the system-calls
that the external sendmail binary performs, we observed no
false positives from such functionality. Finally, though we
did not have access to any popular PHP sites, we installed
Saphire on a public web-server running WordPress. In total,
our web-server received 13,261 HTTP request. Though many
of these requests originated from benign crawlers, some ap-
peared to search for unsecured API endpoints, such as Word-
Press’ xmlrpc.php. None of these requests triggered Saphire
alerts. We performed a manual inspection of the web-server’s
filesystem to confirm that it had not been compromised.

5.4.2 Payload Constraints

Table 2 also presents the effect of Saphire’s script de-
privilaging on the attackers using web app exploits to execute
the Metasploit payload in the “Exploits Blocked” columns.
Of course, adversaries are not limited to Metasploit payloads
and can craft exploits which do not extend past the exploited
script’s system-call privileges.

To assess the impact of such attacks, we enumerate which
dangerous system calls are present in the allowlist for scripts
that contain RCE vulnerabilities with CI enabled. We consider
a system-call dangerous if it is listed as “Threat level 1 system
call” in [8]. All remaining dangerous system calls for the cor-
responding vulnerable files are shown in the last column of
Table 2. While attackers are free to modify the exploits, they
can only use the dangerous system calls listed in the table.
Notably, none of the payloads can spawn new processes out-
side the interpreter (no execve). CVE-2016-10033 is specific
to Apache. Though we primarily test against nginx, we con-
figured an Apache server with Saphire protections. The steps
for configuring Saphire for nginx and Apache were virtually
identical, aside from differences in the config-file syntaxes.
CVE-2016-10033, leverages parameter injection to the exter-
nal sendmail executable through PHP’s mail() function. Since
Saphire collected an accurate profile for the mail() and the
sendmail child process, we defend against this CVE, without
raising false-positives on the same page. The remaining dan-
gerous system-calls potentially allow the attacker to tamper
with website-content, but are insufficient to achieve arbitrary
code-execution. Saphire protects against RCE launched via
file upload vulnerabilities by default. If an attacker exploits
a file-upload vulnerability, the uploaded script will have an
empty system-call allowlist, as the script was not present dur-
ing the stage 2 analysis. Thus, the uploaded script cannot
make any system-call and cannot meaningfully contribute to
the attacker’s goals.

Additionally, we test Saphire against a set of 40 real pay-
loads. Though there are few php-based payload datasets
readily-available, we ran the payloads in one such dataset [19]
and found that every payload relies on system-calls missing
from the profiles for vulnerable scripts listed in Table 2.

False Positives
Plugin Name Web App CI off CI on Coverage
ContactForm Wordpress 0 0 39.14%
Yoast Wordpress 0 0 †28.20%
Akismet Wordpress 0 0 32.53%
WooCommerce Wordpress 0 0 †27.93%
Classic Editor Wordpress 0 0 40.76%
Akeeba Joomla 0 0 14.67%
Acymail Joomla 0 0 15.66%
Ctools Drupal 0 0 †27.60%
Views Drupal 0 0 †43.69%

Table 3: False positive test for popular web app plugins. Cov-
erage marked with † was gathered with the aid of available
unit-tests.

5.4.3 Analysis of Non-vulnerable Plugins

Most web apps in our evaluation dataset feature powerful plu-
gin architectures. As such, we assess whether Saphire triggers
false-positives in the plugins that leverage this infrastructure.
Using the above ensemble of three methods to determine cov-
erage, we exercise the popular plugins to assess Saphire for
false positives (see Table 3). On average we achieved 31.76%
line coverage which is in line with existing work focusing
on Web Apps [4], though our statistics also cover plugins.
Some plugins guard premium features behind paywalls. Since
we did not pay for the plugins, these features contributed
unreachable code, lowering the coverage we could achieve.

5.4.4 Runtime overhead

Response time is a critical metric for web-server workloads.
We note that Saphire’s analysis stages, 1 and 2 , are per-
formed offline. Stage 3 uses a PHP extension to sandbox a
web-app, by loading a system-call profile for the PHP script, at
the beginning of each request. Additionally, Saphire relies on
different system-call profiles for each script. Since seccomp
does not allow Saphire to replace the system-call profile, after
a process handles a request, by default, Saphire configures
PHP to restart the process after serving each request. Modern
web-servers, such as nginx with php-fpm, typically reuse PHP
processes to handle multiple requests, and we consider this
in our evaluation. We perform two experiments on a system,
with an 8-core Intel Xeon E5-2620v2 @2.10GHz, 256GiB
DDR3, running Linux 4.17, with nginx 1.14, PHP 7.1 with
php-fpm, and MySQL 5.7.

