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ABSTRACT ACM Reference format:

Modern applications are often split into separate client and server
tiers that communicate via message passing over the network. One
well-understood threat to privacy for such applications is the leak-
age of sensitive user information either in transit or at the server.
In response, an array of defensive techniques have been developed
to identify or block unintended or malicious information leakage.
However, prior work has primarily considered privacy leaks orig-
inating at the client directed at the server, while leakage in the
reverse direction — from the server to the client — is comparatively
under-studied. The question of whether and to what degree this
leakage constitutes a threat remains an open question. We answer
this question in the affirmative with Hush, a technique for semi-
automatically identifying Server-based InFormation OvershariNg
(SIFON) vulnerabilities in multi-tier applications. In particular, the
technique detects SIFON vulnerabilities using a heuristic that over-
shared sensitive information from server-side APIs will not be dis-
played by the application’s user interface. The technique first per-
forms a scalable static program analysis to screen applications for
potential vulnerabilities, and then attempts to confirm these can-
didates as true vulnerabilities with a partially-automated dynamic
analysis. Our evaluation over a large corpus of Android applica-
tions demonstrates the effectiveness of the technique by discov-
ering several previously-unknown SIFON vulnerabilities in eight
applications.
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1 INTRODUCTION

Modern mobile applications (apps) typically employ a multi-tier
architecture. This has been largely due to the explosive growth
of cloud computing platforms, such as Amazon AWS, Microsoft
Azure and Heroku, allowing developers to conveniently manage
and operate scalable web services [13]. As a result, apps can pro-
vide rich user experiences and are no longer limited by client-
device hardware. In such settings, the cloud essentially provides
an extension of the client’s computation and data storage capabil-
ities.

This application architecture often results in sensitive informa-
tion flows from user devices to centralized server-side logic and
storage tiers in the cloud. Users place trust in the app to securely
transfer and store their sensitive information. Unfortunately, de-
spite the benefits of the multi-tier architectures, the decoupled na-
ture of the tiers opens up new security and privacy concerns for
the app that would not have occurred if the app was self-contained.

Much research has investigated ways to detect and prevent leak-
age of sensitive user information. Prior work has identified adver-
tising libraries that exfiltrate sensitive user data from mobile de-
vices [29]. Malware has also been observed to send sensitive user
data to command and control (C&C) servers [3, 28, 32]. Further-
more, client-side data leakages are exacerbated by access control
and permission vulnerabilities in Android [38]. To address these is-
sues, many extensions to Android have been proposed to enhance
its security and prevent data leakages [5, 30, 52]. Additionally, side-
channel information leaks such as timing and size of requests, can
reveal insights about a user’s online activities, even over an en-
crypted channel [9, 44]. However, existing research primarily con-
siders information leakage from the client to the server.

In this work, we ask the question of whether sensitive infor-
mation leakage can occur in the reverse direction, namely from the
server to the client. To answer this question, we devise an approach
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that semi-automatically identifies instances of Server-based InFor-
mation OvershariNg (SIFON) vulnerabilities. In particular, we fo-
cus on detecting SIFON vulnerabilities by identifying apps that
perform client side access control using the heuristic that over-
shared information from server-side APIs will not be displayed by
the app’s user interface.

We built a prototype for this approach called Hush for the An-
droid platform, and evaluated it over a large corpus of 31,559 An-
droid apps drawn from the Google Play Store. Our evaluation
demonstrates that SIFON vulnerabilities indeed exist in the wild,
exposing sensitive user or corporate information to adversaries
or market competitors. These vulnerabilities arise from missing
or invalid access control policies on an app’s cloud back-end. Es-
sentially, SIFON vulnerabilities manifest if web services overshare
data while access control is pushed to and enforced by the client
instead of the server. We have reported our findings to the develop-
ers of eight apps we studied and have received confirmation from
two of them.

In a culture of increasingly rapid development cycles [43], Hush
would provide independent and enterprise development teams a
tool to identify and address SIFON vulnerabilities before vulnera-
ble services are deployed in the wild.

To summarize, the main contributions of this paper are the fol-
lowing.

e We introduce a novel class of Server-based InFormation
OvershariNg (SIFON) vulnerabilities.

e We propose an approach called Hush that leverages both
static and dynamic program analysis techniques to con-
firm the existence of SIFON vulnerabilities in Android
apps.

e We develop a prototype implementation of Hush and eval-
uate it over a large corpus of Android apps drawn from
the Google Play Store. Our evaluation demonstrates that
SIFON vulnerabilities exist in real apps, manifesting as se-
rious leakages of sensitive user or proprietary corporate
information.

2 BACKGROUND

The rise of cloud computing has led to the predominance of a multi-
tier application architecture for modern applications, especially in
the web and mobile domains. In this architecture, applications are
split into several tiers, where each tier is responsible for a clearly
defined set of tasks and communicates with other tiers through
message passing. One example of such a multi-tier application is
a typical mobile app, where the app implements the user interface
and some portion of the application logic, but also invokes cloud-
based services and consumes the results. These services are often
web-based - i.e., they are invoked via HTTP(S) requests, and the
data is returned in the form of JSON, XML, Google Protocol Buffers,
or similar format.

To illustrate this, we introduce a simplified running example of
a mobile social networking app authored in Java for the Android
platform. A central concept in this app is that of a user profile that
has multiple representations within the cloud, on the wire, and
within the app itself. To load a user profile, the app invokes a cloud-
based web service using HTTP(S) to request a user profile with a
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given identifier. The cloud service returns a JSON message that
represents this user, shown in Listing 1.

{"firstName ": "Donald",
"lastName ": "Knuth",
"email ": "donald.k@spambox.us "}

Listing 1: JSON representation of a user profile.

To convert this representation into a form that can be com-
puted on more easily, the mobile app deserializes the user profile
into a Java object, referred to as the model. This typically happens
with the help of a serialization library (e.g., GSON) specifically de-
signed for this purpose. An example of this deserialization process
is shown in Listings 2 and 3.

Profile {
public String firstName;

public class

public String lastName;
public String email; }

Listing 2: Java model of a user profile.

InputStream is = getProfileInputStream () ;

Reader r = new InputStreamReader (is);

Profile p = new Gson() .fromJson(r,Profile.class);

Listing 3: Deserialization of a user profile using the GSON library.

