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Abstract—With the continuous increase in the number of
software-based attacks, there has been a growing effort towards
isolating sensitive data and trusted software components from
untrusted third-party components. A hardware-assisted intra-
process isolation mechanism enables software developers to parti-
tion a process into isolated components and in turn secure sensitive
data from untrusted components. However, most of the existing
hardware-assisted intra-process isolation mechanisms in modern
processors, such as ARM and IBM Power, rely on costly kernel
operations for switching between trusted and untrusted domains.
Recently, Intel introduced a new hardware feature for intra-
process memory isolation, called Memory Protection Keys (MPK),
which enables a user-space process to switch the domains in an
efficient way. While the efficiency of Intel MPK enables developers
to leverage it for common use cases such as Code-Pointer Integrity,
the limited number of unique domains (16) prohibits its use in
cases such as OpenSSL where a large number of domains are
required. Moreover, Intel MPK suffers from the protection key
use-after-free vulnerability. To address these shortcomings, in this
paper, we propose an efficient intra-process isolation technique
for the RISC-V open ISA, called SealPK, which supports up to
1024 unique domains. SealPK prevents the protection key use-
after-free problem by leveraging a lazy de-allocation approach. To
further strengthen SealPK, we devise three novel sealing features
to protect the allocated domains, their associated pages, and their
permissions from modifications or tampering by an attacker. To
demonstrate the feasibility of our design, we implement SealPK
on a RISC-V Rocket processor, provide the OS support for it, and
prototype our design on an FPGA. We demonstrate the efficiency
of SealPK by leveraging it to implement an isolated shadow stack
on our FPGA prototype.

Index Terms—Intra-Process Memory Isolation, Memory Pro-
tection Keys, RISC-V, Isolated Shadow Stack

I. INTRODUCTION

With the ever-increasing complexity of software applications,
today’s software code consists of both trusted components
designed in-house and untrusted components such as third-party
libraries and application plugins. The coexistence of trusted
components with potentially malicious or vulnerable untrusted
components in the same address space could compromise the
security of the system through information leakage, denial-
of-service attack, etc [19]. While the user-space inter-process
isolation protects processes from one another, the intra-process
isolation of various software components has been a challenge.
Although it is feasible to invoke the mprotect system call
from the user space to update the permission bits of specific
pages, the performance overhead of mprotect due to the
context switches between the kernel and user-space can be
prohibitive (1,094 cycles on avg. on a modern processor [13]).

To facilitate the intra-process memory protection, in recent
years, some processors such as ARM [14] and IBM Power [15]

have provided new features to create memory domains by
assigning the same key to a group of memory pages. However,
these features still rely on costly kernel operations for changing
domains. More recently, Intel proposed a similar hardware
feature, called Intel Memory Protection Keys (MPK) [16],
to efficiently support intra-process memory isolation using
a user-space instruction (WRPKRU) to update the associated
permission of a domain. Intel MPK allows the user to create
a protection domain by assigning a protection key (pkey)
to a group of memory pages. The non-privileged WRPKRU
instruction, which updates the pkey permissions, takes about
11-260 cycles [18], does not require a context switch, and
does not lead to a TLB flush. However, Intel MPK suffers
from two major drawbacks, i.e., security and scalability. In
terms of security, Intel MPK suffers from pkey use-after-free
vulnerability [13]. Once a pkey gets freed, the kernel does
not update the pkey bits of its associated pages. The same
freed pkey can later on be allocated to a new domain; as a
result, the old pages and the new ones will unintentionally
share the same pkey. Additionally, if an attacker tampers with
a protection domain, its associated pages, or its corresponding
permission, the protection keys serve no purpose. In particular,
since Intel MPK allows a user-space code to modify the pkey
permissions, a malicious component might contain WRPKRU
instructions or inject those instructions at run-time to update
the permission bits of a domain and attain access to a protected
domain. In terms of scalability, Intel MPK provides only 16
pkeys. However, some real-world use cases such as Persistent
Memory Object (PMO) [24] and OpenSSL [13] require more
than 1000 pkeys. The above-mentioned drawbacks hinder the
deployment of Intel MPK for enforcing granular intra-process
memory isolation.