We measure Saphire’s overhead by observing the response
time for WordPress’ index.php with ApacheBench [16], over
15,000 requests, at multiple levels of request concurrency.
We compare the default configuration of php-fpm against
php-fpm configured to use processes for a single request. The
results are presented in Table 4 and indicate that overhead is
negligible at all levels of concurrency. To further generalize
these results, we repeated the experiments for Apache 2.4.

Additionally, we benchmarked a worst-case scenario for
Saphire, where the interpreter executes a trivial script. The
script prints a single line of text, prior to exiting. We use
ApacheBench to benchmark the trivial script across 50,000

Concurrency Wordpress Trivial Script
Default Protected Default Protected Optimized

ng
in

x

1 328.252 328.78 (0.16%) 0.185 1.941 0.188 (1.62%)
2 353.982 355.776 (0.51%) 0.192 2.316 0.194 (1.04%)
4 348.242 348.639 (0.11%) 0.264 4.347 0.265 (0.38%)
8 361.377 363.83 (0.68%) 0.512 8.62 0.516 (0.78%)

16 416.639 419.342 (0.65%) 0.924 18.61 0.93 (0.65%)
32 863.932 867.932 (0.46%) 1.71 43.38 1.713 (0.18%)

A
pa

ch
e

1 338.75 337.42 0.201 1.91 0.204 (1.49%)
2 368.84 370.02 0.209 2.44 0.212 (1.43%)
4 369.48 369.55 0.236 4.53 0.233 (1.28%)
8 372.84 372.98 0.559 8.77 0.564 (0.89%)

16 412.47 414.42 0.954 19.02 0.961 (0.73%)
32 872.57 877.24 1.77 42.21 1.78 (0.56%)

Table 4: Response times for requests to WordPress index.php
and a worst-case, trivial script. All response times in millisec-
onds.

requests under default and protected php-fpm configurations.
The results are presented in Table 4, in the first two columns
under the Trivial Script heading. We observe, that disabling
reuse of PHP workers has a severe impact on performance for
the worst-case script, since each interpreter process is only
active for a short time, before it must be restarted.

To avoid the performance penalty due to the php-fpm con-
figuration change, Saphire takes advantage of php-fpm’s built-
in pooling feature, and nginx URL-routing capabilities. First,
an administrator specifies a set of high-demand PHP pages
(this information is easily obtained from server logs). Saphire
configures separate php-fpm pools for each specified page,
and creates nginx rules to route requests to the proper pool,
based on the URI. Saphire also creates a catch-all pool, where
processes are not reused, for scripts that are in low-demand.
Note, that the total number of php-fpm processes does not
increase, and php-fpm automatically assigns and removes
workers to each pool based on demand.

This configuration change enables protected php-fpm
workers to process multiple requests, without restarting to re-
apply the only installing the seccomp filter once. We present
the benchmarks for this configuration in the last column of
Table 4. Observe that by configuring nginx to route requests
to script-specific pools, we eliminate virtually all overhead.

Artifact Availability: Saphire is open-source and available
at https://github.com/BUseclab/saphire. We provide
the Selenium traces, and vulnerable web app containers that
we used to evaluate Saphire, along with instructions for repro-
ducing the experiments. These artifacts were major compo-
nents of our evaluation and we believe that they can be useful
for future evaluations.

6 Limitations and Discussion
In this section, we discuss the limitations of the Saphire pro-
totype and possible areas for future work.

eval and system: eval() evaluates a string as PHP code.
Saphire does not consider includes, or calls to built-in PHP
functions inside eval() arguments. system() executes an
arbitrary shell command . None of the false-positives we

observed resulted from eval or system calls, and Saphire
supports execution of pre-determined external programs such
as sendmail through the mail() API function. In future
work, Saphire can be improved, to analyze static content in
arguments to eval and system.

Mimicry: Saphire’s goal is to apply the PoLP, as it relates
to system-calls, to interpreted applications. This severely re-
stricts the system-calls that the exploit and payload can rely
on. In section 5.4.2, we discuss the scarcity of “dangerous”
system-calls available to attackers. Even so, Saphire does not
explicitly detect ACE attacks, and the attacker can attempt to
craft a payload that only invokes allowed system-calls. For
example, the attacker might still leverage vulnerabilities to
add undesired content to content management systems.

