
TargetFuzz: Using DARTs to Guide Directed Greybox Fuzzers
Sadullah Canakci
scanakci@bu.edu
Boston University
Boston, MA, USA

Nikolay Matyunin
nikolay.matyunin@honda-ri.de
Honda Research Institute Europe

GmbH
O�enbach, Germany

Kalman Gra�
Kalman.Gra�@honda-ri.de

Honda Research Institute Europe
GmbH

O�enbach, Germany

Ajay Joshi
joshi@bu.edu

Boston University
Boston, MA, USA

Manuel Egele
megele@bu.edu
Boston University
Boston, MA, USA

ABSTRACT
Software development is a continuous and incremental process.
Developers continuously improve their software in small batches
rather than in one large batch. The high frequency of small batches
makes it essential to use e�ective testing methods that detect bugs
under limited testing time. To this end, researchers propose directed
greybox fuzzing (DGF) which aims to generate test cases towards
stressing certain target sites. Di�erent from the coverage-based
greybox fuzzing (CGF) which aims to maximize code coverage in
the whole program, the goal of DGF is to cover potentially buggy
code regions (e.g., a recently modi�ed program region). While prior
works improve several aspects of DGF (such as power scheduling,
input prioritization, and target selection), little attention has been
given to improving the seed selection process. Existing DGF tools
use seed corpora mainly tailored for CGF (i.e., a set of seeds that
cover di�erent regions of the program). We observe that using CGF-
based corpora limits the bug-�nding capability of a directed greybox
fuzzer. To mitigate this shortcoming, we propose TargetFuzz, a
mechanism that provides a DGF tool with a target-oriented seed
corpus. We refer to this corpus as DART corpus, which contains
only ‘close’ seeds to the targets. This way, DART corpus guides DGF
to the targets, thereby exposing bugs even under limited fuzzing
time. Evaluations on 34 real bugs show that AFLGo (a state-of-the-
art directed greybox fuzzer), when equipped with DART corpus,
�nds 10 additional bugs and achieves 4.03⇥ speedup, on average,
in the time-to-exposure compared to a generic CGF-based corpus.

CCS CONCEPTS
• Security and privacy! Software security engineering.

KEYWORDS
directed greybox fuzzing; patch testing; seed selection strategy;
coverage-based greybox fuzzing; seed corpus

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the� rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9140-5/22/05. . . $15.00
https://doi.org/10.1145/3488932.3501276

ACM Reference Format:
Sadullah Canakci, Nikolay Matyunin, Kalman Gra�, Ajay Joshi, and Manuel
Egele. 2022. TargetFuzz: Using DARTs to Guide Directed Greybox Fuzzers.
In Proceedings of the 2022 ACM Asia Conference on Computer and Communi-
cations Security (ASIA CCS ’22), May 30-June 3, 2022, Nagasaki, Japan. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3488932.3501276

1 INTRODUCTION
The nature of modern software development is continuous and in-
cremental. Rather than in one large batch, developers continuously
build, test, and deploy their changes in small batches. Developers
use e�ective testing techniques to detect bugs as software evolves.
Due to its ease in deployment and e�ectiveness in bug�nding,
it has become a common practice for developers to use Greybox
Fuzzing (GF) as part of their testing framework. After each pull
request or commit, it is common to run some fuzzing sessions with
the goal of� nding bugs before integrating submitted changes into
the codebase.

To date, researchers have proposed two types of GF techniques:
Coverage-based Greybox Fuzzing (CGF) and Directed Greybox
Fuzzing (DGF). The goal of CGF is to maximize the code cover-
age of the program, thereby discovering bugs anywhere in the
program. When the program undergoes substantial changes, CGF
is e�ective, especially with long fuzzing runs. However, it is rare
to observe substantial software changes in a real-world software
project. The maintenance of real-world projects often involves fre-
quent commits where each commit only modi�es a few lines of
code. As a reference point, the average commit size across� ve
popular projects (i.e., PHP, Libxml2, Openssl, SQLite3, and Libpng)
is 34.8 lines of code 1. Moreover, fuzzing requires resources and
hence is subject to budget constraints, especially time. The commit
frequency of popular projects is generally high (on average one
commit for every 20.4 hours for the aforementioned� ve projects)
and in turn results in limited fuzzing time. A well-suited fuzzing
technique for testing small size commits, especially under limited
fuzzing time, is DGF which steers the test generation towards spe-
ci�c target sites (e.g., code lines modi�ed by a recent commit) rather
than unrelated program components. DGF computes the distance
of each seed with respect to target sites by averaging the weight of
executed basic blocks. The weight of each basic block is determined
based on the shortest paths to target basic blocks in the program

1We use the master branch of each project and include commits that only change
source code (including both additions and deletions) in the last 14 years.

Session 5B: Software Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

561

inter-procedural control-�ow graph. During fuzzing, DGF focuses
on closer seeds (i.e., seeds with lower distances) to cover modi�ed
code regions, thereby increasing the likelihood of detecting bugs
even under limited fuzzing time.

While prior works improve several aspects of DGF (such as en-
ergy assignment [7], seed scheduling [51], and target selection [36,
42]), little attention has been given to improving the seed selection
process that determines seeds in an initial seed corpus. The initial
seed corpus consists of a set of valid inputs (e.g., png� les for a
png processor tool) serving as starting points to the fuzzer. The
seed selection process aims to identify high-quality seeds from a
large seed pool that maximize the e�ectiveness of a fuzzer (mainly
measured with its bug� nding capability). If an initial seed cor-
pus is not provided, the fuzzer wastes the limited fuzzing time to
infer the� le format that the program under test (PUT) accepts.
In case a seed corpus is provided, the quality and the quantity of
seeds signi�cantly impacts the e�ectiveness of the fuzzer in bug
detection [27, 39]. Although there exists a variety of seed selection
strategies/tools [25, 31, 39, 49], they are mainly designed for CGF. In
this work, we tackle the question of whether a seed corpus tailored
for DGF outperforms a CGF-based seed corpus when used with a
DGF tool.