After the JSON message has been deserialized into an instance of
the Profile class, the app is ready to present the details to the user.
However, the developer might have recognized that the email is
sensitive information and should not be displayed. Instead of up-
dating the cloud service endpoint to only return safe information,
the developer chose to implement local access control by only dis-
playing the first and last name of the user in the UI (Listing 4).

tv0.setText("First Name:");
tvl.
tv2.
tv3.

setText (p.firstName);
setText ("Last Name:");
setText (p.lastName) ;

Listing 4: User interface code to display the safe elements of a
deserialized user profile.

This example contains the essential elements of a server-based in-
formation oversharing, or SIFON, vulnerability. The user that owns
this profile has released this sensitive information to the social net-
working app’s cloud back-end under the assumption that it would
be properly handled. However, while the developers have made
an effort to prevent the release of this information by sanitizing
the mobile app’s user interface, the cloud service API is neverthe-
less releasing this information to what should be considered an un-
trusted client device. We note that client-side defenses such as the
Android permissions system, taint tracking, or information flow
control would not prevent this vulnerability or its exploitation. As
we show in Section 6, taint tracking can be used to identify the
vulnerability, however the problem originates from improper im-
plementation of access control on the server and therefore defense
cannot be acheived client-side.

Unfortunately, this simplified example is not entirely fictitious.
App A, is a dating app that contains a similar SIFON vulnerability
as the simplified example in which we discovered in our analysis.
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The app developers considered the first and last name, email ad-
dress, and date of birth of a user’s profile to be sensitive informa-
tion and thus do not display it in the UI to other unrelated users.
The SIFON vulnerability exists because the sensitive information is
sent to all users who request a profile indiscriminately. If the server
selectively provided sensitive information only to users who have
a relationship (e.g., friends on the social network) with the data-
owner, no vulnerability would exist. Our goal with this work is to
develop an analysis that can identify instances of SIFON vulnera-
bilities. In the remainder of the paper, we present an analysis and
a prototype implementation to that end.

3 THREAT MODEL

SIFON vulnerabilities are a consequence of implementation flaws
in the (server-) application code that supports client applications.
That is, properly implemented access controls on the server side
would prevent SIFON vulnerabilities. Thus, our threat model does
not consider attackers who have the capability to circumvent
proper access controls on the server side.

Instead, we consider an attacker who is looking to collect sensi-
tive information without targeting a specific victim, and operates
under a budget in terms of money and time. Thus, our attacker
model is opportunistic in the sense that the attacker can afford
to spend some time to try to siphon sensitive information off an
online service. However, the budget restriction incentivizes the at-
tacker to shift focus to other targets if the currently analyzed ser-
vice does not yield any sensitive information.

We assume targeted services and their accompanying client
apps are benign but might be vulnerable. Furthermore, we assume
that the attacker can create a regular (i.e., unprivileged) user ac-
count on the targeted service if necessary, but has not engaged in
social engineering or otherwise duped any victim into disclosing
or making available their private data. For instance, social network
applications, such as Facebook or App A, provide users with the
functionality to establish friendships and connected users can ac-
cess each other’s sensitive information. In this paper we only con-
sider SIFON vulnerabilities where an entirely unrelated attacker
can access sensitive information of his victims, because the back-
end server shares this information indiscriminately.

Our interpretation of what constitutes sensitive information is
based on Trend Micro’s analysis of the Privacy Rights Clearing-
house (PRC)’s Data Breaches database [31]. In this context, sen-
sitive data encompasses personally identifiable information (PII),
financial data, health data, education data, payment cards, and cre-
dentials.

4 SYSTEM OVERVIEW

We developed an approach for detecting SIFON vulnerabilities on
the Android platform that are due to cloud service API oversharing
called Hush. The goal of the approach is to detect SIFON vulnera-
bilities in a scalable manner, and is structured as a three-stage anal-
ysis pipeline:(i) preprocessing, (ii) static vulnerability candidate de-
tection (S-Hush), and (iii) dynamic confirmation of vulnerabilities
(D-Hush). An overview of Hush is shown in Figure 1.
Preprocessing The goal of the preprocessing stage is to triage
applications submitted for analysis and gather initial information
for input to the subsequent static and dynamic analysis stages.
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S-Hush The static analysis stage serves as a scalable, automated
triage phase to determine whether any sensitive data obtained
from the invocation of a cloud service API is hidden from a user
(i.e., not displayed in the user interface). The static analysis allows
for the efficient identification of apps that should be forwarded to
the subsequent dynamic analysis for confirmation.

This static analysis is implemented as a multi-stage data flow
analysis in which the output of the first stage determines the con-
figuration for the second. The first stage identifies data flows from
program points that receive data from the network (i.e., sources)
to points where that data is deserialized into a Java object (i.e.,
sinks). Then, the second stage identifies flows from these deseri-
alization points (sources) to user interface elements (sinks). Note
that the sinks from the first stage become sources for the second
stage analysis. If particular deserialized object fields are hidden -
i.e., they do not flow to an UI element - then this data is consid-
ered to be a potential instance of cloud service oversharing. These
oversharing instances are categorized according to whether they
are sensitive or not. If deserialized object fields are hidden and con-
sidered sensitive, then these fields are labeled as candidate SIFON
vulnerabilities and the app is forwarded to D-Hush for confirma-
tion.

The reason that the static analysis alone is not sufficient to di-
rectly declare hidden, sensitive deserialized object fields as SIFON
vulnerabilities is three-fold. First, the static analysis only reports
possible flows, but these flows might not necessarily occur at run-
time. Second, it is impossible for the static analysis to determine
whether the cloud service actually returns data to populate the po-
tentially vulnerable object fields. If no data is actually returned,
then the fields will be empty, and no vulnerability will exist in prac-
tice. Third, the static analysis is oblivious to the apps functionality
and intent. It is possible the hidden data may be necessarily for
the apps functionality and given the context in the app may not be
considered sensitive. For example, hidden GPS data could be used
to position restaurant locations on a map in one app, while unin-
tentionally leaking a users location in another app resulting in a
SIFON vulnerability.