To enable pervasive deployment of Intel MPK, recent works
have focused on addressing one or more of the above-
mentioned drawbacks. To prevent the manipulation of a do-
main’s permissions by an attacker, recent works have leveraged
binary inspection and binary rewriting approaches [10], [18].
Although Control-Flow Integrity (CFI) [2] can also be utilized
to prohibit an uncontrolled execution of WRPKRU instruction
[13], CFI enforcement mechanisms incur considerable perfor-
mance overhead. To address the limited number of pkeys,
libmpk [13] and Xu et al. [24] have proposed a software-based
and a hardware-based virtualization technique, respectively.
The virtualization technique of libmpk suffers from large over-
heads due to expensive Page Table Entry (PTE) updates [24].
While the hardware-based virtualization technique by Xu et



al. [24] provides an efficient implementation, it is not generic
and is tailored for a specific application (PMO protection). Note
that the pkey virtualization techniques can eliminate the pkey
use-after-free problem.

In this paper, we propose an efficient intra-process memory
isolation capability, called SealPK, leveraging the Open RISC-
V Instruction Set Architecture (ISA) [22]. Similar to Intel
MPK, SealPK provides a per-page protection key; however,
SealPK supports up to 1024 domains (64× more than Intel
MPK) by leveraging the 10 unused bits available in the PTE of
each virtual page (Sv-39). We eliminate the pkey use-after-free
problem at Operating System (OS) level by keeping track of
the number of pages belonging to the same domain and a lazy
de-allocation approach.

While Intel MPK does not provide a solution to maintain
the integrity of protection domains and their permissions, we
propose three novel sealing features to prevent an attacker from
modifying sealed domains, their corresponding sealed pages,
and their permissions. In particular, our hardware-assisted
permission sealing feature enables the software developer to
restrict the access to WRPKRU within a contiguous range of
memory addresses, e.g., a trusted component. Any attempt to
execute a WRPKRU instruction outside of the specified range
would lead to a hardware exception. Hence, this sealing feature
efficiently prevents the manipulation of a domain’s permission
by an attacker. To summarize, our contributions are as follows:

• We present an efficient intra-process isolation capability,
called SealPK, which supports up to 1024 unique isolated
domains. We propose an OS-level solution to avoid the
pkey use-after-free issue. We devise three novel sealing
features to protect the domains, their associated pages, and
their permissions from unauthorized modifications.

• We implement SealPK on a RISC-V Rocket processor [3]
and extend the Linux kernel to support the protection
keys for the RISC-V ISA. We evaluate a prototype of our
hardware design on an FPGA with a full Linux software
stack.

• We demonstrate the efficiency of our design by implement-
ing an isolated shadow stack leveraging SealPK. Our iso-
lated shadow stack prototype is, on average, ∼88× faster
than an isolated implementation using mprotect across
SPECint2000, SPECint2006, and MiBench benchmarks.

II. BACKGROUND

A. Memory Protection Keys

In recent years, a growing number of modern processors
have provided a per-page protection key capability, where
a group of virtual memory pages form a domain and all
pages in the domain are assigned the same protection key.
Intel MPK utilizes 4 previously unused bits of the PTE to
specify the pkey of each page and to divide the address
space into up to 16 different protection domains. Intel MPK
stores the permission bits of all the pkeys in a single 32-bit
register (per logical core), called protection key rights register
(PKRU). The access permission of each pkey is specified
using a 2-bit value in the PKRU. Accordingly, each pkey
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Fig. 1. Sv39 PTE according to the RISC-V ISA [21].

specifies a domain as readable/writable, read-only
or non-accessible.

Intel MPK provides two new unprivileged instructions, i.e.,
WRPKRU and RDPKRU, to write/read into/from PKRU. A user
can leverage the WRPKRU instruction to update the permission
bits of all domains without the need for a context switch.
Hence, updating the permission bits of a domain is fast (11-260
cycles [18]); however, PKRU is not protected from manipulation
by control-flow hijacking attacks [10], [17], [18].

