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Abstract—With the continuous increase in the number of
software-based attacks, there has been a growing effort towards
isolating sensitive data and trusted software components from
untrusted third-party components. Recently, Intel introduced a
new hardware feature for intra-process memory isolation, called
Memory Protection Keys (MPK). The limited number of unique
domains (16) provided by Intel MPK prohibits its use in cases
where a large number of domains are required. Moreover, Intel
MPK suffers from the protection key use-after-free vulnerability.
To address these shortcomings, in this paper, we propose an
efficient intra-process isolation technique for the RISC-V open
ISA, called SealPK, which supports up to 1024 unique domains.
Additionally, we devise three novel sealing features to protect the
allocated domains, their associated pages, and their permissions
from modifications or tampering by an attacker. We demonstrate
the efficiency of SealPK by leveraging it to implement an isolated
secure shadow stack on an FPGA prototype.

Index Terms—Intra-Process Memory Isolation, Memory Pro-
tection Keys, RISC-V, Isolated Shadow Stack

I. INTRODUCTION
With the ever-increasing complexity of software applications,

today’s software code consists of both trusted components
designed in-house and untrusted components such as third-party
libraries and application plugins. The coexistence of trusted
components with potentially malicious or vulnerable untrusted
components in the same address space could compromise
the security of the system. While the user-space inter-process
isolation protects processes from one another, the intra-process
isolation of various software components has been a challenge.

Recently, Intel proposed a hardware feature, called Memory
Protection Keys (MPK) [10], to efficiently support intra-process
memory isolation. Intel MPK allows the user to create a
protection domain by assigning a protection key (pkey) to a
group of memory pages, and it provides a user-space instruction
(WRPKRU) to update the associated permission of a domain.
However, Intel MPK suffers from security and scalability
issues. In terms of security, Intel MPK suffers from pkey use-
after-free vulnerability [9]. Once a pkey gets freed, the kernel
does not update the pkey bits of its associated pages. The same
freed pkey can later on be allocated to a new domain; as a
result, the old pages and the new ones will unintentionally
share the same pkey. Additionally, if an attacker tampers with
a protection domain, its associated pages, or its corresponding
permission, the protection keys serve no purpose. In particular,
since Intel MPK allows a user-space instruction to modify
the pkey permissions, a malicious component might contain
WRPKRU instructions or inject those instructions at run-time to
update the permission bits of a domain and attain access to a
protected domain. In terms of scalability, Intel MPK provides
only 16 pkeys. However, some real-world use cases such as
OpenSSL [9] require more than 1000 pkeys.

In this paper, we propose an efficient intra-process memory
isolation capability, called SealPK, leveraging the Open RISC-
V Instruction Set Architecture (ISA) [13]. SealPK provides a
per-page protection key and supports up to 1024 domains (64 x
more than Intel MPK). We eliminate the pkey use-after-free
problem at Operating System (OS) level by keeping track of
the number of pages belonging to the same domain and a lazy
de-allocation approach. We propose three novel sealing features
to prevent an attacker from modifying sealed domains, their
corresponding sealed pages, and their permissions. In particular,
our hardware-assisted permission sealing feature enables the
software developer to restrict the access to WRPKRU within a
specific contiguous range of memory addresses, e.g., a trusted
component. Any attempt to execute a WRPKRU instruction
from outside of the specified range would lead to a hardware
exception. To summarize, our contributions are as follows:

e We present an efficient intra-process isolation capability,
called SealPK, which supports up to 1024 unique isolated
domains. We propose an OS-level solution to avoid the pkey
use-after-free issue. We devise three novel sealing features
to protect the domains, their associated pages, and their
permissions from unauthorized modifications.

« We implement SealPK on a RISC-V Rocket processor [1]
and extend the Linux kernel to support the protection keys
for the RISC-V ISA. We evaluate a prototype of our hardware
design on an FPGA with a full Linux software stack.

« We demonstrate the efficiency of our design by implementing
an isolated shadow stack leveraging SealPK. We open-source
our design at https://github.com/bu-icsg/Seal PK.

In the rest of this paper, we discuss SealPK’s design, sealing
features, and evaluation in Section II, III, and IV, respec-
tively. Section V discusses the related work and Section VI
concludes the paper. We provide a more detailed description
of the SealPK design, implementation, and evaluation in [5].