To date, all the academic DGF works [3, 4, 7, 9, 10, 30, 35, 36,
42, 44, 51] equip their directed greybox fuzzers with a seed cor-
pus designed for CGF (CGF-based seed corpus) for the evaluation.
Speci�cally, these fuzzers commonly use regression tests [20, 40],
generic seeds [14, 17], and generic dictionaries [16] as part of a
seed corpus. Additionally, they extensively use a variety of seed
selection strategies [25, 31, 39, 49] to ensure that only high quality
seeds construct their seed corpora. At their core, these strategies
select a minimal set of inputs (as part of a seed corpus) that provide
maximal code coverage and therefore are designed for CGF.

We make a key observation that using CGF-based seed corpora
signi�cantly limits the bug detection capability of DGF. Moreover,
we observe that a seed selection mechanism (namely MINSET [39])
that is well-suited for CGF performs poorly with DGF. These ob-
servations are intuitive. A seed corpus tailored for CGF exercises
di�erent regions of the whole program, thereby triggering bugs
in di�erent parts of the program. However, DGF aims to reach a
speci�c region (e.g., newly written or modi�ed code) of the program
and trigger bugs in that region. When DGF uses a seed corpus that
covers di�erent regions of the program, DGF wastes part of its
e�ort by spending time on fuzzing “farther away” seeds that are
unrelated to the target regions. Instead, DGF should be provided
with a seed corpus that contains “closer” seeds to the target sites so
that DGF spends the limited testing time on fuzzing seeds related
to targets.

In this work, we present TargetFuzz, a mechanism that provides
a target-speci�c seed corpus to a DGF tool. At its core, TargetFuzz
exploits the continuous and incremental nature of software de-
velopment. For the frequent mode of software development (i.e.,
the mode where small-size changes happen), TargetFuzz outputs
a commit-speci�c seed corpus which we refer to as DART cor-
pus2. TargetFuzz uses a seed selection strategy that accounts for
2We use DART to signify that our corpus is targeted to a (code) region and needs to
achieve its goal (covering that particular code region) quickly similar to a dart that
can be thrown at a target with a quick movement.

the seed distances rather than only code coverage to select seeds
in DART corpus. The strategy selects a subset of seeds that are
‘close’ to the modi�ed target regions from a large seed pool. A
DGF tool equipped with DART corpus spends most of the fuzzing
time budget on stressing modi�ed code regions rather than un-
related program components. In this way, the DGF tool achieves
better code coverage and successfully exposes bugs in target sites
even under limited testing time. TargetFuzz uses the rare mode of
software development (i.e., the mode where substantial software
changes happen) to generate the large seed pool. Using coverage-
based fuzzers, TargetFuzz generates a variety of seeds that exercise
di�erent regions of the program. Whenever a developer submits a
small-size commit, TargetFuzz selects those seeds that are related
to modi�ed code region from the large seed pool as opposed to a
CGF-based corpus that covers unrelated code regions as well.

We test TargetFuzz with the state-of-the-art directed greybox
fuzzer (AFLGo [4]) using a fuzzing benchmark (Magma [24]). In to-
tal, we test 34 vulnerabilities on 7 popular programs. Experimental
results show that AFLGo, when equipped with DART corpus, trig-
gers 10 more unique bugs (out of 34) and achieves 4.03⇥ speedup,
on average, in the time-to-exposure (TTE) of bugs compared to
a generic corpus. We also compare TargetFuzz’s distance-based
seed selection strategy with a seed selection strategy tailored for
CGF (MINSET [39]). When equipped with DART, AFLGo discovers
8 more unique bugs (out of 34) compared to MINSET-based corpus
and triggers the bugs 30% faster (on average).

Overall, the main contributions of this work are as follows:
• We are� rst to observe that CGF-based seed corpora con-
sisting of generic seeds limit the e�ectiveness of a DGF tool.
Based on this observation, we design TargetFuzz, a mecha-
nism that provides a DGF tool with di�erent target-speci�c
seed corpora for di�erent fuzzing targets.

• We show that the state-of-the-art CGF-based seed selection
strategies are not well-suited for DGF. To increase the bug
detection capability of a DGF tool, TargetFuzz proposes a
seed selection strategy that takes seed distance metric into
account rather than merely code coverage.

• We evaluate TargetFuzz on a variety of real bugs in real-
world programs (in total 34 bugs across 7 libraries). Experi-
mental results show that a DGF tool can� nd more unique
bugs when equipped with a seed corpus provided by Target-
Fuzz compared to a corpus tailored for CGF.

• In the spirit of open science and to facilitate reproducibility
of our experiments, we will make our data set and source
code of TargetFuzz publicly available.

2 BACKGROUND
In this section, we� rst provide a background on CGF. Next, we
explain the major di�erences between CGF and DGF.

2.1 Coverage-based Greybox Fuzzing
The main goal of CGF is to maximize the code coverage of a PUT.
The intuition is that executing di�erent code blocks in the target
program with di�erent inputs increases the chance of exposing
bugs. At a high level, CGF generates a large number of test inputs
by performing a set of mutation operations (such as bit� ips) and

Session 5B: Software Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

562

Algorithm 1: Coverage-based Greybox Fuzzing
(S1) Input : Initial Seed Corpus (, C8<4;8<8C

Output :Crashing Input Set⇠�
⇠� ;;
while C8<44;0?B43 < C8<4;8<8C do

(S2) B ScheduleNext(();
(S3) 4 AssignEnergy(B);
for 8 = 1 to e do

(S4)<0 = MutateInput(B);
(S5) > = ExecutePUT(<0);
(S6) if 8B_⇠'�(��#⌧ (>) then

add<0 to⇠� ;
(S6) else if 8B_�#)⇢'⇢() �#⌧ (>) then

add<0 to (;
end

end
return⇠�

executes the PUT with the generated inputs. Based on the coverage-
feedback recorded from the program at runtime, CGF determines
the ‘interesting’ inputs and uses them for generating a new set of
inputs. Here an ‘interesting’ input refers to any input that increases
code coverage.