The Linux kernel provides support for Intel MPK (since
v4.6) through three new system calls, i.e., pkey_alloc,
pkey_free, and pkey_mprotect. The kernel maintains a
16-bit allocation bitmap to keep track of the allocated keys.
A user-space thread has to allocate a new pkey using the
pkey_alloc system call prior to assigning the pkey to a
page (group) by invoking the pkey_mprotect system call.
Using the pkey_free system call, the user frees an allocated
pkey; however, the kernel only updates the allocation map to
indicate that the corresponding pkey is free without erasing the
pkey from the PTE of all the corresponding memory pages.
The same pkey might be assigned to another domain on future
pkey_alloc invocations; hence, unintentionally the previous
domain would share the same pkey as the new domain, giving
rise to the pkey use-after-free problem.

B. RISC-V

The RISC-V Instruction Set Architecture (ISA) [22] is an
open ISA. As part of the privileged ISA, RISC-V specifies
a page-based 39-bit virtual memory, i.e., Sv39, for 64-bit
systems [21]. Figure 1 shows the PTE bits of Sv39, where
bits 1-3 (R, W, and X bits) are the permission bits of the page,
indicating whether the page is readable, writable, and
executable, respectively. As shown in Figure 1, bits 54-63
are currently unused and reserved for future use; hence, as we
will discuss in Section III, we leverage these 10 bits to store
our per-page pkey.

III. SEALPK: DESIGN

In this section, we explain the baseline hardware design of
SealPK and its OS support. We discuss the design and imple-
mentation of the three novel features of SealPK in Section IV.

A. Hardware Design

As mentioned before, scalability is one of the limitations
of Intel MPK, as it cannot support more than 16 pkeys. In
RISC-V, we leverage the 10 unused bits (which enables up
to 1024 pkeys) of the Sv39 PTE to store the pkey.1 Figure 2
demonstrates our hardware modifications to support SealPK.

1Note that the Sv48 PTE also has 10 unused bits while a 32-bit RISC-V
processor uses Sv32, where there are no unused bits in PTE. In this case, we
can store the pkey information in a separate OS-managed data structure and
use a TLB to cache the information at hardware level.
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We add a new entry to each line of the DTLB to store the
corresponding 10-bit pkey of each virtual page.2 Hence, our
SealPK design supports up to 1024 domains, which is 64×
more than the 16 domains supported by Intel MPK. We can
use a virtualization-based mechanism, like libmpk [13], to
support more than 1024 domains. Note that with a virtualization
technique, we can create more than 1024 domains, but in reality
we are still limited to 1024 concurrent physical pkeys. For
an unlimited number of domains, we can store the pkey
information in a separate OS-managed hierarchical structure.
We store the permission bits of the pkeys separately. In our
design, we use 2 bits, i.e., (Read Disable (RD), Write
Disable (WD)), to specify the access permission of each
protection key. Following the principle of the least privilege,
unlike Intel MPK and previous works, our design enables
a write-only page, which can in turn reduce the attack
surface. Such a write-only page is specifically useful for
log entries, where one thread is responsible for writing the
log and another thread processes the written log. Note that the
RISC-V ISA does not support write-only pages,3 and our
design provides this feature by leveraging pkeys regardless of
the support in PTE permissions.

We support 1024 pkeys in our design; hence, unlike Intel
MPK, we cannot simply use a single register to store all the
pkey permission bits. To provide fast access to these bits,
we use a 2Kb on-chip SRAM-based memory to store the
permission bits. This memory, called PKR (shown in Figure 2),
consists of 32 rows, where each row stores the permission bits
of 32 pkeys (64 bits total). We utilize the custom instruction
extension of the RISC-V ISA [22] to define two new instruc-
tions, RDPKR and WRPKR, to read from and write to PKR.4

The RDPKR instruction uses two registers, i.e., rs1 and rd,
for its operation. The input register (rs1) contains the pkey. At

2Note that pkey checks are only applicable to data memory accesses and not
an instruction fetch. Hence, we do not modify the ITLB.

3The PTE permissions for a write-only page is a feature reserved for
the future use.