D-Hush The dynamic analysis stage takes as input an app that
contains candidate SIFON vulnerabilities and a set of methods to
hook as identified by the preprocessing module. The app is instru-
mented at these methods to dynamically track information flows at
runtime from deserialized messages to the user interface. The app
is then executed and manually explored by an analyst. During this
exploration, D-Hush captures how information flows into model
object fields and how it is accessed there. If there is no access to
sensitive model object fields, D-Hush reports a confirmed SIFON
vulnerability.

We note that achieving high dynamic coverage of GUI-based
applications with automated tools has proven to be a challenging
task. While significant research progress has been made on this
front, triggering advanced application functionality requires com-
plex inputs that are currently beyond the reach of any automated
tool [12]. However, future improvements in this fundamental en-
abling capability could be easily adopted by our approach. In the
following sections, we describe the technical details of the prepro-
cessing, S-Hush, and D-Hush analysis stages.
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Figure 1: Overview of the Hush analysis pipeline. Android apps are preprocessed to handle program obfuscation and cull apps that cannot
contain SIFON vulnerabilities. Candidate SIFON vulnerabilities are identified in a static analysis stage, and a subsequent dynamic analysis

stage confirms or rejects candidate vulnerabilities.

5 PREPROCESSING

The first stage of the Hush analysis pipeline begins by extracting
information about the app packages and method signatures. This
functionality allows us to filter out apps that we consider not sus-
ceptible to SIFON vulnerabilities. Additionally it also generates in-
puts for both S-Hush and D-Hush. In particular, the triage step
discards all apps that do not request the INTERNET permission
(i-e., they cannot invoke cloud services over the network) or do
not contain a (known) serialization library.

S-Hush and D-Hush require the identification of methods from
three categories: those that invoke network communication APIs,
those that deserialize network data, and those that manipulate the
user interface. The preprocessing stage, thus, first disassembles the
app and then performs a lightweight static analysis to extract this
information.

One important challenge in this respect is that some apps are
obfuscated which can prevent the automated identification of its
methods. While generically deobfuscating apps can be challeng-
ing, Hush only needs to address the obfuscation of deserialization
libraries. As network sources and Ul sinks are provided and imple-
mented by the Android framework, an app developer cannot easily
obfuscate these methods.

As Android apps are easy to decompile, and reverse engineer,
application repackaging represents a serious problem [21, 46, 51].
To counteract such techniques, the Google Android Team in-
cluded the ProGuard [23] obfuscation tool in the Android Devel-
oper Tools (ADT). Moreover, in recent versions of the ADT, Pro-
Guard is enabled by default. One of the obfuscation strategies
employed by ProGuard transforms method names and rewrites
call sites to use the transformed names. For example, ProGuard
might convert com.google.gson.Gson. fromJson to com.a.b.j.a.
As ProGuard needs to transform call sites and target methods syn-
chronously, this approach cannot be used to obfuscate method calls
to framework-provided APIs (e.g., network and UI APIs). There-
fore, the preprocessor must incorporate a deobfuscation step to re-
verse transformations such as those performed by ProGuard. We
report on our heuristics-based implementation in Section 8.1. The
final output of this module is the set of sinks for S-Hush and the
set of functions to hook and their category for D-Hush.

6 S-HUSH

S-Hush is a fully automated, scalable static analysis to identify
data flows that represent potential SIFON vulnerabilities in An-
droid apps. At its core, S-Hush is a two-stage data-flow analy-
sis that(i) identifies flows from program points that receive data
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from the network to deserialization of that data into a model, and
(ii) identifies flows from individual fields of a deserialized model
into user interface elements. The output of the analysis is a list of
deserialized model fields that do not appear in UI elements. These
elements are subject to a classification step that heuristically in-
fers whether individual fields are likely to contain sensitive infor-
mation. Hidden and likely sensitive deserialized model fields are
then forwarded to D-Hush as candidate SIFON vulnerabilities for
confirmation. In the following, we elaborate on each of these steps
of the static analysis.

6.1 Model Deserialization

The first step of the static analysis takes as input an app to analyze,
a precomputed database of standard Android API methods that re-
ceive data from the network (sources), and the list of call sites for
deserialization libraries found by the preprocessing stage (sinks).
The goal of this step is to identify flows of data received from the
network to deserialization points.

As a precursor, the app is disassembled to recover its Dalvik
bytecode representation. A class hierarchy analysis (CHA), control
flow analysis (CFA), and call graph extraction is then performed
on the app bytecode to recover a super-control flow graph (sCFG)
that superimposes control flow graphs (CFGs) for individual meth-
ods onto the program call graph. The analysis then recovers a di-
rected acyclic graph (DAG) G = (S, ), where S is the set of pro-
gram variables and ¥ are edges that represent transfers of data
between variables. Using the provided database of network APIs
(i.e., sources), program variables are labeled as network sources
Ssource € S. Similarly, program variables that flow to input argu-
ments of deserialization API methods are labeled as deserialization
sinks Sgink € S using input from the preprocessor.

A forward data flow analysis is then performed, beginning from
each labeled network source in the app. This analysis iterates us-
ing a regular worklist algorithm until a fixpoint is reached. During
the analysis, a standard operational semantics is used to model the
propagation of data between variables, updating the DAG (G) in
an incremental fashion.

Once a fixpoint has been found, a reachability analysis is per-
formed from all network sources to deserialization sinks to obtain
arelation (~) — 8§x S that indicates whether, given a pair of ver-
tices, data flows from one to another. If a flow is ever found during
this reachability analysis where

f «
Af sit.s~ t,5 € Ssources t € Sgink» f € F*
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then the analysis records the sink as a potential source of a deseri-
alized model d € D. This set (D) of deserialization points serves
as input to the next step of the analysis.

6.2 Hidden Model Field Identification

The second step of the static analysis takes as input the app to an-
alyze, the set of deserialization points D (sources), and a precom-
puted database of APIs that render text in UI elements (sinks). The
goal of this step is to enumerate flows from individual fields of a de-
serialized data model to user interface elements and, importantly,
to identify model fields for which no such flow exists.

The first task of this step is to identify, for each deserialization
point d € D, the type of the model that could be deserialized. The
model type is required since the analysis needs to know the to-
tal set of fields comprising the object (as well as any nested mem-
ber objects). This information can be recovered as the deserializa-
tion library also needs to know the model type to instantiate at
runtime. In practice, the target model type typically appears as
a java.lang.Class parameter to the deserialization method. The
analysis uses this information to recover the deserialized model
type.