Overwriting scripts: Saphire’s system-call profiles are
read-only to the PHP interpreter. If an attacker has write
access to scripts on an upload path, they can, potentially, over-
write an existing script with a payload. Saphire will limit
the uploaded script with the allowlist it built in Stage 2 .
Therefore, the attacker can overwrite a script with a larger
system-call privilege-set. If scripts must be writeable, Saphire
can be easily augmented to record a checksum for each PHP
script during Stage 2 and ensure that the checksum is un-
changed, when the script is loaded in Stage 3 .

Writing to Sensitive Files: Saphire aims to limit the
system-calls accessible from a compromised PHP inter-
preter. For standard linux users, even essential system-calls,
such as open() and write() can be leveraged to gain
full code-execution capabilities. For example, an attacker
can add malicious commands to automatically executed
scripts, such as .profile or .bashrc, or append ssh-keys
to /.ssh/authorized_keys to gain remote ssh access.
We examined the possibility of such attacks by enumerat-
ing the files and directories writeable by the interpreter’s
user in three common configurations: 1. WordPress run-
ning in the official Docker container 2. WordPress on a
Debian 10 VM installed according to instructions on the
WordPress site. 3. WordPress and phpMyAdmin on a De-
bian 10 VM installed using Debian’s APT package man-
ager. Apart from globally writeable files and directories such
as /tmp/ and /dev/shm/, the www-data running the inter-
preter has access to /var/log/php for logging purposes and
/var/lib/nginx (/var/lib/apache for the docker con-
tainer) and /var/lib/php which contain web-server daemon
lock-files and socket files. Note that www-data does not have
write-access to its home directory, /var/www/, or any server
configuration files in /etc/. The packaged web apps also run
as the /var/www user, though since updates are managed by
APT running as root, the web apps are stored in a root-owned
directory in /usr/share. Directories that must be writeable
by the web-server (such as WordPress’ wp-content) are lo-
cated in /var/lib with corresponding permissions.

Additionally we used ptrace to verify that the interpreter
does not have access to any privileged file-descriptors(for

https://github.com/BUseclab/saphire

example, ones left open after a privilege drop using
setuid/setgid). With these file permissions, and the previ-
ously mentioned protections against overwriting scripts, we
found no way for a web-server user to create or modify files
to gain code-execution.

Installing plugins: When a site administrator installs a
new plugin into a web app, they run stage 2 on the plugin
source in a safe directory, and then Saphire merges the plu-
gin’s system-call profile into the profile for the rest of the web
app. Currently, 2 is run manually for new plugins, removing
some of the convenience of web apps that support installing
plugins directly through the web-interface.

Saphire does not filter system call arguments: Saphire
applies the PoLP to PHP scripts, where it considers each
system-call type as privilege. This idea can be further
extended to consider system-call arguments as privileges.
Though system-call arguments can be derived from user-input,
at run-time, , unchanging arguments can be determined stati-
cally during Saphire’s stage 2 and filtered in 3 . In our eval-
uation over 21 exploits, Saphire blocked all attacks by simply
filtering based-on system-call type and we leave argument-
based PoLP to future work.

Line coverage of evaluated web apps: We use an ensem-
ble of human-driven and automatic techniques, as well as
unit-testing to test for false-positives. In our evaluation, we
achieve an average line coverage of 33.28% which is in line
with similar work [2–4, 6, 14, 35]. Unlike these works, our
web apps contain large plugins. Since phpMyAdmin 3.3.10
and Joomla 2.5.25 do not include test-suites, their coverage
is significantly lower. Another factor limitting possible cov-
erage is the fact that web apps often rely on small fractions
of large frameworks. For example our WordPress installation
contains the wp-property plugin, which includes TCPDF (a
PDF generator). The wp-property code does not reference
TCPDF anywhere, so this idle code (39k lines, or 11% of our
WP install) is likely unreachable. Additionally, we found that
14.66% of uncovered WordPress code is only executed during
installation/update (which is performed offline, with Saphire).
A further 16.28% of the code was specific to the SimplePie
and ID3 components and accessible, only by providing spe-
cially formatted RSS and Audio File inputs. Additionally, less
than 1% of lines were specific to the Windows platform. Since
we performed our evaluation on Linux, we could not exercise
these lines.