4To simplify the implementation of the custom instructions, we leverage the
RoCC extension of the Rocket core, which adds the support for decoding and
executing custom instructions to the Rocket core’s pipeline.

hardware level, the upper 5-bits of the pkey are used to index
into PKR and read the corresponding 64-bit row of permissions.
This 64-bit value is returned as the output and stored in rd.
The WRPKR instruction uses two input registers, i.e., rs1 and
rs2, for its operation. The first input register (rs1) contains
the pkey, which is used to index into PKR. The second input
register (rs2) contains the new value of 64-bit permissions of
the corresponding row. The hardware uses this new 64-bit value
to overwrite the permission bits of the row indexed by pkey.

In our hardware design, we provide a control logic to
determine the effective permission bits of each data memory
access. Consider the example shown in Figure 2, where there
is an incoming write request to the virtual page #87. In addition
to reading the page’s read/write permission bits stored in DTLB
(11), the control logic reads the corresponding 2-bit permission
bits of the pkey (111100001) stored in PKR. The control logic
uses the upper 5 bits of the pkey to index into a specific 64-bit
row of PKR and the lower 5 bits to select the 2 permission bits
(01). The effective permission is the intersection of the DTLB’s
and pkey’s permission bits. In this example, the effective
permission is 10; hence, the write access is not allowed. If a
data access is not allowed according to the effective permission,
it leads to a load/store page fault; the processor triggers an
exception, and the OS handles the page fault.

B. Kernel Support

At the OS level, we add the support to store each page’s pkey
in the 10 unused bits of the PTE. Our RISC-V kernel support
is built upon the existing Linux kernel support for MPK.

1) Lazy de-allocation: To keep track of the allocated pkeys,
we implement a 1024-bit allocation bitmap. To efficiently
address the pkey use-after-free problem of Intel MPK, we
leverage a lazy de-allocation approach. We implement a 1024-
bit dirty map to indicate whether each pkey has been lazily de-
allocated. We also keep track of the number of pages currently
associated with each pkey using a counter map. If a pkey’s
corresponding counter is not zero, pkey_free updates the
permission bits of the pkey in PKR to (0,0); hence, the page-
table permissions determine the effective permission of the
corresponding pages. Rather than clearing the corresponding
bit of the pkey in the allocation map, pkey_free sets the
dirty bit and pkey_alloc would not allocate a dirty pkey.
Whenever a memory page with a dirty pkey gets freed, we
update the number of pages associated with the dirty pkey in
the counter map, accordingly. Once the counter becomes zero,
we erase the dirty bit of the corresponding pkey; hence, it can
safely be allocated afterwards. If pkey_alloc cannot find a
free non-dirty pkey, it returns an allocation error to indicate no
free pkey is available.

2) Per thread OS support: We modify the task_struct
in the Linux kernel to maintain the contents of PKR for each
thread during the context switches.5 Furthermore, we modify
the RISC-V page fault handler in the Linux kernel to identify a
page fault caused by a pkey permission violation. We augment

5According to our evaluations, maintaining PKR information during context
switches incurs less than 1% performance overhead.



the segmentation fault with the pkey information to accurately
reflect the cause of the fault to the developer and assist with
debugging.

IV. SEALPK: SEALING FEATURES

As mentioned before, Intel MPK does not protect the al-
located domains, their associated pages, and their permission
bits from tampering by an attacker. In this section, we describe
three novel sealing features to protect against such tampering.
To clarify the defensive capabilities of these features, consider
the example shown in Figure 3. In this example, a software
developer writes a program that handles sensitive financial
records. The Main function (written in-house) initially allo-
cates the memory pages for the financial record (log) as
readable-writable and assigns a protection key to these
pages. Following the principle of the least privilege, the initial
value of the pkey restricts the permission to read-only
pages. In this example, Func-A updates the contents of the
log. We assume that this function is developed in-house and
has access to the pkey. Prior to writing the sensitive financial
information into the log, Func-A modifies the domain per-
mission of the log to write-only. For performance reasons,
the software developer leverages third-party untrusted libraries
in the implementation of Func-B, Func-C, and Func-D.
Funct-B reads the log and returns a sorted copy of the log.
Func-C does not have access to the log, instead it receives
a list of prices and converts them to a different currency.
Funct-D reads the log and prints all the transactions of
a specific account. Hence, Func-B and Func-D, can only
access the log as read-only memory. For security reasons,
the untrusted functions are not aware of the pkey value. In the
rest of this section, we explain how each of our sealing features
protects the log against potential attacks originating from the
untrusted components.