We provide an algorithmic sketch of CGF in Algorithm 1. In
stage S1, a fuzzer takes a seed corpus and a time limit as inputs.
A seed corpus includes an initial set of test inputs which serve as
starting points to the fuzzer. Seeds usually have in�nite domains.
For instance, a png processor tool can be provided with in�nite
number of valid png� les. To reduce the size of the initial seed
corpus, it is a common practice to use a seed selection strategy
which selects a subset of seeds from a large seed pool. TargetFuzz
mainly focuses on this aspect of fuzzing with more details provided
in Section 4. Besides a seed corpus, stage S1 takes as input a time
limit that determines the total duration for fuzzing. Once fuzzing
starts, all the remaining stages (i.e., S2-S6) repeat in a loop until the
time limit is reached. Speci�cally, stage S2 picks a seed from the
seed corpus for the next fuzzing iteration. This stage of fuzzing is
referred to as seed scheduling. The goal of seed scheduling is to pick
an input that is more likely to increase coverage with mutations.
Stage S3 assigns energy to the scheduled seed. Energy of the seed
determines the total number of mutations. Fuzzer performs more
mutations on seeds with higher energy levels. Stage S4mutates the
scheduled seed to produce a new set of seeds. This stage is referred
to as seed generation. Stage S5 executes the PUT with a mutated
seed and makes an observation. Stage S6 checks the observation
for the mutated seed to determine if the seed increases coverage of
the program (i.e., interesting) or results in a crash. Stage S6 adds
interesting seeds to the seed corpus and crashing seeds to a separate
crashing seed set.

2.2 Directed Greybox Fuzzing
In a software project, any commit that changes a part of program
source produces a candidate buggy code region. The fuzzer should
aim to maximize code coverage of the potential buggy code region
rather than the whole program. DGF [4] is a suitable approach
when this target program region is known. When a new commit
is submitted by a developer, DGF can be used to generate test

Table 1: Seed corpora used by DGF tools. RT refers to regres-
sion tests, GIT refers to seeds obtained from a git repo, N/A
states that the origin of seed corpus is not clearly speci�ed.

Tool Name Seed Corpus
AFLGo [4] RT, OSS-Fuzz Seeds, Generic Seeds (AFL)
Hawkeye [7] Same as AFLGo
LOLLY [30] RT, Generic Seeds (AFL)
Memfuzz [10] Null Seed, RT, Generic Dictionary (AFL)

TortoiseFuzz [44] GIT, RT, Generic Seeds (N/A)
UAFuzz [35] Null Seed, Generic Seeds (N/A)
UAFL [42] RT, Random Seeds from the internet

Memlock [45] N/A

IJON [3] Seed Containing ’a’, Generic Seeds (random)
Dictionary of Strings from Source

FuzzGuard [51] Same as AFLGo
ParmeSan [36] Single� le with ’\n’, Google Fuzzer Test-suite
1DVUL [38] N/A
SAVIOR [9] Generic Seeds (AFL), RT
CAFL [28] N/A

cases towards stressing target sites modi�ed by the commit. During
fuzzing, DGF steers the input generation towards modi�ed code
regions to detect any bugs in the target region.

DGF and CGF mainly di�er at stage S3 (i.e., how long to fuzz the
chosen seed). The energy value of a seed controls the total number
of mutations that need to be applied to the seed (i.e., higher energy
results in more seed mutations). CGF [5, 18, 21, 31, 48] determines
the energy of a seed with the goal of exploring more code regions.
For instance, AFL [18] assigns more energy to those seeds that
exercise a new path. DGF [4, 7] takes the program structure into
account in its energy assignment formula so that it can spend longer
fuzzing time on seeds which are likely to cover certain target sites.
To achieve this goal, DGF instruments the source code by analyzing
call graph (CG) and control-�ow graphs (CFGs) of the program.
First, DGF assigns a value (function-level target distance) to each
node in the CG on function-level by� nding the shortest-path of
each node to the target function (e.g., modi�ed function). Next, DGF
computes the basic-block-level target distance of each basic block
to all basic blocks that call a function in the CFG. Function-level
target distance and basic-block-level target distance together de�ne
a seed distance formula. At run-time, fuzzer uses the exercised basic
blocks in the execution trace along with the seed distance formula
to compute the seed distance. DGF determines energy of a seed
based on the seed distance and performs more mutations on a seed
that is ‘closer’ (i.e., has lower seed distance) than on a seed that
is ‘further away’ from target sites. The intuition is that the seeds
mutated from a close seed are more likely to reach the target sites.
Note that some of the DGF works [7, 36] utilize seed distances at
stage S2 to prioritize closer seeds in seed scheduling.

In Table 1, we provide several DGF works [3, 4, 7, 9, 10, 28, 30, 35,
36, 42, 44, 45, 51] with their corresponding initial seed corpus. As it
is evident from the table, prior DGF works use seed corpora tailored
for CGF such as generic seeds provided by AFL, randomly crawled
seeds from the Internet, regression tests, etc. In our experiments,
we observe that a corpus that is well-suited for CGF can limit the
bug-�nding capability of DGF. To this end, TargetFuzz uses a seed

Session 5B: Software Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

563

selection strategy that is suited for DGF and provides a target-
speci�c seed corpus to a DGF tool in stage S1. Our mechanism
takes seed distance into account rather than only coverage and
helps a DGF tool to spend more time on fuzzing seeds related to
the target sites.

3 RELATEDWORK
In this section, we present prior works that are related to TargetFuzz
from three di�erent research angles; the seed selection strategies,
generation-based fuzzers, andmethods that enhance the bug�nding
capability of greybox fuzzers.

3.1 Seed Selection Strategies
TargetFuzz provides a target-speci�c seed corpus to a DGF tool
by selecting a subset of seeds from a large seed pool. Therefore, it
is highly related to prior seed selection strategies that reduce the
size of a large seed pool. In Table 2, we provide a brief summary
of di�erent seed selection strategies. While the main goal of prior
seed selection strategies is to select a subset of seeds that cover
all the unique edges in a seed pool, TargetFuzz aims to select only
“closer” seeds to the target region. This way, TargetFuzz aims to
guide a DGF tool to the target regions.

afl-cmin [49] is one of the widely-used tools that relies on
AFL’s own notion of edge coverage when selecting a subset of
seeds. afl-cmin �rst computes the edge coverage (a.k.a. branch
coverage) of each seed in the large seed pool. Next, it� nds a set of
edges by calculating the union of edge coverage across all the seeds.
To reduce the corpus size, afl-cmin performs a greedy search that
selects the smallest size of seed for each edge in the set.