Models often nest other models which the analysis handles by
recursively identifying their types in order to enumerate nested
fields. One challenge that arises in this context are sub-models that
are contained in collection classes which use Java generics. Hush
operates directly on Java bytecode and generics are subject to type
erasure in accordance with the Java language specification. Thus,
it is possible that type information is lost when generic contain-
ers are used. Fortunately, we found that for the Android platform
the original type is helpfully preserved in the form of a Dalvik an-
notation (dalvik.annotation.Signature)that allows the analysis
to recover this information from the bytecode. Although annota-
tions are not mandatory in Dalvik code, the Signature annotation
is required by most deserialization libraries, therefore Proguard
and other obfuscators must be configured to keep these accord-
ingly [27].

With the full tree of deserialized model classes in hand, the anal-
ysis then proceeds to perform a second round of forward data flow
analysis. Here, individual data object fields are treated as sources
Ssource, and API methods that set data to be displayed in user inter-
face elements are considered sinks Sg;. Similarly to the previous
step, an iterative fixpoint computation is performed to construct
a DAG G = (8, F) that encodes possible flows between program
variables. Once a fixpoint is reached, a second reachability anal-
ysis is performed that identifies all data object fields whose data
can flow to a Ul element. In contrast to the previous step, however,
this step of the analysis reports those fields for which no flows to
Ul elements exist. That is,

f
ﬂf s.t.s ~> 1,5 € Ssources t € Sgink» f € F .

These hidden fields deserialized from network input are consid-
ered potential SIFON vulnerabilities, and serve as input to the final
classification step of the static analysis.
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6.3 Hidden Model Field Classification

The final step of the static analysis stage is a heuristic post-filter
that classifies the hidden fields identified in the previous two steps
as to whether they are likely to contain sensitive information. This
filter is necessary to reduce the workload on the subsequent dy-
namic analysis stage by focusing effort on fields that are more
likely to be considered sensitive personal or corporate information.

This classification step takes as input both the set of hidden
fields as well as their corresponding variable names. These field
names are easily recovered from the app bytecode. A simple heuris-
tic is then applied that checks each field name against a database
of sensitive data patterns that were manually compiled from key-
words extracted from breach reports in the Chronology of Data
Breaches database [40]. The breach report states the type of infor-
mation compromised for a variety of organizations including busi-
nesses, government, military, medical providers and educational
institutions. For example, we derive patterns from the keywords lo-
cation, date of birth, and gender, manually extracted from a breach
report on July 24, 2013 stating Tinder’s mobile app leaked this user
information. Furthermore, we extracted keywords from the An-
droid API representing PII. For example Subscriberld, returns the
IMSI for a GSM phone, and Deviceld, returns the IMEI for a GSM
phone and the MEID or ESN for CDMA phones [25].

We note that while this technique is simple, it works well in
practice as supported by the evaluation in Section 9. The pattern
database can be adjusted using domain specific knowledge depend-
ing on the type of app being analyzed, and more advanced methods
based on natural language processing or machine learning of sen-
sitive keywords could also be leveraged to automatically infer this
database if necessary.

Finally, we also note that, in principle, these data object field
names could be obfuscated. However, in practice we found this not
to be the case, as deserialization libraries typically match network
message fields directly to data object fields based on their names.
Thus, model field name obfuscation would require the developer
to synchronize the obfuscated field names with the wire protocol
- seemingly a fragile engineering exercise which we do not expect
to take place in benign apps.

The output of this final step of the static analysis is a set of data
object fields that are likely to be sensitive and hidden, i.e., not dis-
played, in the app’s user interface. These fields are considered can-
didate SIFON vulnerabilities, and are forwarded to the next stage
of the analysis for dynamic confirmation.

6.4 Example

To illustrate the static analysis, we apply it to the code depicted
in Figure 2 which is based on the running example introduced in
Section 2. The first analysis identifies a flow where a Profile data

. o . fo
model is deserialized from data received over the network, sq 5 to.
The second step of the analysis identifies two flows where the pro-

file’s fields are displayed to the user, sg I& to and sg IL t1. How-
ever, no flow is found from the profile’s email field; this is flagged
as potential SIFON vulnerabilities. Finally, the classification step
identifies the email field as likely to be sensitive, and outputs this
field as a candidate SIFON vulnerability.
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1 public class A {

2 public void a(){
So 3 is = conn.getInputStream() ;
4 new B() .b(is);
5 '}
L) }
7 public class B {
public void b(InputStream is) {

A
oTws]

Profile p = deserialize(is, Profile.class);

10 new C().c(p);
11}
12 public void b2 (Cursor c){
13 String s = c.getString(0);
14 Profile p = deserialize(s, Profile.class);
f; 15 new C().c(p);
16 }
17}
fo 18public class C {
19 public void c(Profile p){
20 tv0.setText ("First Name") ;
tvl.setText (p.firstName) ;
tv2.setText ("Last Name") ;
to 23 tv3.setText (p.lastName) ;
4}
25

Figure 2: S-Hush applied to the running example from Section 2.

7 D-HUSH

In this section, we describe D-Hush, the confirmation stage of the
Hush analysis pipeline. The goal of this stage is to confirm the
set of candidate SIFON vulnerabilities reported by the prior static
analysis of an app using a semi-automated dynamic analysis. Re-
call that this step is necessary as the static analysis can only reason
about the structure of models and fields. However, it is impossible
for any static analysis to attest whether sensitive fields are popu-
lated with data at runtime.

The reason that the dynamic analysis is not completely auto-
mated is due to current limitations in automatic exploration of
GUI-based apps. The flows discovered with S-Hush are commonly
too complicated to be realized by an automated dynamic Ul ex-
ploration system (for an example refer to Section 9). However, D-
Hush is flexible and allows us to immediately benefit from future
improvements in automated UI exploration.

D-Hush consists of four sequential steps:(i) hooking setup,
(ii) app seeding, (iii) user interface exploration and data collection,
and (iv) SIFON vulnerability confirmation. In the remainder of this
section, we elaborate on the details of each of the dynamic analysis
steps.