Sealing the domain: In this scenario, Func-B is a ma-
licious third-party component, which receives the log as a
read-only input. Funct-B is supposed to read the log and
return a sorted copy of it. However, as shown in Figure 3, this
untrusted component allocates a new readable-writable
pkey, invokes the mprotect system call and assigns the new
pkey to the log. In this way, Func-B can falsify the financial
records stored in the log. Unfortunately, the developer who
uses this untrusted function does not have access to its source-
code and is unaware of its maliciousness. In this scenario, Intel
MPK is not capable of preventing this malicious modification
to the log within the same thread. To prevent such unautho-
rized modifications, we provide a domain sealing option by
adding a sealed_domain map to the kernel. We modify the
pkey_mprotect system call to check the sealed_domain
map prior to modifying a domain’s pkey. Once a domain is
sealed, pkey_mprotect prevents any further modifications
to PTE permissions as well as the pkey value, efficiently
throwing such attacks.

Sealing pages: We assume that after the initialization step
in the Main function, no more pages will be added to the
protection domain. Consider a scenario where Func-C, a
malicious third-party component, aims to crash this financial

Func-A
/* Trusted component;
updates the log */
asm volatile(seal_start)
pkey_set(pkey, 0x2)
update_log(log)
asm volatile(seal_end)
pkey_perm_seal(pkey)

Main
// The main function allocates the log and configures the memory
int *log
log = mmap(NULL, N*getpagesize(), PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0)
int pkey = pkey_alloc(0x1) // read_only domain
pkey_mprotect(log, N*getpagesize(), PROTE_READ | PROT_WRITE, pkey)
pkey_seal(pkey, true, true)

Func-B (log)
/* Untrusted malicous component; should
only be able to read the log */
/* tries to gain write access to the log */
// readable-writable pkey
int new_pkey = pkey_alloc(0x0) 
pkey_mprotect(log, N*getpagesize(), 
   PROT_READ | PROT_WRITE, new_pkey)
buffer = update_log(log)
...
new_log = sort(log)

Func-C (prices)
/* Untrusted malicous component; does
not have access to log */
/* tries to cause a carash by adding the
prices to the same domain as log with
brute-force */
static int target_pkey = 0
pkey_mprotect(prices, M*getpagesize(),
      PROT_READ|PROT_WRITE, target_pkey)
target_pkey++
...
convert_currency(prices)

Func-D (log)
/* Untrusted component;
only reads the log but it
suffers from a buffer
overflow vulnerability */
char name[20]
//buffer overflow vulnerability
gets(name) 
print_log(log, name)

Buffer overflow

An atacker

injects 

WRPKR(0x1, 0x0)

Fig. 3. Example scenario for our sealable features: The red texts in Func-B
and Func-C show an effort to attack the pkeys, the yellow texts in Func-D
show a vulnerability that can be leveraged by an attacker to compromise the
pkey permissions. The green texts in the Main and Func-A functions show our
sealing features to protect the domain, its associated pages, and its permissions
from unauthorized modifications.

application. Crashing the application at run-time could lead to
denial-of-service and financial losses. Func-C does not have
access to the log; it only receives a list of prices and converts
them from one currency to another one. This price list does
not include any sensitive information; hence, Func-A does not
assign a protection domain to it. In this example, in each call,
the malicious Func-C adds the pages associated with the price
list to a different domain, hoping that the new domain would
restrict the read permission. As a result, after the price list is
assigned with the same pkey as the log, once Func-A tries
to read the price list the program crashes with a segmentation
fault. Intel MPK cannot prevent this issue within the same
thread; similarly, our domain sealing feature is not sufficient
in this scenario. To ensure that no more pages can be added
to a domain (either by mistake or by a malicious component),
we provide a page sealing option by adding a sealed_page
map to the kernel, indicating whether the pages associated
with each pkey are sealed. We modify the pkey_mprotect
system call to check the sealed_page map and only al-
low adding new pages to a pkey domain if the associated
pages of that domain are not sealed. As shown in Fig-
ure 3, we add a new system call, pkey_seal(int pkey,
bool seal_domain, bool seal_page), which allows
the programmer to seal a domain and/or its associated pages.
Note that once a domain or its associated pages are sealed, the
seal cannot be broken unless the corresponding pkey and all its
associated pages are freed.