Applying Saphire to other interpreters: In this paper
we present a framework for allowlisting system-calls in in-
terpreters, on a per-script basis. Based on our experience
implementing Saphire for PHP, we identified the interpreter
characteristics that are required to apply Saphire to other in-
terpreters:

1. Each interpreted program should be executed in its own
instance of the interpreter.

2. Each program can only invoke system-calls by calling

into a native interpreter function, or a foreign-function
interface addon. There must be a dispatch table map-
ping built-in function names within the interpreter to the
native implementations of those functions.

3. The interpreted language should be amenable to an inter-
procedural analysis to statically identify dependencies
between scripts.

To the best of our knowledge, these requirements are satisi-
fied for:

1. A Python interpreter running a program composed of
multiple python scripts. The program executes within a
single Python process (potentially with multiple threads).
It can only rely on syscalls implemented in the standard
libraries included by the scripts (open(), read()...), or FFI
libraries.

2. A server executing multiple Node.JS microservices.
Each individual service can be restricted to only the
system-call it requires. In Node.JS, programs usually
call into the Node.JS api using calls such as fs.open,
which in-turn call C++ code registered in the dispatch
table.

3. Any classic CGI-based interpreted web-app using a lan-
guage such as Perl or Lua. CGI launches a separate
interpreter process for each request, which can be pro-
tected by a Saphire-flavored approach, as long as there
are sufficient means to analyze to code.

7 Related Work
As system-calls guard access to sensitive OS-managed re-
sources, there is abundant research related to system-call
based sandboxing, focused on restricting resources available
to an application [15,18,20,28,31,42,48,55], intrusion detec-
tion systems [23, 39, 49, 51, 56, 61] and confining Linux con-
tainers [29, 32, 57]. Janus [55] relies on system-call interposi-
tion with ptrace to intercept and filter dangerous system-calls,
according to defined policies. Plash [48] restricts a process
by executing it in a chroot environment with a set of instru-
mented system-calls, relying on an RPC server. Systrace [42]
generates system-call policies interactively, with input from
the user. Systrace requires the user to manually modify the
policies for applications which pass non-deterministic argu-
ments to system-calls [42]. Ostia [18] and REMUS [9] rely
on user-specified rules to filter system-calls.

Unlike our approach which is completely automatic, [9,
18, 42, 48, 55] require user involvement in profile generation.
N-gram-based allowlists make decisions based on whether
sequences of system-calls were observed during benign execu-
tion [15, 49, 56], but rely on representative sets of benign exe-
cutions. Janus, Systrace, Ostia, and the N-gram-approaches in-
cur significant overhead, which makes them impractical [33].

Unlike Saphire, prior filtering approaches do not tailor system-
call profiles to individual interpreted programs. Since inter-
preted programs are prime targets for attackers today, this is a
major limitation.

SELinux [34] leverages role-based access control and multi-
level security to implement Mandatory Access Control and
enforce restrictions on data for user roles. AppArmor [11]
restricts a program’s access to files and capabilities according
to a profile. Both SELinux and AppArmor require an admin-
istrator to manually specify, or dynamically collect a security
profile, which is non-trivial. AppArmor and SELinux’s pro-
tection cannot distinguish between the execution of different
programs by an interpreter. FMAC [41], creates an access
profile based on benign inputs to a program, and uses it to
deny restrict access to files. MAPbox [1] allows a user to
manually specify a list of acceptable application behaviors,
each of which corresponds to a sandbox configuration. Box-
mate [29] confines an Android app to the set of resources it
accessed during a training stage. Boxmate blocks any access
to resources that was not accessed during training. Wan et.
al [57] extends Boxmate to Linux containers , by recording
a list of the accessed system calls during automatic testing
and using this as a allowlist for filtering system-calls in Linux
containers. Boxmate [29] and [57] confine processes and are
not fine-grained enough to identify the execution of different
scripts by an interpreter.

Static Analyses: Several proposed approaches focus on
detecting vulnerabilities in the source code of web apps, stat-
ically, [5, 12, 13, 30, 53, 58, 62]. These approaches use taint
analysis to track unsanitized data to find potential vulnerabili-
ties. Zheng et al. [62] rely on a SAT solver to find connections
between user controlled inputs and critical PHP functions and
identifies eight previously unknown vulnerabilities. Backes
et al. [5] detect injection vulnerabilities using code-property
graphs. Dahse et al. [13], track data-flows to detect injection
vulnerabilities. RIPS [12] conducts taint analysis by building
a control flow graph for PHP files in web apps to find injection
vulnerabilities. Several approaches target specific classes of
injection vulnerabilities, including cross-site scripting [30],
SQLi [58], and Denial of Service(DoS) [53]. SaferPHP [53]
uses taint analysis and symbolic execution to find DoS vulner-
abilities by examining the semantics of web app code. Due
to dynamic features of Web Apps, it is difficult to statically
build accurate CFGs. Saphire’s flow-insensitive analysis of
web apps is lightweight compared to approaches that require
comprehensive CFG analysis to pinpoint vulnerabilities.