Abdelnur et al. [1] propose a seed selection strategy (MINSET) that
applies the minimum set cover (MSC) problem to the edge covering.
SinceMSC is anNP-hard problem, the authors use an approximation
greedy algorithm. In Algorithm 2, we provide the greedy algorithm
for MINSET. Given a union set of covered edges * and a list of sets
(where each set contains covered edges from a particular seed,
MINSET computes a minimum set ⇠ that covers all the edges in * .
To compute ⇠ , at each iteration, MINSET greedily searches for the
set (8 that contains the greatest number of uncovered elements
by ⇠ . Later, Rebert et al. [39] extend MSC to weighted set cover
problem by considering seed execution times (TIMEMINSET) and
seed sizes (SIZEMINSET). Among these three approaches, MINSET
has the highest bug-�nding detection capability as shown by Rebert
et al. [39].

A recent work by Herrera et. al [25] proposes a new seed se-
lection strategy, namely OPTIMIN, that implements an optimal
corpus minimization tool for AFL. Seed selection strategies like
TIMEMINSET and SIZEMINSET employ some heuristics to compute
a set cover C since the underlying problem (i.e., weighted set cover)
is NP-complete. OPTIMIN computes the exact solution to this NP-
complete problem in a reasonable time by interpreting the problem
as a maximum satis�ability (MaxSAT) problem. The MaxSAT relies
on hard and soft constraints where the goal is to satisfy all hard
constraints and maximize the number of satis�ed soft constraints.
By treating edge coverage as a hard constraint while excluding a
seed in the solution as a soft constraint, OPTIMIN guarantees to
cover all edges with the minimal number of seeds.

Table 2: Comparison of di�erent seed selection strategies.

Strategy Goal Approach Target

a�-cmin [49] Cover all edges
in the seed pool

Perform greedy search to select
the smallest size of seeds CGF

MINSET [1] Cover all edges
in the seed pool

Perform greedy search to select
seeds covering greatest number

of uncovered edges
CGF

TIMEMINSET [39] Cover all edges
in the seed pool

Extend MINSET’s approach
using seed execution times CGF

SIZEMINSET[39] Cover all edges
in the seed pool

Extend MINSET’s approach
using seed sizes CGF

OPTIMIN [25] Cover all edges
in the seed pool

Solve seed selection as a MaxSat
problem CGF

TargetFuzz (this work)
Select ‘close’
seeds from the

seed pool

Select the seeds with lowest
seed distances DGF

Algorithm 2: Greedy Algorithm for MINSET
Input :A Set of Covered Branches*
Input :A List of Sets (
Output :Set Cover ⇠
⇠ ;;
while * contains elements not covered by ⇠ do

Find the set (8 containing the greatest number of
uncovered elements

Add (8 to ⇠
end
return ⇠

At its core, all the� ve aforementioned seed selection strategies
aim to maximize the code coverage. We demonstrate (in Section
6) that these coverage-based seed selection strategies are not well-
suited for DGF (i.e., DGF wastes the fuzzing e�ort on unrelated
code) and propose a seed selection strategy that accounts for seed
distance rather than merely coverage.

3.2 Generation-based Fuzzers
Another line of research attempts to generate seeds using mod-
els such as a grammar that characterizes an input format. Several
generation-based fuzzers produce test cases by using a prede�ned
model or a model inferred from the program. The model can target
a speci�c language or a grammar that de�nes input format con-
straints for the PUT. Speci�cally, IFuzzer [41] and LangFuzz [26]
generate JavaScript inputs by randomly recombining extracted code
fragments from a set of given seeds. BlendFuzz [47] uses the simi-
lar approach for XML and regular expression parsers. Sky�re [43]
learns a probabilistic context-sensitive model from the program
with a data-driven static analysis and uses the inferred model to
generate new set of inputs. QuickFuzz [22] uses existing Haskell
implementations of� le-format-handling libraries when producing
new test inputs.

3.3 Improving Fuzzing
Similar to TargetFuzz, several prior works enhance one or more as-
pects of existing fuzzers rather than proposing a new type of fuzzer.
For instance, some of the works increase the fuzzing throughput,
thereby increasing the chance of generating crashing input. Specif-
ically, Xu et al. [46] propose new operating system primitives to

Session 5B: Software Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

564

e�ciently handle common operations (e.g,� le writing, process
spawning) used by fuzzing. Delshadtehrani et al. [11] propose a
hardware mechanism that signi�cantly accelerates the throughput
of binary fuzzing.

Several works [7, 13, 44, 51] improve the seed scheduling algo-
rithms of available fuzzers. Seed scheduling phase of fuzzing is in
charge of choosing a seed for the next fuzz iteration as we detail in
Section 2 (i.e., stage S2 in Algorithm 1). For instance, CollAFL [13]
analyzes the control� ow graphs of the PUT and prioritizes seeds
based on the exercised branches and memory accesses. Tortoise-
Fuzz [44] prioritizes the inputs based on the memory accesses,
functions calls, and loops. Hawkeye [7] modi�es seed schedul-
ing of AFLGo by prioritizing inputs with lower distances when
scheduling a seed for the next iteration. FuzzGuard [51] proposes a
deep-learning model that predicts the reachability of seeds to the
speci�c target sites, thereby improving the e�ectiveness of DGF.

A variety of works [4, 5, 7, 48] change the existing fuzzers to
spend more fuzzing time on the inputs that are more likely to lead
to the crashing behavior (stage S3 in Algorithm 1). AFLFast [5]
extends AFL [18] with a power scheduling function that relies on a
Markov model. AFLFast assigns more energy to those seeds that ex-
ercise low-frequency paths. EcoFuzz [48] later replaces the Markov
model with a variant of the adversarial multi-armed bandit model
for better seed energy assignment. AFLGo [4] later modi�es the
AFLFast’s power scheduling function to direct the fuzzing towards
speci�c target sites and proposes the state-of-the-art directed grey-
box fuzzer. Hawkeye [7] extends AFLGo by improving its static
analysis to compute seed distances more precisely and adapts the
mutated seed number based on the proposed distance metric.