7.1 Hooking Setup

The first step of this analysis stage uses the information extracted
in the initial preprocessing stage to place hooks in the app under
test (AUT). These hooks are used to log data at specific program
points during dynamic exploration, which includes call sites for
methods that receive data from the network, call sites that deseri-
alize data model objects, and call sites that populate Ul elements.
For each of these categories of call sites, a specific set of informa-
tion is logged. For network call sites, the data received from the
remote endpoint is collected. For UI call sites, the data set for the
Ul element is recorded. For deserialization call sites the input data
and the output object model is logged. Furthermore, we instrument
the resulting deserialized object to hook all method invocations, in-
cluding property accesses, on this object.
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7.2 Application Seeding

The second step of the dynamic analysis stage is a manual prepara-
tory step that overcomes a fundamental difficulty in dynamically
analyzing complex AUTs. In particular, many apps require an ini-
tial configuration in order to exhibit the majority of their function-
ality. The canonical is the requirement to create a user account
with the app’s cloud back-end. Without an account, the available
functionality exposed by an AUT is often limited, resulting in poor
coverage of the AUT at runtime. Therefore, the dynamic analysis
stage requires an analyst to manually perform any necessary and
arbitrarily complicated initial configuration, including but not lim-
ited to user account creation and the configuration of the app’s
settings.

7.3 Ul Exploration and Data Collection

The third step of the dynamic analysis explores the UI state space
of the app. Hooks triggered during this step record information ac-
cording to the category of the call site that has been instrumented.
The main goal of this manual analysis is to maximize coverage of
the AUT by exercising the UI state space as exhaustively as possi-
ble. We note that this exploration does not entail providing invalid,
unexpected, or random data as inputs - i.e., the analyst does not
fuzz the app, nor tamper with network traffic as a means of dis-
covering data leakage. Rather, the AUT is explored exactly as if a
regular user is using it.

7.4 SIFON Vulnerability Confirmation

The fourth step of D-Hush processes the outputs generated dur-
ing the dynamic exploration step. Given the output of the static
analysis stage, the goal of this step is to confirm that(i) statically-
identified data flows exist at runtime from network sources to de-
serialization sinks, (ii) statically-labeled candidate model object
fields are populated with data by the cloud service.

To that end, this step processes the logs generated by the hooks
in temporal order on a per-thread basis. From this, a first bipar-
tite graph B (N, D, F) is generated where N is the set of
network sources, O is the set of deserialization sinks, and F is
the set of edges representing flows from N to D. For each flow
f € 7, the dynamically-generated logs are analyzed to enumer-
ate the fields that were populated with data by the deserialization
operation. These populated fields are now used as source (N’) to
create a new bipartite graph B" = (N, D’, F’), where D’ is the
set of methods invoked on the deserialized object during runtime.
Sources that have no flows to sinks represent fields that are pop-
ulated by the cloud backend but are never used by the app. These
object fields are labeled as confirmed vulnerabilities to be reported
and reviewed by the analyst.

8 HUSH IMPLEMENTATION

In this section, we discuss details of our open source prototype
implementation of Hush [34] and elaborate on specific challenges
that we had to overcome to realize Hush. Our Hush prototype
was implemented on top of a series of open source tools In par-
ticular, the prototype focuses on the Google Gson [22] deserial-
ization library. According to AppBrain [2], this library is the #1
serialization solution and is included by 14.66% of all installed
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Android apps. Beyond Gson, Hush supports the Google Protocol
Buffers [24], FasterXML Jackson [19], and FlexJson [8] data serial-
ization libraries. We note that Hush supports any data deserializa-
tion method for which the model can be automatically extracted.
During the analysis, when a deserialization point is reached, Hush
will attempt to extract the model class from a method parameter of
type java.lang.Class. If this parameter does not exist, Hush uses
the method’s class as the model. This approach provides the flex-
ibility necessary to support arbitrary deserialization libraries by
simply adding new deserialization methods to the configuration.
No code changes are necessary to support additional libraries.

8.1 Preprocessing

Method signatures are extracted from the app byte code using the
Androguard [1] reverse engineering framework. Additionally, the
presence of the INTERNET permission is checked with aapt, a tool
included in the Android SDK.

Before Hush can perform its intended analysis task, obfuscated
apps must be deobfuscated. Specifically, our prototype aims to
automatically identify invocations of the deserialization method
com.google.gson.Gson.fromJson by heuristic signature match-
ing. To this end, we perform a one-time, offline, lightweight
static source code analysis over all versions of the Gson li-
brary to extract a set of strings that uniquely identify the class
com.google.gson.Gson (e.g., error messages). Deobfuscation oc-
curs by first decompling the AUT and identifying candidate Gson
classes by matching against the previously identified strings. Next,
the name and signature of each fromJson function in each one
of these classes are extracted using signature matching. Note that
the fromJson method in com.google.gson.Gson has four different
signatures. As three of these signatures only take Java primitive
types as parameters, deobfuscation is trivial through method sig-
nature matching since Java primitive types are never obfuscated
(otherwise, method resolution would fail). In particular, it is suf-
ficient to extract call sites to methods with an identical signature
to these three fromJson methods, even if the name of the method
has been obfuscated. The fourth signature, however, takes as one
of its parameters the type com.google.gson.stream.JsonReader,
which is subject to obfuscation. In this case, we simply omit this
parameter from the signature and match against the remaining pa-
rameter of java.lang.reflect.Type and a return value of type
java.lang.0Object. For each identified function, we output the
package name, the class name and the function signature. Despite
the heuristic nature of this deobfuscation algorithm, the reverse
transformation works well in practice.

8.2 S-Hush

The S-Hush static analysis stage is written in Java and uses a mod-
ified version of FlowDroid [3] to perform static data flow analy-
sis. To obtain the required static coverage necessary to find hidden
data from a network response in modern Android apps, several
modifications to FlowDroid were necessary [33], including Async-
Tasks and Fragment support. Fragments are used by 67% of the
apps in our dataset and thus not supporting this functionality in
the analysis was not an option.
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We specify network input sources in a precomputed data-
base derived from enumerating all methods in the Android
framework that receive a response from an HTTP(S) connec-
tion. As examples, these include the getInputStream method
from HttpURLConnection and java.net.URLConnection classes,
getEntity from the org.apachehttp.HttpResponse class. Fortu-
nately, as these methods are part of the Android framework, we do
not need to worry about obfuscation. User interface element sinks
were manually compiled by identifying methods in the Android
SDK that allow text to be displayed to the user. Examples of these
sink methods include setText from android.widget.TextView,
setTitle from android.app.AlertDialog, and the loadData
method from the android.webkit.WebView class.