Dynamic Analyses: WASP [21], Diglossia [52], SCRIPT-
GARD [47] and ZenIDS [22] rely on dynamic analysis to
detect specific categories of vulnerabilities. WASP [21] uses
syntax evaluation and positive tainting for tracking trusted
data to detect and prevent SQLi attacks on web apps. WASP
requires the developer to specify trusted sources and trust
policies, manually. Likewise, Diglossia [52] uses dynamic
taint analysis to detect and prevent SQLi attacks. SCRIPT-

GARD [47] tracks the flow of trusted data using data flow
analysis to find inconsistencies in sanitization functions of
ASP.NET web apps. ZenIDS instruments the PHP interpreter
to collect and merge CFGs for trusted executions during a
training stage. To defend a web app against RCE, ZenIDS
traces the control flow throughout the execution of incoming
requests and raises an alert if a control flow transition does
not exist within the trusted profile. ZenIDS relies on a rep-
resentative set of known benign requests, for each protected
web app. Saphire does not require dynamic CFG exploration
or dynamic expansion stages, opting for low-overhead system-
call-based enforcement.

Hybrid approaches: WebSSARI [40] builds CFGs and in-
struments web apps with guards, preventing insecure informa-
tion flows. SQLBLock [27] deploy a hybrid static-dynamic
analysis to protect web apps against SQLi attacks. Saner [7]
uses static and dynamic techniques to verify sanitization rou-
tines, by tracing inputs through web apps. The defense of such
techniques hinges on their ability to precisely and consistently
pinpoint vulnerable code. Saphire uses dynamic analysis to
refine the mapping in stage 1 , but the goal of the combina-
tion is to build a profile of system-calls for each script, rather
than to find vulnerabilities.

8 Conclusion
We identify that interpreters add a layer of abstraction, re-
ducing the practicality of many deprivileging techniques. We
propose a novel solution for generating and applying system-
call filters to interpreted applications. Saphire is our prototype
implementation of the system, for PHP web apps. During an
offline analysis of the PHP interpreter and web app, Saphire
determines the system-calls required by each script. Then,
Saphire uses seccomp, to filter unneeded system-calls. In our
experiments, we find that Saphire blocks 21 real-world web
app exploits, without raising false-positives for benign use.
System-call allowlists for vulnerable scripts contain a mini-
mal amount of system-calls identified as dangerous. Saphire’s
extension only needs to activate once per request and does
not cripple performance.

Acknowledgements

We thank our anonymous reviewers for their insightful com-
ments and feedback. This work was supported by the Office
of Naval Research (ONR) under grant N00014-17-1-2541.

References

[1] Anurag Acharya and Mandar Raje. Mapbox: Using pa-
rameterized behavior classes to confine untrusted appli-
cations. In Proceedings of the 9th USENIX Conference
on Security Symposium, 2000.

[2] Nuno Antunes and Marco Vieira. Benchmarking vul-
nerability detection tools for web services. In IEEE
International Conference on Web Services, 2010.

[3] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip,
Daniel Dig, Amit Paradkar, and Michael D. Ernst. Find-
ing bugs in web applications using dynamic test genera-
tion and explicit-state model checking. IEEE Transac-
tions on Software Engineering, 2010.

[4] Babak Amin Azad, Pierre Laperdrix, and Nick Niki-
forakis. Less is more: Quantifying the security benefits
of debloating web applications. In Proceedings of the
28th USENIX Conference on Security Symposium, 2019.

[5] Michael Backes, Konrad Rieck, Malte Skoruppa, Ben
Stock, and Fabian Yamaguchi. Efficient and flexible
discovery of php application vulnerabilities. In IEEE
European Symposium on Security and Privacy, 2017.

[6] Young-Min Baek and Doo-Hwan Bae. Automated
model-based android gui testing using multi-level gui
comparison criteria. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Soft-
ware Engineering, 2016.