4 METHODOLOGY
We propose the design of TargetFuzz, a mechanism that provides
a target-speci�c seed corpus to DGF tools. For each commit that
modi�es source code of a program, TargetFuzz outputs a di�erent
seed corpus consisting of only ‘close’ seeds that are more likely
to lead to the target regions. In the following subsections, we�rst
provide a design overview and then elaborate on the details of each
component of TargetFuzz.

4.1 Design Overview
We illustrate the design overview of TargetFuzz in Figure 1. Target-
Fuzz mainly consists of three components, a Baseline Seed Corpus
Generator (BSCG), a Seed Re�ner and Accumulator (SRA) and
a Target-oriented Seed Selector (TSS). The BSCG is in charge of
generating a variety of seeds that cover di�erent code regions of a
program. To accomplish this goal, the BSCG performs fuzzing using
multiple coverage-based greybox fuzzers by allocating a relatively
long time limit and collects all of the ‘interesting seeds’ (i.e., any
seed that increases coverage) from each fuzzer’s output queue in
one place. The fuzzer-generated interesting seeds comprise a large
seed pool that is used in a later stage of TargetFuzz when selecting
seeds for a commit-speci�c corpus. We refer to this large seed pool
as baseline seed corpus and the elements of these corpus as baseline
seeds. TargetFuzz runs the BSCG for two di�erent scenarios. The
�rst scenario is when TargetFuzz is initially integrated into the
testing framework of a software project. The second scenario is

when the software project undergoes substantial changes. This is
an occasional scenario in a software project as the maintenance
of real-world projects mostly involves small size commits that are
submitted with high frequency.

Once the baseline seed corpus is generated, TargetFuzz waits
until a developer submits a new commit that modi�es the program
source. After the submission of the commit, TargetFuzz runs the
SRA component to identify crashing inputs and to eliminate dupli-
cate seeds. Speci�cally, the SRA� rst checks if any of the available
seeds in the baseline seed corpus triggers a bug introduced by a
new commit. Next, the SRA re�nes the baseline seed corpus since
di�erent coverage-based fuzzers used in the BSCG can generate
the same and/or similar inputs. In particular, the SRA retains only
the smallest set of seeds that result in the same code coverage. The
seeds after the re�ning process are used to form the accumulated
seed corpus.

The TSS selects a subset of seeds from the accumulated seed
corpus and outputs a target-speci�c seed corpus which we refer
to as DART corpus. While selecting seeds of the DART corpus, the
TSS takes the seed distance into account to select only those seeds
that are ‘close’ to the modi�ed code region. The TSS takes the
modi�ed program source to compute seed distances. TargetFuzz
equips the directed greybox fuzzer with the DART corpus, sets
the modi�ed lines of code as target sites, and starts the fuzzing
session. Once the fuzzing session is over, TargetFuzz� rst checks
if a new bug is detected. Next, the fuzzer-generated ‘interesting’
new seeds (i.e., seeds that increased coverage during fuzzing) are
provided to to the SRA, which augments the accumulated seed
corpus. When the next commit is submitted, the SRA� rst re�nes
the augmented accumulated seed corpus to eliminate redundant
seeds obtained from the previous fuzzing session. Note that the
SRA uses the accumulated seed corpus for next commits (instead of
the baseline seed corpus) until the BSCG needs to generate a new
baseline seed corpus because of a major program change.

4.2 Baseline Seed Corpus Generator (BSCG)
The BSCG creates a large seed pool consisting of a variety of seeds
that cover di�erent code regions of the program. To provide a
commit-speci�c DART corpus to a DGF tool, TargetFuzz applies
its seed selection strategy on the accumulated seed corpus mostly
consisting of baseline seeds along with a limited number of new
seeds generated by DGF. This is because TargetFuzz allocates very
limited time for fuzzing small-size commits, and so it is unlikely to
achieve a promising code coverage with new seeds (i.e., the output
of Directed Greybox Fuzzer in Figure 1) coming from DGF sessions.
If the baseline seeds cover only a certain region of the program or a
limited number of easy-to-reach program regions, the DART corpus
will include ‘further away’ seeds for most of the commits and fail to
guide DGF towards the target code regions. To ensure that theDART
corpus includes a set of ‘close’ seeds that are related to program
regions modi�ed by the recent commit, it is essential to collect a
wide range of baseline seeds that exercise di�erent regions of the
program. To this end, TargetFuzz runs multiple coverage-based
fuzzers with di�erent characteristics since none of the prior fuzzers
manifest clear superiority over the others [24, 29]. Additionally, to
improve the code coverage, TargetFuzz allocates a relatively longer

Session 5B: Software Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

565

Coverage-
based

Fuzzers

Baseline Seed
Corpus

Target-oriented
Seed

Selector DART
Corpus

D
ire

ct
ed

 G
re

yb
ox

 F
uz

ze
r

New
Seeds

(Occasional Step)

Update Accumulated Seed Corpus with New Seeds

Baseline Seed
Corpus

Generator

Seed Refiner
and

Accumulator Accumulated
Seed Corpus

(Repeated Step)

Program
Source

Modified
Program
Source

Figure 1: TargetFuzz Design: The inputs of TargetFuzz are color-coded with green. The Baseline Seed Corpus Generator pro-
duces a wide range of seeds using CGF tools. Seed Re�ner and Accumulator eliminates the baseline seeds with similar char-
acteristics and accumulates incoming seeds from the fuzzing sessions of submitted commits. Target-oriented Seed Selector
selects commit-speci�c seeds from the accumulated seed corpus and outputs a DART corpus.

fuzzing time limit for this step compared to DGF sessions. However,
it is important to note that this step is occasional as it is performed
only after a major software change and the time cost of this step is
negligible in the long term given the high frequency of small-size
commits.