II. SEALPK: DESIGN

A. Hardware Design

Scalability is one of the limitations of Intel MPK, as it
cannot support more than 16 pkeys. In RISC-V, we leverage
the 10 unused bits of the Sv39 PTE to store the pkey. Figure 1
demonstrates our hardware modifications to support SealPK.
We add a new entry to each line of the Data Translation
Lookaside Buffer (DTLB) to store the corresponding 10-bit
pkey of each virtual page. Hence, SealPK supports up to 1024
domains. We store the permission bits of the pkeys separately.
In our design, we use 2 bits, i.e., (Read Disable (RD),
Write Disable (WD)), to specify the access permission
of each protection key. Following the principle of the least
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Fig. 1. Modified MMU of the RISC-V Rocket core.

privilege, unlike Intel MPK and previous works, our design
enables a write—only page, which can in turn reduce the
attack surface. We support 1024 pkeys in our design; hence,
unlike Intel MPK, we cannot simply use a single register to
store all the pkey permission bits. To provide fast access to
these bits, we use a 2Kb on-chip SRAM memory to store the
permission bits. This memory, called PKR (Figure 1), consists
of 32 rows, where each row stores the permission bits of 32
pkeys. We utilize the custom instruction extension of RISC-V
ISA [13] to define two new instructions, RDPKR and WRPKR,
to read from and write to PKR.

We provide a control logic to determine the effective permis-
sion bits of each data memory access. Consider the example
shown in Figure 1, where there is an incoming write request
to the virtual page #87. In addition to reading the page’s
read/write permission bits stored in DTLB (11), the control
logic reads the corresponding 2-bit permission bits of the pkey
(1111000001) stored in PKR. The control logic uses the
upper 5 bits of the pkey to index into a specific 64-bit row of
PKR and the lower 5 bits to select the 2 permission bits (01).
The effective permission is the intersection of the DTLB’s and
pkey’s permission bits. In this example, the effective permission
is 10; hence, the write access is not allowed. This leads to a
load/store page fault; the processor triggers an exception, and
the OS handles the page fault.

B. Kernel Support

At the OS level, we add the support to store each page’s pkey
in the 10 unused bits of the PTE. Our RISC-V kernel support
is built upon the existing Linux kernel support for MPK.

1) Lazy de-allocation: To keep track of the allocated pkeys,
we implement a 1024-bit allocation bitmap. To efficiently
address the pkey use-after-free problem of Intel MPK, we
leverage a lazy de-allocation approach. We implement a 1024-
bit dirty map to indicate whether each pkey has been lazily de-
allocated. We also keep track of the number of pages currently
associated with each pkey using a counter map. If a pkey’s
corresponding counter is not zero, pkey_free updates the
permission bits of the pkey in PKR to (0, 0) ; hence, the page-
table permissions determine the effective permission of the
corresponding pages. Rather than clearing the corresponding
bit of the pkey in the allocation map, pkey_free sets the
dirty bit and pkey_alloc would not allocate a dirty pkey.
Whenever a memory page with a dirty pkey gets freed, we
update the number of pages associated with the dirty pkey in
the counter map, accordingly. Once the counter becomes zero,

we erase the dirty bit of the corresponding pkey; hence, it can
safely be allocated afterwards. If pkey_alloc cannot find a
free non-dirty pkey, it returns an allocation error to indicate no
free pkey is available.

2) Per thread OS support: We modify the task_struct
in the Linux kernel to maintain the contents of PKR for each
thread during the context switches (with negligible performance
overhead). Furthermore, we modify the RISC-V page fault
handler in the Linux kernel to identify a page fault caused
by a pkey permission violation.