[7] Davide Balzarotti, Marco Cova, Viktoria Felmetsger,
Nenad Jovanovic, Engin Kirda, Christopher Krügel, and
Giovanni Vigna. Saner: Composing static and dynamic
analysis to validate sanitization in web applications. In
IEEE Symposium on Security and Privacy, 2008.

[8] Massimo Bernaschi, Emanuele Gabrielli, and Luigi V.
Mancini. Enhancements to the linux kernel for blocking
buffer overflow based attack. In Proceedings of the 4th
Annual Linux Showcase & Conference, 2000.

[9] Massimo Bernaschi, Emanuele Gabrielli, and Luigi V.
Mancini. Remus: A security-enhanced operating system.
ACM Transactions on Information and System Security,
2002.

[10] G. Cleary, M. Corpin, O. Cox, H. Lau, B. Nahor-
ney, D. O’Brien, B. O’Gorman, J. Power, S. Wallace,
P. Wood, and Wueest C. Internet security threat report.
Technical Report 23, Symantec Corporation, 2018.

[11] Crispin Cowan, Steve Beattie, Greg Kroah-Hartman,
Calton Pu, Perry Wagle, and Virgil Gligor. Subdomain:
Parsimonious server security. In Proceedings of the 14th
USENIX Conference on System Administration, 2000.

[12] Johannes Dahse and Thorsten Holz. Simulation of built-
in php features for precise static code analysis. In Pro-
ceedings of the Network and Distributed System Security
Symposium, 2014.

[13] Johannes Dahse and Thorsten Holz. Static detection of
second-order vulnerabilities in web applications. In Pro-
ceedings of the 23rd USENIX Conference on Security
Symposium, 2014.

[14] Adam Doupé, Ludovico Cavedon, Christopher Kruegel,
and Giovanni Vigna. Enemy of the state: A state-aware
black-box web vulnerability scanner. In Proceedings of
the 21st USENIX Conference on Security Symposium,
2012.

[15] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji,
and Thomas A. Longstaff. A sense of self for unix
processes. In IEEE Symposium on Security and Privacy,
1996.

[16] Apache Software Foundation. ab - apache http server
benchmarking tool. https://httpd.apache.org/
docs/2.4/programs/ab.html, November 2018.

[17] Jessie Frazelle. A rant on usable security.
https://blog.jessfraz.com/post/a-rant-on-
usable-security/, October 2018.

[18] Tal Garfinkel, Ben Pfaff, Mendel Rosenblum, et al. Os-
tia: A delegating architecture for secure system call
interposition. In Proceedings of the Network and Dis-
tributed System Security Symposium, 2004.

[19] Mattias Geniar. Code obfuscation, php shells & more:
what hackers do once they get passed your (php)
code. https://github.com/mattiasgeniar/php-
exploit-scripts, March 2014.

[20] Ian Goldberg, David Wagner, Randi Thomas, and Eric A.
Brewer. A secure environment for untrusted helper ap-
plications confining the wily hacker. In Proceedings
of the 6th USENIX Conference on Security Symposium,
Focusing on Applications of Cryptography, 1996.

[21] William G.J. Halfond, Alessandro Orso, and Panagiotis
Manolios. Wasp: Protecting web applications using
positive tainting and syntax-aware evaluation. IEEE
Transactions on Software Engineering, 2008.

[22] Byron Hawkins and Brian Demsky. ZenIDS: Intro-
spective intrusion detection for php applications. In
Proceedings of the 39th International Conference on
Software Engineering, 2017.

[23] Steven A. Hofmeyr, Stephanie Forrest, and Anil So-
mayaji. Intrusion detection using sequences of system
calls. Journal of Computer Security, 6, 1998.

[24] Imperva. The state of web application vulnerabilities in
2017. https://imperva.com/blog/the-state-of-
web-application-vulnerabilities-in-2017/,
October 2018.

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://blog.jessfraz.com/post/a-rant-on-usable-security/
https://blog.jessfraz.com/post/a-rant-on-usable-security/
https://github.com/mattiasgeniar/php-exploit-scripts
https://github.com/mattiasgeniar/php-exploit-scripts
https://imperva.com/blog/the-state-of-web-application-vulnerabilities-in-2017/
https://imperva.com/blog/the-state-of-web-application-vulnerabilities-in-2017/

[25] Imperva. The state of web application vulnerabilities in
2018. https://imperva.com/blog/the-state-of-
web-application-vulnerabilities-in-2018/,
October 2018.