Sealing permissions: In this scenario, we assume Func-D
is a third-party component, suffering from a buffer over-
flow vulnerability. As shown in Figure 3, an attacker can
leverage this vulnerability to inject a WRPKR instruction at
run-time and modify the permission bits of the log to
readable-writable. Subsequently, the attacker can falsify
the sensitive contents of the financial record. Intel MPK does
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not protect pkey permissions against control-flow hijacking
attacks that leverage the WRPKRU instruction. To prevent such
a tampering, we provide a permission sealing feature, which
allows the developer to restrict the execution of the WRPKR
instruction to a specified range of memory addresses. In this
example, we aim to restrict the occurrence of the WRPKR
instruction to the address range of Func-A.

At hardware level, as shown in Figure 4, we keep track
of sealed pkey permissions using a local memory, called
SealReg. We modify the Rocket core’s pipeline to consult
SealReg prior to executing a WRPKR instruction. If the
permission bits of the pkey are sealed, the WRPKR instruction
is only allowed in the permissible range, specified by the
developer. We leverage a Content-Addressable Memory (CAM)
like structure, named PK-CAM, to cache the permissible range
of each pkey. If the pkey information is available in PK-CAM
but the current address of the WRPKR instruction is not in
the permissible range, then SealPK prevents the execution of
WRPKR and causes an exception. If PK-CAM does not include
the pkey information, we will refill PK-CAM.6

We also provide the software support for sealing the
permissions. We provide two new custom instructions, i.e.,
seal_start and seal_end, to specify the contiguous
permissible range of each pkey. Although these instructions
can be added to the source code (Figure 3), the more efficient
way of using them is by a compiler pass or through run-time
mechanisms such as ld-preload. After specifying the start and
end addresses of a permissible range for WRPKR, the developer
has to invoke a newly added system call (pkey_perm_seal)
to seal the permissions. This system call leverages a cus-
tom instruction, which is only accessible to the supervisor
mode, to seal the permission bits by updating the SealReg
and PK-CAM. We modify the Linux kernel to maintain the
SealReg information as well as permissible range of each
pkey during context switches for each process. Note that
SealReg and the permissible range of a pkey are implemented
similar to a one-time fuse, i.e., they can only be written once for
each process. Hence, after configuration, the permission sealing
feature cannot be modified. The simplicity and efficiency of our
permission sealing feature distinguishes our work from existing
works focused on preventing the manipulation of a domain’s
permissions by an attacker, e.g., [10] and [18].

6Currently, we trigger an interrupt and insert the pkey and its permissible
range to PK-CAM in the OS interrupt handler. As part of our future work,
we plan to delegate this interrupt to user level and provide a secure software
library to update PK-CAM.

By leveraging SealPK’s sealing features, the software devel-
oper can implement a tamper-proof log of financial records
in the face of buggy and malicious third-party components.

V. EVALUATION

A. Experimental Setup

We use the Chisel HDL [4] to implement SealPK on a RISC-
V Rocket core [3], configured with a 16KB L1 instruction
and data caches. We add the OS support for SealPK to the
Linux kernel v4.15. As a case study, we implement an isolated
shadow stack using LLVM front-end and back-end passes. We
use Clang v.7 and v.8 for our front-end and back-end passes,
respectively. We prototype our hardware design with the full
software stack on a Xilinx Zedboard FPGA.

For performance evaluation, we use RISC-V LLVM to cross-
compile 6 applications (out of 12) from SPECint2000 [11], 4
applications (out of 12) from SPECint2006 [12], and 7 applica-
tions from MiBench [9] benchmark suites. Due to compilation
issues and memory limitations of our FPGA, we were not
able to successfully cross-compile and run all the applications
from these benchmark suites. In particular, for SPECint2000,
we got a segmentation fault for the baseline execution of
vortex and gcc, and faced LLVM cross-compilation issues
for the remaining 4 applications. For SPECint2006, with the
baseline code, we got an out of memory error for mcf and
a segmentation fault for gcc. We faced various LLVM cross-
compilation issues for the remaining 6 applications. Note that
RISC-V LLVM is still not as mature as GCC support for RISC-
V. In our evaluations, we use the large inputs for MiBench
and evaluate SPECint2000 and SPECint2006 applications using
test inputs.7