8.3 D-Hush

The prototype implementation of the D-Hush dynamic analysis
stage relies on the Xposed hooking framework [42]. Xposed oper-
ates by replacing the Zygote process with an extended version of
the app_process executable that launches Zygote!. When a new
Dalvik virtual machine is created, this Xposed-modified version of
app_process loads external packages — in this case, the hooking
and logging code required to collect the information described in
Section 7.

The hooking initialization procedure takes as input the set of
methods to hook provided by the preprocessing step. For both UI
and network methods, we used the same set as for S-Hush (see
Section 8.2). For deserialization methods, however, we include log-
ging for another JSON library, org. json.JSONObject, that cannot
easily be analyzed statically. (For a more detailed discussion please
refer to Section 10.1) The goal of this additional feature is two-fold:
first, to demonstrate that SIFON vulnerabilities affects several de-
serialization libraries and second, to support our claim that Hush
is library independent and hence highly extensible. Thus, we ana-
lyze two different categories of deserialization: JSON data deserial-
ized to models using Gson, and JSON data mapped to dictionaries,
or key-value pairs using org. json.JSONObject. Note that the sec-
ond family is constructed dynamically, where dictionary keys are
retrieved from the server at runtime and cannot be tracked by S-
Hush. The dynamic analysis, however, can process these objects
and extract the necessary information to detect SIFON vulnerabil-
ities. During the hooking setup, if the data is mapped to a model,
both data and model are logged. If the data is mapped to a JSON
dictionary, then the dictionary’s key-value mappings are logged
too. Moreover, as JSON dictionaries are not mapped to models, ac-
cessing the object data is achieved through a set of accessor and
mutator methods that should be hooked to track data modification.

Detecting SIFON vulnerabilities in the JSONObject scenario is
slightly different from Gson. The main idea remains the same: data
that is sent by the server and never used is considered oversharing.
As the constructor of the JSONODbject class is hooked, the data (i.e.,
key-value pairs) contained in the resulting object is also known.
This includes the set of keys that are read (through the hooking
of accessor methods) and those that are written to (through the
hooking of mutator methods). Keys that are created but never used
(either read or write) are considered leaked information.

10n Android Zygote is the parent of all apps.
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We note that both algorithms rely on data accesses (read or
write) to assess whether a field is used or not. This process might
generate false negatives. For Gson hooking, the static analysis can
flag a method as accessing a field; however, this access is in a
branch that is never taken. The JSON algorithm is more subtle as
SIFON vulnerabilities detection is fully based on dynamic analysis.
The idea is that a key might be accessed for an internal computa-
tion but never shown to the user. For instance, we noticed that in
social and dating apps, user email addresses are usually sent by the
server but hidden from the UL

We therefore provide an additional operating mode (called
Fuzzy mode) for users aiming to detect all SIFON vulnerabilities
even if the data is used internally by the app. The downside of
this technique, however, is a high number of false positives. More
precisely, the algorithm performs a fuzzy string matching between
the data received from the server and information displayed to the
user. If a value is sent but not displayed, the algorithm flags it as
suspicious. To do so, we proceed as follows: for all JSON objects
received from the server, key-value pairs are extracted. Then, all
strings written to the Ul are collected via the hooking of UI meth-
ods set during the first phase. Finally, the algorithm compares the
values received from the server and the strings set in the UI with
a fuzzy string comparison algorithm.

9 EVALUATION

We evaluate the effectiveness of Hush over a large corpus (i.e.,
31,559) of Android apps. To this end, we analyzed all apps in the
social category of Google Play as archived by the Playdrone [46]
project. We chose this category, as apps therein are likely to handle
sensitive information that should not be shared beyond the owner
of the data and the app provider indiscriminately.

Experimental Setup To identify likely SIFON vulnerabilities,
S-Hush was run in parallel using 8 workers each allocated with
20 GB of RAM and sharing 16 2.27 GHz CPUs. To ensure forward
progress of our analysis through the dataset, we set a timeout of
2 hours for the analysis of each app. D-Hush was executed on a
MacBook Pro with 16 GB of RAM and two 2.6 GHz CPUs. The
dynamic analysis used the Genymotion Android emulator running
Android 4.1.1 with Xposed framework version 2.6.1.

S-Hush Results We started with 31,559 apps contained in the
Playdrone data set under the social category. 5,481 of these apps
passed the preprocessing filter (see Section 5). That is, all apps that
request the INTERNET permission, communicate with the network,
and are found to invoke a (potentially obfuscated) deserialization
method. Further, 10.46% of these apps contained obfuscated deseri-
alization methods. During the analysis, 315 apps resulted in Flow-
Droid requesting more than the allocated memory (i.e., run out of
memory), 177 did not finish within the 2 hour time limit (i.e., run
out of time) and 553 terminated due to fatal errors (e.g., FlowDroid
runtime errors).

The analysis found that 998 apps have static data flows from net-
work sources to deserialization points among which 951 have also
flows between deserialized object fields and UI elements. Finally,
126 apps contained models with sensitive information that is not
displayed to the user. These apps are then forwarded to D-Hush
for confirmation.
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The average analysis time for an app was 5 minutes 33 seconds,
which supports our decision to set the timeout to 2 hours. Further-
more, the average memory usage of the static analysis tasks was
2.39 GB. In total, S-Hush processed 5,481 apps and we manually
investigated the 177 apps whose analysis was terminated due to
the timeout. This investigation revealed that the single most preva-
lent reason (i.e., 161/177 apps) for the timeout was that the inter-
procedural, finite, distributive subset (IFDS) solver used by Flow-
Droid got stuck and did not make further progress in the analysis.