4.3 Seed Re�ner and Accumulator (SRA)
The SRA initially checks if the modi�ed program contains a bug
that can be detected with any of the seeds in the accumulated seed
corpus. If a bug is detected with a seed that resides in the accumu-
lated seed corpus, the developers can� x the bug with a follow-up
commit before running any fuzzing sessions. In case the develop-
ers ascribe low priority to a detected bug, it is essential to ensure
that the bug is not a ‘fuzz blocker’ that limits the e�ectiveness of
fuzzing [12].

As a next step, the SRA eliminates seeds that result in the same
branch coverage since using the same type of seeds leads to wasted
fuzzing e�ort [39]. The SRA uses two practices that are widely
used by existing corpus minimization tools [31, 49]. First, the SRA
eliminates seeds that achieve the same branch coverage. The SRA
chooses only one seed from each set of seeds that produces the same
branch coverage. Second, we choose the seed with the minimum�le
size among all the seeds that result in the same branch coverage. As
discussed by prior works [33, 46, 49], here the rationale is to reduce
the search space for mutation while minimizing I/O requests.

4.4 Target-oriented Seed Selector (TSS)
As detailed before, the time limits of DGF fuzzing sessions are signif-
icantly limited (usually less than 24 hours). TargetFuzz constructs
a seed corpus consisting of “closer” inputs that guide DGF towards
the modi�ed code regions, thereby reaching target sites under a lim-
ited fuzzing time. To steer the execution towards target sites (e.g.,
modi�ed lines of code after a commit), the TSS component uses a
seed selection strategy that takes the seed distance into account
rather than merely code coverage when selecting the seeds for the
target-oriented DART corpus. The distance-based DART corpus
helps DGF to focus on ‘close’ seeds that are more likely to lead
to the target regions during fuzzing. Additionally, by eliminating
‘further away’ seeds, the TSS prevents a DGF tool from wasting

the limited testing time on fuzzing seeds that are unrelated to the
modi�ed region.

The TSS component instruments the program source to gener-
ate a DGF-speci�c binary. The DGF-speci�c binary is generated
by applying necessary compiler passes provided by the directed
greybox fuzzer and it includes bookkeeping logic to compute the
distance of a provided seed to the given set of target sites. The TSS
then executes the instrumented binary with each of the seeds in
the accumulated seed corpus to obtain their corresponding seed
distance values. Next, based on the computed seed distances, the
TSS selects a certain number of ‘close’ seeds (with smallest seed
distances) from the accumulated seed corpus and assembles these
seeds in the DART corpus. Here, one important design aspect of
TargetFuzz is the process of determining DART corpus size. At one
extreme, the TSS can select the single closest seed to include the
most related seed to the target region in DART corpus. At another
extreme, the TSS can select all the seeds to increase the variety in
DART corpus. Overall, there is a trade-o� between the closeness
(⇠quality) and variety (⇠quantity) of seeds. In Section 5, we explain
the details of our implementation choice that tackles this problem.

A DGF tool uses the DART corpus for fuzzing the modi�ed pro-
gram. After the fuzzing time limit is over, the new ‘interesting’
seeds obtained from this particular fuzzing session are added to
the accumulated seed corpus. The new seeds can potentially cover
a program region that is not covered by any of the seeds in the
accumulated seed corpus, thereby increasing diversity of the ac-
cumulated seed corpus. Whenever a new commit arrives, the SRA
processes the augmented accumulated seed corpus and updates it
by re�ning redundant seeds.

5 IMPLEMENTATION
In this section, we provide the implementation details of TargetFuzz
for each component presented in Figure 1.
BSCG. To generate the baseline seed corpus, we used four di�erent
coverage-based fuzzers deployed as part of a fuzzing environment,
namely Magma [24]. The coverage-based fuzzers are AFL [18],
Angora [8], MOpt-AFL [32], and honggfuzz [21]. For each software
that we tested, we run separate fuzzing sessions using each of the
fuzzers for a certain time limit (detailed in Section 6). Once the

Session 5B: Software Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

566

fuzzing sessions are over, we collect all the coverage-increasing
seeds residing in the output queues of each fuzzer and assemble
them in the baseline seed corpus.
SRA. To increase the chance of detecting bugs in the program, we
compiled the program source using LLVM passes that insert the
sanitizer checks such as Address Sanitizer. The SRA also eliminates
any seeds which made the application hang or require more than
a� xed-memory limit determined by the fuzzers (which is 100MB
in our case). To eliminate the duplicate seeds, the SRA utilizes the
two previously discussed practices that are implemented as part of
afl-cmin [49], an existing seed minimization tool. The SRA uses
afl-showmap to extract the edges exercised by each seed. Note
that our seed deduplication uses afl-cmin’s logarithmic branch
hit count mode (i.e., no -e) when measuring branch coverage.
TSS.We implement TargetFuzz on top of AFLGo [4]. We use AFLGo
because it is one of the state-of-the-art directed greybox fuzzers and
it is open-sourced. The TSS compiles the target program by using
AFLGo’s LLVM passes. These LLVM passes modify program source
to include the book-keeping logic and to compute the distance of a
provided seed to the given set of target sites by analyzing control-
�ow graphs and call graphs of the program. We leave the details of
these passes in terms of the performed static analysis to the original
AFLGo paper [4] and the github repo of AFLGo [2]. The TSS also
sets the target sites as the changed code lines after a commit. After
the generation of an instrumented binary, we perform a dry-run
with AFLGo to compute the distance values of baseline seeds and
use the same binary for fuzzing.