B. Case Study: An Isolated Shadow Stack

To demonstrate the effectiveness of SealPK, as a case study,
we use SealPK to protect an isolated shadow stack that prevents
Return-Oriented Programming (ROP) attacks. An ROP attack
is a contemporary code-reuse attack that allows an attacker
to execute arbitrary code by overwriting the return addresses
on the stack. A shadow stack protects the return addresses by
storing them in a separate memory. It is imperative to guarantee
the integrity of the shadow stack [5], i.e., the shadow stack
area should be an isolated area within the process’ address
space to prevent attackers from modifying it. We isolate the
shadow stack memory in a protection domain. Once the shadow
stack memory is allocated and assigned to a domain, no more
pages will be added and the protection domain stays the same
during the process execution. We leverage the domain and page
sealing features to protect the allocated domain and pages of the
shadow stack from further modifications (similar to scenarios
described in Section IV) after the initial configuration.

For the shadow stack implementation, we first implement a
baseline front-end pass LLVM plugin [7]. This front-end pass
allocates a memory area for the shadow stack and instruments

7We use the test inputs for SPEC evaluations due to the memory limitation
of our FPGA board (256MB) as well as the long execution time of the
benchmarks for the mprotect comparison point (multiple days).
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Fig. 5. Performance overhead of various LLVM-based shadow stack implementations for SPECint2000, SPECint2006, and MiBench benchmarks. The Inline
implementation is a front-end LLVM pass, where the shadow stack capability is inserted as an inline code. The Func implementation uses a function call
in the front-end pass rather than an inline code. SealPK-WR is implemented as a back-end pass built upon Func, where it writes the new value of pkey
permission bits without maintaining the rest of the permission bits. SealPK-RD+RW adds the support to read the corresponding row of the pkey before updating
it. mprotect is implemented as an inline front-end pass by invoking mprotect system call before and after writing the return address into the shadow stack.

the prologue and epilogue of each function to push the original
return address into the shadow stack memory and pop the
shadow return address from that memory, respectively. To
isolate the shadow stack, we modify the front-end pass to
allocate a pkey and to assign it to the shadow stack memory
pages. To protect the shadow stack from modifications, we
initialize the pkey as read-only. We implement a RISC-
V back-end pass to temporarily update the pkey permission
to readable-writable in the prologue, where we push
the return address into the shadow stack. Right after pushing
the return address, the back-end pass disables the pkey write
permission. Our back-end pass inserts the required RDPKR
and WRPKR instructions to update the pkey’s permission bits.
We can leverage our permission sealing feature to restrict the
WRPKR occurrences to the memory range of the back-end pass.

In our evaluations, we measured the total execution time of
an application as our performance metric. For the baseline, we
compiled the benchmarks using Clang v.8 without applying
any passes and ran the benchmarks on an unmodified core and
Linux kernel. We ran each application three times and report
the geometric mean of the execution times.

Figure 5 shows the performance overhead of various shadow
stack implementations compared to the baseline. Inline and
Func are front-end LLVM passes that cannot guarantee the
integrity of the shadow stack; hence, the shadow stack mem-
ory remains unprotected. SealPK-WR and SealPK-RD+RW
are isolated shadow stack implementations, leveraging SealPK
in a back-end pass. mprotect is our comparison point,
an isolated shadow stack implemented by leveraging the
mprotect system call. As expected, using mprotect incurs
considerable performance overhead, i.e., 2875.62%, 1982.70%,
and 320.21%, on average, for SPEC2000, SPEC2006, and
MiBench, respectively, which makes it an infeasible option.
mprotect requires a context switch into the kernel, followed
by a full page table walk to change the permissions of all

TABLE I
THE FPGA UTILIZATION OF SEALPK COMPARED TO THE BASELINE

ROCKET CORE.