D-Hush Results S-Hush reported 126 apps with potential SI-
FON vulnerabilities. These apps were first examined to determine
compatibility with D-Hush. We found 38 were not runnable due to
either a programming bug (i.e., app crashes at starting for 11 apps)
or to network endpoints that were not reachable at the time of
our analysis (27 apps). Additionally, we were unable to analyze 12
apps as 6 apps had user interfaces in non-latin languages, which
prevented the authors from meaningfully engaging with the UI,
and 6 apps required special credentials (e.g., special pin code).

Thus, we were left with 76 apps that potentially contain SIFON
vulnerabilities. Our evaluation confirmed SIFON vulnerabilities in
a total of eight apps. Table 1 presents the sensitive data that was
found to be leaked in each app accompanied by the number of in-
stalls in the Google Play Store. In the following sections, we select
App A and App B as case studies to explore the SIFON vulnerabil-
ities in more detail.

9.1 Case Study: App A

App A is an online dating app. S-Hush identified this app as having
a potential SIFON vulnerability due to the server responding with
the first and last name, date of birth, ZIP code, and email address
during a profile request indiscriminately of the user who is sending
the request. The detailed results of the static analysis are displayed
in Table 2.

The data is deserialized to the object specified by “Model”
“Shown” represents the number of fields presented to the user
while “Hidden” are those not displayed by a Ul element. “Sensitive”
represents the number of fields that are hidden and also considered
sensitive. This is the most important metric when determining if
the app may have a SIFON vulnerability. Additionally, we report
the number of fields in the model that are never used anywhere
in the app as “Unused” The same metrics are reported for each
case study. App A is a textbook example of a SIFON vulnerabil-
ity. S-Hush identified that the Contact model is deserialized from
three network responses, and the hidden model fields which are
considered sensitive are different across all three cases. This indi-
cates that the developers implemented a local access control pol-
icy in an attempt to secure the data. App A was then forwarded to
D-Hush for validation. Upon installation of the app, manual inter-
action was required to create an account. Dynamic analysis con-
firmed that when a search is performed, the server responds with
a list of matches. When one of these matches is clicked, for whom
we are not connected to, the server returns the information as iden-
tified by the static analysis. These results are then deserialized by
the Gson library. Overall, the dynamic analyses identified 67 fields,
out of which 52 were shown to the user. From the remaining 15,
one field was not sent by the server, seven were sent with “---”
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Table 1: Overshared information per app. (*) indicates fields discovered with the fuzzy mode.

Apps Leaked Data Number Installs
App A first and last name, DOB, last action®, ZIP, gender®, user ID*, email, profile status 10,000 - 50,000
App B email, home page, street, ZIP code, phone number 10,000 - 50,000
App C  Client OS*, email*, friend list*, user ID*, latitude, longitude 10,000 - 50,000
App D latitude, longitude, last action 5,000 - 10,000
App E Phone number 1000 - 5000
App F  userRelationID, latitude®, longitude® 500 - 1,000
App G  address, DOB, phone number, email*, deviceOS, Facebook ID, encrypted latitude, longitude, and password 100-500
App H DOB, hashed password, last login, user type 100 - 500

(i.e., three dashes) as content, and seven contained sensitive infor-
mation. In addition, this particular app appears to use integers for
the member IDs, potentially allowing an adversary to enumerate
member records to perform unauthorized bulk collection of sensi-
tive user data.

9.2 Case Study: App B

App B is a social network connecting dog owners, breeders, and
dogs. S-Hush identified this app as having a potential SIFON vul-
nerability due to the server responding with the first and last name,
street address, ZIP code, country, phone, and email address during
a profile request, while keeping this data hidden from the user. The
detailed results of S-Hush are displayed in Table 2. When the server
responds to a request to obtain the profile, the data returned is dese-
rialized in the UserEntity model. This app only displays data from
four of the 28 model fields, eight of which are considered sensitive.
App B was then forwarded to D-Hush for validation. This app also
required the creation of a user account. However, account creation
is not supported from the mobile client. Thus, we had to register
the account through the app’s accompanying website. Overall, 146
fields were analyzed, 60 were shown to the user, and five were iden-
tified as sensitive. Among the 86 unused fields 46 are never sent by
the server, 3 are empty, and 37 have some value. A quick analysis of
these values showed that the AnimalOwnerEntity is the only model
leaking sensitive information. Among its seven unused fields, the
first and last name are not considered sensitive, and thus there are
five detected leaks. The SIFON vulnerability is triggered as follows.
When browsing a user profile, a list a of dogs owned by the user
is presented. By clicking on a dog, a request for the dog’s details
is made to the server. The response includes the owners informa-
tion (i.e., the AnimalOwnerEntity model). This information is sent
but never shown to the user. This result shows how difficult it can
be to prevent SIFON vulnerabilities: while explicit user data (i.e.,
UserEntity) was never sent by the server, that same data was nev-
ertheless leaked through a different model (AnimalOwnerEntity).

10 CHALLENGES AND LIMITATIONS

As Hush relies on static and dynamic analysis techniques, Hush
is subject to their fundamental limitations, such as limited path
coverage for dynamic analysis and potentially high false positives
due to over-approximation in the static analysis phase. However,
beyond these globally applicable limitations, our prototype also
suffers from challenges and limitations that result from our imple-
mentation. These limitations mainly arise from shortcomings of
our static and dynamic analyses.
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Table 2: Static analysis results for App A (top) and App B (middle)

Model Shown Hidden Sensitive Unused Total
LoginObj 7 1 1 0 8
BlogArticle 4 4 0 0 8
InboxMsg 7 5 0 0 12
Contact 50 7 1 1 57
Contact 41 16 1 10 57
Contact 43 14 1 8 57
UserEntity 4 24 8 2 28
VerisionEntity 0 1 0 0 1
RegisterEntity 3 15 0 14 18

10.1 Static Analysis Limitations

The preprocessing step in Hush uses heuristics to deobfuscate apps
before submitting them for static analysis. Thus, obfuscation tech-
niques that go beyond merely renaming method names can poten-
tially thwart this step. However, recall that Hush aims at analyzing
benign apps and thus we would not anticipate advanced obfusca-
tion techniques to be beneficial to regular app developers.