As described in Section 4, there is a trade-o� between the quality
and the quantity of seeds that comprise DART corpus. Here, we
explain how we tackle this trade-o� by providing the implemen-
tation details of the TSS. Speci�cally, we explain how TargetFuzz
determines the total number of seeds that construct the DART cor-
pus (i.e., the size of DART corpus). Before we explain our approach,
we deem it useful to present the seed distance distributions for
two programs (SQLite3 and Libxml2) as histograms in Figure 2. We
choose two di�erent target sites per program where each target
site refers to code lines that introduce a known CVE. The seed
distance distributions demonstrate several key points that we take
into account in our approach: (K1) A seed distance distribution
does not necessarily conform to a common probability distribution
(e.g., normal distribution) as in several examples provided in Fig-
ure 2. Therefore, it is not feasible to forecast a seed distance value
by using metrics that de�ne a speci�c probability distribution such
as mean and standard deviation for normal distribution. (K2) Seed
distance distributions that belong to two di�erent programs can
signi�cantly vary. As presented in Figure 2a and Figure 2c, SQLite3
and Libxml2 libraries show di�erent characteristics in their seed
distance distributions. Therefore, the selection strategy should en-
sure that it works smoothly for di�erent types of programs. (K3)
Seed distance distributions that belong to the same program can
vary signi�cantly when di�erent target sites are chosen. As shown
in Figure 2a and Figure 2b, even the same program (i.e., SQLite3)
can present varying seed distance distributions for two di�erent
code targets. This point shows that it could be misleading to rely
on program characteristic when selecting seeds. (K4) Seed distance
distributions contain outliers as we observe in several programs.
Selecting seeds from outliers can potentially misguide DGF.

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

Seed Distance (bin size = 10)

0

1000

2000

3000

4000

co
un

t

(a) SQLite3 (CVE-2015-3414)

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

Seed Distance (bin size = 10)

0

1000

2000

3000

4000

co
un

t

(b) SQLite3 (CVE-2019-19646)

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

Seed Distance (bin size = 10)

0

10000

20000

30000

40000

co
un

t

(c) Libxml2 (CVE-2015-8317)

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

Seed Distance (bin size = 10)

0

10000

20000

30000

40000

co
un

t

(d) Libxml2 (CVE-2017-9047)

Figure 2: The seed distance distributions for di�erent code
patches.

Based on the provided seed distance distributions, there is no
clear seed distance cut-o� value that applies to all programs and
target sites. TargetFuzz proposes to use a percentile-based seed
selection strategy that considers the above discussed points. Tar-
getFuzz� rst calculates the kC⌘ percentile of a set of seed distance
values. Next, the calculated percentile value is used as a thresh-
old when selecting the seeds from the baseline seed corpus. The
TSS determines all the seeds that have a lower distance than the
threshold and assembles those seeds in the DART corpus. To show
the trade o� between the quantity and quality of seeds, we eval-
uate TargetFuzz using di�erent percentile values. We provide the
details in Section 6.4. Our threshold method uses percentiles for
their following advantages: (1) Percentiles are versatile. They do
not depend on a speci�c probability density function and can be
calculated regardless of the probability distribution [34]. As pointed
out by (K1), (K2), and (K3), this property is essential to determine
a seed distance threshold for di�erent distributions that belong
to di�erent programs and targets. (2) Percentiles are resistant to
outliers in the data set [6], which occur frequently in seed distance
data, as we pointed out in (K4).

6 EVALUATION
In this section, we evaluate the e�ectiveness and e�ciency of Tar-
getFuzz using real-world programs. We� rst test TargetFuzz using
the fuzzing benchmark Magma on a number of real bugs to assess
its impact on the bug-�nding capability of a DGF tool. Speci�cally,
we want to assess if a corpus tailored for DGF (i.e., DART corpus
provided by TargetFuzz) outperforms CGF-based corpora in terms
of bug-�nding capability. Second, for the same set of real bugs, we
measure the performance boost of a DGF tool when equipped with
our distance-based DART corpus rather than CGF-based corpora.
This aspect of evaluation is important to show that AFLGo can suc-
cessfully expose bugs even under limited fuzzing time as real-world

Session 5B: Software Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

567

applications have limited testing time due to the high-frequency
of commits. Last, we evaluate TargetFuzz on several commit se-
quences obtained from real-world git repositories to demonstrate
that TargetFuzz can successfully be deployed in real-world con-
tinuous integration (CI) systems. We analyze the achieved code
coverage in target code regions (i.e., lines of code modi�ed by the
commit) for each commit to understand if TargetFuzz successfully
guides DGF to the target regions. Overall, our evaluation aims to
answer the following questions:

RQ1:How e�ectively does TargetFuzz aid a DGF tool in detecting
bugs (Section 6.4)? Does DART corpus present a clear advantage
over CGF-based corpora?
RQ2: Does TargetFuzz improve the bug-�nding speed of a DGF
tool (Section 6.5)?
RQ3: Can TargetFuzz e�ectively guide DGF tools to the target
code regions (Section 6.6)?

6.1 Evaluation Dataset
To assess TargetFuzz in terms of its e�ectiveness in bug detection
(RQ1) and in terms of its e�ciency in bug-�nding speed (RQ2),
we use Magma [24], a fuzzing benchmark suite that includes a
variety of real bugs as part of seven di�erent real-world programs.
We choose Magma in our evaluation for two main reasons. First,
Magma is a ground-truth fuzzing benchmark that enables us to
provide an accurate quantitative evaluation. We can easily compare
our new mechanism (TargetFuzz) with prior works based on the
known bugs that reside in the provided program byMagma. Second,
Magma follows an approach called forward-porting that is well-
suited for the evaluation of TargetFuzz. As detailed before, the
real-world projects frequently rely on small size changes. Similarly,
Magma provides a separate patch� le for each bug where each patch
modi�es a certain region of the program with a limited number
of code line changes. As a reference point, the average patch size
of all the Magma bugs that we used in our evaluation is 15 lines
of code which is in the same order of the commit size of the real-
world projects (i.e., 34.8 lines as detailed in Section 1). By applying
these small-size Magma patches (one patch at a time) on a complex
real-world program, we imitate a scenario where a recent commit
modi�es a certain region of the program. For fuzzing, we set the
target sites as the lines modi�ed by the imitated commit.