III. SEALPK: SEALING FEATURES

As mentioned before, Intel MPK does not protect the al-
located domains, their associated pages, and their permission
bits from tampering by an attacker. In this section, we describe
three novel sealing features to protect against such tampering.
To clarify the defensive capabilities of these features, consider
the example shown in Figure 2. In this example, a software
developer writes a program that handles sensitive financial
records. The Main function (written in-house) initially allo-
cates the memory pages for the financial record (log) as
readable-writable and assigns a protection key to these
pages. Following the principle of the least privilege, the initial
value of the pkey restricts the permission to read-only
pages. In this example, Func—A updates the contents of the
log. We assume that this function is developed in-house and
has access to the pkey. Prior to writing the sensitive financial
information into the 1og, Func-A modifies the domain per-
mission of the 1og to write—only. For performance reasons,
the software developer leverages third-party untrusted libraries
in the implementation of Func-B, Func-C, and Func-D.
Funct-B reads the 1og and returns a sorted copy of the 1og.
Func-C does not have access to the 1og, instead it receives
a list of prices and converts them to a different currency.
Funct-D reads the log and prints all the transactions of
a specific account. Hence, Func-B and Func-D, can only
access the 1og as read-only memory. In the rest of this section,
we explain how each sealing feature protects the 1og against
potential attacks originating from the untrusted components.

Sealing the domain: In this scenario, Func—-B is a ma-
licious third-party component, which receives the log as a
read-only input. Funct-B is supposed to read the 1og and
return a sorted copy of it. However, this untrusted component
allocates a new readable-writable pkey, invokes the
mprotect system call and assigns the new pkey to the 1og.
In this way, Func—-B can falsify the financial records stored in
the 1og. Intel MPK is not capable of preventing this malicious
modification to the log within the same thread. To prevent
such unauthorized modifications, we provide a domain sealing
option by adding a sealed_domain map to the kernel.
We modify the pkey_mprotect system call to check the
sealed_domain map prior to modifying a domain’s pkey.
Once a domain is sealed, pkey_mprotect prevents any
further modifications to PTE permissions as well as the pkey

value, efficiently throwing such attacks.
Sealing pages: We assume that after the initialization step

in the Main function, no more pages will be added to the
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[/ The main function allocates the log and configures the memory v
int *log

log = mmap(NULL, N*getpagesize(), PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0)
int pkey = pkey_alloc(0x1) // read_only domain

pkey_mprotect(log, N*getpagesize(), PROTE_READ | PROT_WRITE, pkey)

pkey_seal(pkey, true, true)

Func-A

/* Trusted component;
updates the log */

asm volatile(seal_start)
pkey_set(pkey, 0x2)
update_log(log)

asm volatile(seal_end)
pkey_perm_seal(pkey)

J Func-D (log) =
[/* Untrusted component; Buffer overflow
only reads the log but it An atacker
ovefiow wilnerabity +  [\13ects
WRPKR(0x1, 0x0)

//buffer overflow vulnerability
print_log(log, name)

Func-C (prices)
/* Untrusted malicous component; does

Func-B (log)

/* Untrusted malicous component; should
only be able to read the log */

not have access to log */

/* tries to cause a carash by adding the

prices to the same domain as log with

brute-force */

static int target_pkey = 0

pkey_mprotect(prices, M*getpagesize(),
PROT_READ|PROT_WRITE, target_pkey)

target_pkey++

/* tries to gain write access to the log */
il
P oROT READ | PROT WRITE, nem_pkey)
buffer = update_log(log)
Héwﬁlog = sort(log) ;:‘t;nvert,currency(prices)

Fig. 2. Example scenario for our sealable features.
protection domain. Consider a scenario where Func—C aims
to crash this financial application, which could lead to denial-
of-service and financial losses. Func—C does not have access
to the log; it only receives a list of prices and converts them
from one currency to another one. This price list does not
include any sensitive information; hence, Func—-A does not
assign a protection domain to it. In this example, in each call,
the malicious Func—-C adds the pages associated with the price
list to a different domain, hoping that the new domain would
restrict the read permission. As a result, after the price list is
assigned with the same pkey as the 1og, once Func—A tries
to read the price list the program crashes with a segmentation
fault. Intel MPK cannot prevent this issue within the same
thread; similarly, our domain sealing feature is not sufficient
in this scenario. To ensure that no more pages can be added
to a domain, we provide a page sealing option by adding
a sealed_page map to the kernel, indicating whether the
pages associated with each pkey are sealed. As shown in Fig-
ure 2, we add a new system call, pkey_seal (int pkey,
bool seal_domain, bool seal_page), which allows
the programmer to seal a domain and/or its associated pages.
Note that once a domain or its associated pages are sealed, the
seal cannot be broken unless the corresponding pkey and all its
associated pages are freed.