As demonstrated in Section 8, S-Hush is flexible enough to han-
dle a variety of serialization libraries. However, one method of
deserializing network data into Java data-structures is based on
Android’s JSONObject class. Instead of deserializing network data
into a model of a specific type, JSONObject will simply deserialize
a JSON string into a nested java.util.Map. The app can then ac-
cess individual values in this structure by indexing the map with
a key value. The Map instances returned by the JSONObject class
uses regular strings as keys. Thus, to accurately reason about these
nested structures would require a precise handling of string values
and operations — a capability currently not supported by S-Hush.

Finally, as S-Hush is implemented on top of FlowDroid, it inher-
its FlowDroid’s soundness characteristics. As most static analysis
systems that target complex apps, FlowDroid and by extension S-
Hush cannot be sound “as this would make the analysis unscalable
or imprecise to the point of being useless” [37].

10.2 Dynamic Analysis Limitations

Android apps are interactive and event-driven. Thus, inputs are
normally in the form of events that correspond to user interac-
tions (UI events), or system events, such as an incoming phone
call or text message. While testing tools can generate such events
automatically, previous research (e.g., [12]) concluded that simple
approaches outperform advanced user interface exploration tech-
niques along many dimensions. For the use case considered in
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Hush, the most important dimension is code coverage. Unfortu-
nately, Choudhary et al. [12] found that code coverage of any exist-
ing automated GUI exploration tool is sobering (~ 48%) with Mon-
key scoring the highest. Based on these results, we experimented
with the Monkey [26] to see whether we would achieve sufficient
coverage to confirm the suspected SIFON vulnerabilities automati-
cally. While this approach worked for App H, none of the other vul-
nerabilities could be confirmed by this fully automated technique.
The reason is that the user interactions to manifest the vulnerabil-
ities were too specific for Monkey to trigger.

However, in a scenario where a test engineer applies Hush to
detect SIFON vulnerabilities for software testing purposes, the en-
gineer could simply trigger (or create if necessary) test cases that
mimic the corresponding user interactions. Testing frameworks
such as Expresso [18] already support such user interface testing.

Similar to improved static analysis tools, Hush can immediately
benefit from improved UI exploration techniques once these tech-
niques manage to generate the complex user interactions required
to trigger SIFON vulnerabilities.

11 RELATED WORK

There have been many research efforts to detect, measure, and pro-
tect sensitive information leakage in mobile platforms. These ef-
forts fall into three major categories.

Static Analysis For static analysis, a natural starting point is
the Android permission system. Hence, it has been widely scruti-
nized. For example, at a system level, PScout [4] extracts and an-
alyzes the permission specification from Android OS source code
and shows that at least 22% of the permissions are not documented.
Stowaway [20] considers the same problem from the app’s point
of view, and shows that many apps are over-privileged. Note that
as SIFON vulnerabilities occur at the cloud service, enforcing per-
missions at the client side cannot be an effective countermeasure.

A popular use of static analysis is for vulnerability discovery.
For example, CryptoLint [14] uses program slicing to find crypto-
graphic misuse in Android apps. CHEX [38], in comparison, scans
Android apps for component hijacking vulnerabilities. Compared
to related work, Hush is a novel detection system specifically for
SIFON vulnerabilities, which have not been investigated in prior
work to the best of our knowledge.

Outgoing data leakages from mobile apps to external, third-
party services has been widely studied through static analysis [3,
15, 28, 29, 32, 48]. For example, LeakMiner [48], FlowDroid [3],
DroidSafe [28], and DidFail [32] perform static data flow analy-
sis to identify data leakages in Android apps. Note that these tools
consider only information leakage originating from the client to a
third-party service. S-Hush, in contrast aims to identify sensitive,
hidden data received by the app from a network endpoint.

Dynamic Analysis TaintDroid [16] was the first taint tracking
framework to uncover information leakage at runtime for the An-
droid platform. Dynamic instrumentation is now widely used for
mobile malware analysis. Sandbox systems such Andrubis [36] and
DroidBox [35] use custom instrumentation of the Android system
coupled with taint tracking. VMI-based dynamic analysis systems
such as DroidScope [47] and CopperDroid [45] are proposed as
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a general-purpose VM-based out-of-the-box framework to recon-
struct Android malware behaviors. SmartDroid [50] and AppsPlay-
ground [41] improve code coverage by intelligently stimulating the
app during dynamic analysis to reveal malicious behavior.

Similarly to existing static analysis systems, current dynamic
analysis systems for mobile apps are tailored to detect either infor-
mation leakage from client to an external server, or to detect spe-
cific malicious activities on the device. Hush, in contrast, specif-
ically targets SIFON vulnerabilities that, to our knowledge, have
not been studied before.

Access Control Enforcement Several approaches have been
proposed to enhance the security of the Android OS, and prevent
data leakage. For example, Kirin [17] enforces the security of apps
by limiting permissions for the app being installed. Frameworks
such as XManDroid [6], Saint [39], TrustDroid [49], and many oth-
ers [7] focus on controlling the communication between compo-
nents in different apps. In comparison, TISSA [52], MockDroid [5],
and AppFence [30] allow the specification of fine-grained policies,
and the substitution of fake information returned from the Android
API. Note that all these protection mechanisms are deployed on the
client, and, hence, cannot prevent SIFON vulnerabilities. Finally,
access control can be guaranteed by the programming language.
Frameworks such as swift [10] and SIF [11] aim at building web ap-
plications that are secure by construction. While such frameworks
can be used to prevent SIFON vulnerabilities, they are not widely
adopted as they require a specific programming language (i.e., JIF)
and the data to be annotated.

12 CONCLUSION

In this work, we presented SIFON, or server-based information
oversharing, a new class of security vulnerabilities in multi-tier
applications. SIFON vulnerabilities arise due to oversharing of in-
formation from server-side APIs that is not displayed by the ap-
plication’s user interface. We described Hush, a semi-automated
approach to discover and confirm the presence of SIFON vulnera-
bilities. Hush first performs a scalable multi-stage static data flow
analysis to screen applications for potential vulnerabilities, and
then confirms the presence of candidate vulnerabilities with a
human-assisted dynamic analysis. We implemented a prototype of
Hush for the Android platform and demonstrates that it possible
to quickly scan thousands of Android applications for SIFON vul-
nerabilities with minimal effort. Our work is a first step towards a
systematic, fully automated framework for server side information
leakage discovery and mitigation.
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