[26] IDG Communication Inc. phpmyadmin.
https://www.pcworld.com/article/233948/
phpmyadmin.html, October 2018.

[27] Rasoul Jahanshahi, Adam Doupé, and Manuel Egele.
You shall not pass: Mitigating sql injection attacks on
legacy web applications. In Proceedings of the 15th
ACM Asia Conference on Computer and Communica-
tions Security, pages 445–457, 2020.

[28] Kapil Jain and R Sekar. User-level infrastructure for
system call interposition: A platform for intrusion de-
tection and confinement. In Proceedings of the Network
and Distributed System Security Symposium, 2000.

[29] Konrad Jamrozik, Philipp von Styp-Rekowsky, and An-
dreas Zeller. Mining sandboxes. In Proceedings of the
38th International Conference on Software Engineering,
2016.

[30] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda.
Pixy: A static analysis tool for detecting web application
vulnerabilities (short paper). In IEEE Symposium on
Security and Privacy, 2006.

[31] Taesoo Kim and Nickolai Zeldovich. Practical and ef-
fective sandboxing for non-root users. In Proceedings
of the 22nd USENIX Conference on Annual Technical
Conference, 2013.

[32] Lingguang Lei, Jianhua Sun, Kun Sun, Chris Shene-
fiel, Rui Ma, Yuewu Wang, and Qi Li. SPEAKER:
Split-Phase Execution of Application Containers. In
Detection of Intrusions and Malware, and Vulnerability
Assessment, 2017.

[33] Cullen Linn, Mohan Rajagopalan, Scott Baker, Chris-
tian S. Collberg, Saumya K. Debray, and John H. Hart-
man. Protecting against unexpected system calls. In
Proceedings of the 14th USENIX Conference on Security
Symposium, 2005.

[34] Peter Loscocco and Stephen Smalley. Integrating flexi-
ble support for security policies into the linux operating
system. In Proceedings of the FREENIX Track: USENIX
Annual Technical Conference, 2001.

[35] Aravind Machiry, Rohan Tahiliani, and Mayur Naik.
Dynodroid: An input generation system for android
apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, 2013.

[36] Keiren McCarthy. Panama papers hack: Un-
patched wordpress, drupal bugs to blame?
https://www.theregister.co.uk/2016/04/07/
panama_papers_unpatched_wordpress_drupal,
October 2018.

[37] Metasploit. metasploit. https://
www.metasploit.com, June 2019.

[38] Paul Moore. libseccomp. https://github.com/
seccomp/libseccomp, November 2018.

[39] Darren Mutz, Fredrik Valeur, Giovanni Vigna, and
Christopher Kruegel. Anomalous system call detec-
tion. ACM Transactions on Information and System
Security (TISSEC), 2006.

[40] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene,
Jeff Shirley, and David Evans. Automatically Hardening
Web Applications Using Precise Tainting. In Security
and Privacy in the Age of Ubiquitous Computing, 2005.

[41] Vassilis Prevelakis and Diomidis Spinellis. Sandboxing
applications. In Proceedings of the FREENIX Track:
USENIX Annual Technical Conference, 2001.

[42] Niels Provos. Improving host security with system call
policies. In Proceedings of the 12th USENIX Conference
on Security Symposium, 2003.

[43] Q-Success. Usage of server-side programming
languages for websites. https://w3techs.com/
technologies/overview/programming_language/
all, October 2018.

[44] Q-Success. Usage Statistics and Market Share of
Content Management Systems for Websites, Novem-
ber 2018. https://w3techs.com/technologies/
overview/content_management/all, November
2018.

[45] Derick Rethans. Xdebug: debugger and profiler tool for
PHP. https://xdebug.org/, November 2018.

[46] Jerome H. Saltzer and Michael D. Schroeder. The pro-
tection of information in computer systems. Proceed-
ings of the IEEE, 1975.

[47] Prateek Saxena, David Molnar, and Benjamin Livshits.
Scriptgard: Automatic context-sensitive sanitization for
large-scale legacy web applications. In Proceedings of
the 18th ACM Conference on Computer and Communi-
cations Security, 2011.