Sealing permissions: In this scenario, we assume Func—-D
suffers from a buffer overflow vulnerability. An attacker can
leverage this vulnerability to inject a WRPKR instruction at
run-time and modify the permission bits of the log to
readable-writable. Subsequently, the attacker can falsify
the sensitive contents of the financial record. Intel MPK does
not protect pkey permissions against control-flow hijacking
attacks that leverage the WRPKRU instruction. To prevent such
a tampering, we provide a permission sealing feature, which
allows the developer to restrict the execution of WRPKR to a
specified range of memory addresses (e.g., Func—»2).

At hardware level, we keep track of sealed pkey permissions
using a local memory, called SealReg. We modify the Rocket
core’s pipeline to consult SealReg prior to executing a WRPKR
instruction. If the permission bits of the pkey are sealed, the
WRPKR instruction is only allowed in the permissible range
specified by the developer. We leverage a Content-Addressable
Memory (CAM) like structure, named PK-CAM, to cache the

permissible range of each pkey. If the pkey information is
available in PK—-CAM but the current address of the WRPKR
instruction is not in the permissible range, then SealPK prevents
the execution of WRPKR and causes an exception.

We also provide the software support for sealing the
permissions. We provide two new custom instructions, i.e.,
seal_start and seal_end, to specify the contiguous
permissible range of each pkey. Although these instruction can
be added to the source code (Figure 2), the more efficient
way of using them is by a compiler pass or through run-time
mechanisms such as 1d-preload. After specifying the start and
end addresses of a permissible range for WRPKR, the developer
has to invoke a newly added system call (pkey_perm_seal)
to seal the permissions. This system call leverages a cus-
tom instruction, which is only accessible to the supervisor
mode, to seal the permission bits by updating the SealReg
and PK-CAM. We modify the Linux kernel to maintain the
SealReg information as well as permissible range of each
pkey during context switches for each process. Note that
SealReg and the permissible range of a pkey are implemented
similar to a one-time fuse, i.e., they can only be written once for
each process. Hence, after configuration, the permission sealing
feature cannot be modified. By leveraging SealPK’s sealing
features, the software developer can implement a tamper-proof
log of financial records in the face of buggy and malicious
third-party components.

IV. EVALUATION
A. Experimental Setup

We use the Chisel HDL [2] to implement SealPK on a RISC-
V Rocket core [1]. We add the OS support for SealPK to the
Linux kernel v4.15. As a case study, we implement an isolated
shadow stack using LLVM front-end (Clang v.7) and back-end
(Clang v.8) passes. We prototype our hardware design with the
full software stack on a Xilinx Zedboard FPGA.

For performance evaluation, we use RISC-V LLVM to cross-
compile 6 applications (out of 12) from SPECint2000 [7] and
4 applications (out of 12) from SPECint2006 [8] benchmark
suites. Due to compilation issues and memory limitations of
our FPGA, we were not able to successfully cross-compile and
run all the applications from these benchmark suites.

B. Case Study: An Isolated Shadow Stack

As a case study, we use SealPK to protect an isolated shadow
stack that prevents Return-Oriented Programming attacks. A
shadow stack protects the return addresses by storing them in
a separate memory. It is imperative to guarantee the integrity
of the shadow stack [3], i.e., the shadow stack area should
be an isolated area within the process’ address space to
prevent attackers from modifying it. We isolate the shadow
stack memory in a protection domain. Once the shadow stack
memory is allocated and assigned to a domain, no more pages
will be added and the protection domain stays the same during
the process execution. We leverage the domain and page sealing
features to protect the allocated domain and pages of the
shadow stack from further modifications (similar to scenarios
described in Section III) after the initial configuration.