Baseline Rocket Core + SealPK
Used Utilization Used Utilization

Total Slice Luts 32030 60.21 35019 65.83
Luts as logic 30907 58.1 33852 63.63
Luts as Memory 1123 6.45 1167 6.71
Slice Registers as Flip Flop 16506 15.51 19392 18.23

the specified pages, and then a TLB flush. On the contrary,
leveraging SealPK to implement an isolated shadow stack uses
a user-space instruction to modify the pkey permission bits.
SealPK-RD+RW, has an average of 21.00%, 14.81%, and
8.52% performance overhead for SPEC2000, SPEC2006, and
MiBench applications, respectively.

C. Hardware Overhead of SealPK

Table I shows the FPGA utilization of adding SealPK to
the Rocket core compared to the baseline unmodified Rocket
core. In our FPGA prototype, enhancing Rocket core with
SealPK increases the LUT and FF utilization by 5.62% and
2.72%, respectively.8 The main source of area and power
overhead for SealPK is PKR, a 2Kb local memory. Accordingly,
we estimate that our power overhead is also less than 5%,
even when considering a 100% access rate to PKR. In our
FPGA evaluation, the Rocket core operated with a maximum
frequency of 25 MHz (both in the baseline and the enhanced
version with SealPK experiments).9 According to our FPGA
place and route results, SealPK’s modifications to the Rocket
core did not change the critical path.

8Note that the reported LUT and FF overhead includes the resource utiliza-
tion of adding RoCC custom instruction support to the Rocket core.

9Note that an ASIC implementation of the Rocket core can perform with a
target frequency of 1 GHz.



VI. RELATED WORK

There is a considerable amount of prior work on intra-
process memory isolation. A Software Fault Isolation (SFI)
technique [20] instruments each memory access by address
masking instructions to prevent unintended memory accesses;
however, it suffers from large performance overhead. Prior
to Intel MPK, CODOMs [19] and CHERI [23] proposed
efficient capability-based systems, which require significant and
invasive hardware modifications. IMIX [8] enables secure data
encapsulation by minimally extending the x86 ISA with secure
load and store instructions. To address Intel MPK’s limitations,
Hodor [10] and ERIM [18] combine Intel MPK with binary
inspection to prevent reusing of WRPKRU instruction by an
attacker. The sealing permission feature of SealPK provides a
similar capability by restricting valid WRPKR instructions to a
contiguous range of memory addresses for each pkey. Although
our sealing feature is limited to one valid memory range for
each pkey, its simplicity and efficiency distinguishes our work
form Hodor and ERIM. To allow the occurrence of WRPKR
instructions in more than one trusted component, we can rely on
a CFI technique for the RISC-V Rocket core [6] to protect PKR
from manipulation by an attacker. libmpk [13] and Xu et al. [24]
provide a software-based and a hardware-based virtualization
technique, respectively, to address the limited number of pkeys.
We can leverage such virtualization techniques to support more
than 1024 domains for SealPK.

Donky [17] provides a secure user-space software framework
to protect the domain permissions against CFI attacks without
relying on binary inspection or CFI. Donky proposes a pkey
extension for RISC-V ISA, and implements it on the Ariane
core [1]. Similar to SealPK, Donky uses the 10 unused bits of
Sv39 PTEs to store the pkeys; however, Donky relies on a 64-
bit CSR (managed by a software library) to store the permission
bits of only 4 pkeys at a time. If the pkey of the accessed
memory address is not loaded into that CSR, Donky requires
extra cycles for the software library (which stores all the pkey
information) to load the missing pkey and its permission into
the register. In our design, we access PKR in the same cycle as
page-table permission checks. The permission sealing feature
of SealPK allows us to protect a domain against CFI attacks in
cases where the valid WRPKR instructions occur in contiguous
memory addresses. In addition to this feature, SealPK provides
two other novel sealing features to prevent a domain and its
associated pages from tampering.

VII. CONCLUSION

In this paper, we proposed an efficient intra-process memory
isolation technique (SealPK) for a RISC-V processor, which
supports up to 1024 domains. In our design, we provided three
novel sealing features to protect a domain, its associated pages,
and its permission bits from unauthorized modifications. To
address the pkey use-after-free problem, we used an OS-level
lazy de-allocation approach. We prototyped RISC-V Rocket +
SealPK on an FPGA with full software stack, and demonstrated
the efficiency of SealPK by securing a shadow stack.
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