[48] Mark Seaborn. Plash: tools for practical least privilege.
http://plash.beasts.org, June 2019.

https://imperva.com/blog/the-state-of-web-application-vulnerabilities-in-2018/
https://imperva.com/blog/the-state-of-web-application-vulnerabilities-in-2018/
https://www.pcworld.com/article/233948/phpmyadmin.html
https://www.pcworld.com/article/233948/phpmyadmin.html
https://www.theregister.co.uk/2016/04/07/panama_papers_unpatched_wordpress_drupal
https://www.theregister.co.uk/2016/04/07/panama_papers_unpatched_wordpress_drupal
https://www.metasploit.com
https://www.metasploit.com
https://github.com/seccomp/libseccomp
https://github.com/seccomp/libseccomp
https://w3techs.com/technologies/overview/programming_language/all
https://w3techs.com/technologies/overview/programming_language/all
https://w3techs.com/technologies/overview/programming_language/all
https://w3techs.com/technologies/overview/content_management/all
https://w3techs.com/technologies/overview/content_management/all
https://xdebug.org/
http://plash.beasts.org

[49] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A
fast automaton-based method for detecting anomalous
program behaviors. In IEEE Symposium on Security
and Privacy, 2001.

[50] Vadym Slizov. php-parser. https://github.com/
z7zmey/php-parser, June 2019.

[51] Anil Somayaji and Stephanie Forrest. Automated re-
sponse using system-call delays. In Proceedings of the
9th USENIX Conference on Security Symposium, 2000.

[52] Sooel Son, Kathryn S. McKinley, and Vitaly Shmatikov.
Diglossia: detecting code injection attacks with preci-
sion and efficiency. In Proceedings of the 20th ACM
SIGSAC conference on Computer, 2013.

[53] Sooel Son and Vitaly Shmatikov. Saferphp: Finding
semantic vulnerabilities in php applications. In Proceed-
ings of the ACM SIGPLAN 6th Workshop on Program-
ming Languages and Analysis for ecurity, 2011.

[54] WPScan Team. Foxypress 0.4.1.1-0.4.2.1 - arbitrary file
upload. https://wpvulndb.com/vulnerabilities/
6231, June 2019.

[55] David Wagner. Janus: An approach for confinement of
untrusted applications. Technical report, University of
California at Berkeley, 1999.

[56] David Wagner and Drew Dean. Intrusion detection via
static analysis. In IEEE Symposium on Security and
Privacy, 2001.

[57] Zhiyuan Wan, David Lo, Xin Xia, Liang Cai, and Shan-
ping Li. Mining sandboxes for linux containers. In IEEE
International Conference on Software Testing, Verifica-
tion and Validation (ICST), 2017.

[58] Gary Wassermann and Zhendong Su. Sound and precise
analysis of web applications for injection vulnerabilities.
In Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
2007.

[59] David A. Wheeler. https://dwheeler.com/
sloccount/sloccount.html, 2004.

[60] Dave Wichers. Owasp top-10 2013. OWASP Foundation,
February, 2013.

[61] Cong Zheng and Heqing Huang. Daemon-guard: To-
wards preventing privilege abuse attacks in android na-
tive daemons. In Proceedings of the First Workshop on
Radical and Experiential Security, 2018.

[62] Yunhui Zheng and Xiangyu Zhang. Path sensitive static
analysis of web applications for remote code execution
vulnerability detection. In 35th International Confer-

ence on Software Engineering (ICSE), 2013.

https://github.com/z7zmey/php-parser
https://github.com/z7zmey/php-parser
https://wpvulndb.com/vulnerabilities/6231
https://wpvulndb.com/vulnerabilities/6231
https://dwheeler.com/sloccount/sloccount.html
https://dwheeler.com/sloccount/sloccount.html

	Introduction
	Background
	Remote Code Execution Vulnerabilities
	System Calls and Mitigation Techniques
	Interpreters

	Overview
	Interpreters
	An API for all interpreted programs

	Securing Interpreted Programs
	Mapping the interpreter API to syscalls
	Identifying API calls within an interpreted program
	Protecting the Program

	Implementation
	Mapping built-in PHP functions to system-calls
	Static analysis over the PHP Interpreter
	Refining the mapping through dynamic analysis

	Creating system-call filters for web apps
	String representation
	Unresolved Includes
	Building system-call profiles for Scripts

	Sandboxing the Interpreter and Web App

	Evaluation
	Web Apps and Plugins in our dataset
	Dependency Resolution (RQ1)
	System-Call Profile Size (RQ2)
	Defense Capabilities (RQ3)
	Is Saphire too restrictive?
	Payload Constraints
	Analysis of Non-vulnerable Plugins
	Runtime overhead

	Limitations and Discussion
	Related Work
	Conclusion