For the shadow stack implementation, we first implement
a baseline front-end pass LLVM plugin. This front-end pass
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Fig. 3. Performance overhead of LLVM-based shadow stack implementations
(test inputs). Func implementation uses a function call in the front-end pass
rather than an inline code (Inline). SealPK—-WR is implemented as a back-
end pass built upon Func, where it writes the new value of pkey permission
bits without maintaining the rest of the permission bits. SealPK—-RD+RW adds
the support to read the corresponding row of the pkey before updating it.

allocates a memory area for the shadow stack and instruments
the prologue and epilogue of each function to push the original
return address into the shadow stack memory and pop the
shadow return address from that memory, respectively. To
isolate the shadow stack, we modify the front-end pass to
allocate a pkey and to assign it to the shadow stack memory
pages. To protect the shadow stack from modifications, we
initialize the pkey as read-only. We implement a RISC-
V back-end pass to temporarily update the pkey permission
to readable-writable in the prologue, where we push
the return address into the shadow stack. Right after pushing
the return address, the back-end pass disables the pkey write
permission. Our back-end pass inserts the required RDPKR
and WRPKR instructions to update the pkey’s permission bits.
We can leverage our permission sealing feature to restrict the
WRPKR occurrences to the memory range of the back-end pass.

To evaluate the performance overhead of SealPK, in our
experiments, we used the total execution time of an application
as our performance metric. We ran each application three
times and report the geometric mean of the execution times.
Figure 3 shows the performance overhead of various shadow
stack implementations compared to the baseline. Inline and
Func are front-end LLVM passes that cannot guarantee the
integrity of the shadow stack; hence, the shadow stack memory
remains unprotected. SealPK-WR and SealPK—-RD+RW are
isolated shadow stack implementations, leveraging SealPK in a
back-end pass. mprotect is our comparison point, an isolated
shadow stack implemented by leveraging the mprotect sys-
tem call. As expected, using mprotect incurs considerable
performance overhead, i.e., 2875.62% and 1982.70%, on aver-
age, for SPEC2000 and SPEC2006, respectively, which makes
it an infeasible option. SealPK-RD+RW, has an average of
21.00% and 14.81% performance overhead for SPEC2000 and
SPEC2006 applications, respectively. In terms of area overhead,
enhancing Rocket core with SealPK increases the LUT and FF
utilization of our FPGA by 5.62% and 2.72%, respectively.

V. RELATED WORK

To address Intel MPK’s limitations, Hodor [6] and
ERIM [12] combine Intel MPK with binary inspection to
prevent reusing of WRPKRU instruction by an attacker. The
sealing permission feature of SealPK provides a similar capa-
bility by restricting valid WRPKR instructions to a contiguous
range of memory addresses for each pkey. Although our sealing
feature is limited to one valid memory range for each pkey, its
simplicity and efficiency distinguishes our work form Hodor
and ERIM. To allow the occurrence of WRPKR instructions
in more than one trusted component, we can rely on a CFI

technique for the RISC-V Rocket core [4] to protect PKR from
manipulation by an attacker. libmpk [9] and Xu et al. [14]
provide a software-based and a hardware-based virtualization
technique, respectively, to address the limited number of pkeys.
We can leverage such virtualization techniques to support more
than 1024 domains for SealPK.

Donky [11] provides a secure user-space software framework
to protect the domain permissions against manipulations with-
out relying on binary inspection or CFI. Donky proposes a pkey
extension for RISC-V ISA implemented on Ariane core. Similar
to SealPK, Donky uses the 10 unused bits of Sv39 PTEs to store
the pkeys but it relies on a 64-bit CSR (managed by a software
library) to store the permission bits of only 4 pkeys at a time.
If the pkey of the accessed memory address is not loaded into
that CSR, Donky requires extra cycles for the software library
to load the missing pkey and its permission into the register.
The permission sealing feature of SealPK allows us to protect
a domain against CFI attacks in cases where the valid WRPKR
instructions occur in contiguous memory addresses. In addition
to this feature, SealPK provides two other novel sealing features
to prevent a domain and its associated pages from tampering.

VI. CONCLUSION

In this paper, we proposed an efficient intra-process memory
isolation technique (SealPK) for a RISC-V processor, which
supports up to 1024 domains. In our design, we provided three
novel sealing features to protect a domain, its associated pages,
and its permission bits from unauthorized modifications. To
address the pkey use-after-free problem, we used an OS-level
lazy de-allocation approach. We prototyped RISC-V Rocket +
SealPK on an FPGA with full software stack, and demonstrated
the efficiency of SealPK by securing a shadow stack.
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