In our experiments, we test all the seven libraries integrated as
part ofMagma; libpng, LibTIFF, Libxml2, Poppler, SQLite3, OpenSSL,
and PHP. It is not feasible to directly fuzz a library, and so the com-
mon practice to overcome this is to prepare driver programs. For
each library, Magma provides one or more driver programs (in total
26 drivers for 7 libraries presented in Table 3) that call functions
in the library. Magma does not provide the name of the driver pro-
gram(s) that triggers a certain bug, and so one needs to fuzz each
library with all the available driver programs. Evaluating Target-
Fuzz (and related works) on all the bugs available in Magma (in
total 118) using all the provided drivers requires ⇠ 1" CPU hours,
which is infeasible for our resources. Therefore, we rely on the
proof of concepts (PoC) provided by Magma [23] to understand the
driver program of each bug (in total 58 PoCs). For each library, we
pick one driver program (highlighted in Table 3) that exposes the
maximum number of bugs. In total, this adds up to 34 bugs. The

Table 3: Driver programs of libraries provided by Magma.

Library Drivers
libpng read_fuzzer, readpng
LibTIFF read_rgba_fuzzer, ti�cp
Libxml2 xml_reader_for_�le_fuzz, xmllint
Poppler pdf_fuzzer, pd�mages, pdftoppm

OpenSSL asn1, asn1parse, bignum, bndiv, client,
cms, conf, crl, ct, server, x509

SQLite3 sqlite3_fuzz
PHP exif, json, parser, unserialize

selected bugs have di�erent bug classes such as integer over�ow,
heap bu�er over�ow, uninitialized memory access, etc.

6.2 Infrastructure and Settings
As described in Section 4, TargetFuzz has a seed collection phase
(i.e., baseline seed corpus generation) that creates a large seed pool
with a variety of fuzzer-generated baseline seeds. To generate the
baseline seeds, we fuzzed the bug-free version3 of each library using
its application driver highlighted in Table 3. We run four instances
of each of the coverage-based fuzzers (i.e., AFL, Angora, MOPT-AFL,
honggfuzz) for each library where each instance uses one core and
has a time limit of 168 hours (7 days). In total, collecting baseline
seeds for 7 application drivers took 18816 CPU hours (168⌘>DAB ⇥
48=BC0=24B ⇥ 45 DII4AB ⇥ 73A8E4AB).

The collected baseline seeds were used to test ground-truth bugs
in Magma. Speci�cally, to test each bug, we� rst applied its cor-
responding patch to the clean library version. Next, AFLGo was
equipped with a patch-speci�c DART corpus to fuzz the patched
library for 24 hours. To evaluate the impact of the quantity and
quality of seeds that comprise DART corpus, we used 0.1BC ,1BC , and
10C⌘ percentiles to output three di�erent DART corpora which we
refer to as DART-0.1BC , DART-1BC , and DART-10C⌘ , respectively. We
used a logarithmic scale to show the impact of percentiles more
explicitly. Due to the probabilistic nature of fuzzing, we run 20
fuzzing instances for each patched library and report the geometric
mean of Time-to-Exposures (TTE). TTE is the total duration from
the beginning of the fuzzing session until the bug is triggered. A
run that did not reproduce the vulnerability within 24 hours re-
ceived a TTE of 24 hours. The dedicated CPU resources for each
fuzzing instance was one CPU core and 1GB of memory. AFLGo
was con�gured with the parameters used in the original paper (-z
exp -c 4h). We used the most recent commit of the AFLGo repo [2]
at the time we started conducting experiments (commit e27a908).
All the experiments were conducted in virtual machines started on
server nodes with Intel® Xeon® Gold 6132 CPUs and Ubuntu 18.04
LTS as the operating system.

We compared DART corpus with two di�erent CGF-based seed
corpora. The� rst corpus is provided by Magma and consists of
generic seeds well-suited for CGF. Speci�cally, Magma sources
these seed from the library repositories, OSS-Fuzz [20] and the AFL
repository [18]. As shown in Table 1, Magma corpus is similar to
the corpus used in the original AFLGo experiments [4]. As part of

3Throughout the paper, we refer to a library version as bug-free if it does not include
any of the ground-truth bugs provided by Magma.

Session 5B: Software Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

568

Table 4: Corpora size.

Library Baseline
Seed #

DART Seed # MINSET
Seed #0.1BC 1BC 10C⌘

libpng 28,048 51 238 2425 172
LibTIFF 127,425 48 315 782 76
Libxml2 1,095,819 1583 9663 99503 496
Poppler 164,806 113 221 944 133
SQLite3 119,323 234 1659 11938 639
OpenSSL 39,949 133 336 1999 187
PHP 21,556 17 167 1668 77

our experiments, we use Magma corpus rather than AFLGo corpus
since Magma corpus is constructed more recently and therefore
contains more up-to-date seeds. Since developers from both OSS-
Fuzz and the tested libraries improve their seed corpora over time,
using an outdated seed corpus (e.g., AFLGo corpus) could bring
unfair performance bene�ts in our experiments.

As shown by a recent work [25], there is no clear superior-
ity of any available CGF-based corpus minimization tools (i.e.,
OPTIMIN, afl-cmin, and MINSET) over the others. We assembled
the seeds in the second corpus by using one of these tools, speci�-
cally MINSET [39], which showed promising results with CGF tools.
To evaluate MINSET, we applied the greedy algorithm (detailed in
Algorithm 2) to the accumulated seed corpus4 in Figure 1 by re-
moving the TSS component. In total, we spent 81600 CPU hours
(24⌘>DAB ⇥ 208=BC0=24B ⇥ 52>A?>A0 ⇥ 341D6B) to compare the ef-
fectiveness of distance-based DART corpora with CGF-based seed
corpora.

6.3 Seed Corpus Size
This section provides the details related to seed corpora sizes. In the
second column of Table 4, we report the baseline number that CGF-
based fuzzers generated by fuzzing bug-free version of each library
in Magma. Additionally, we calculate the corpora sizes of DART
corpus for three di�erent percentile values (column 3-5) and MINSET
corpus (column 6) after applying their corresponding seed selection
algorithms to the baseline seed corpus. As shown in Table 4, the
libraries that we tested with TargetFuzz resulted in di�erent sizes of
baseline seed corpora. This observation is important to demonstrate
that our distance-based seed selection strategy is e�ective not only
for certain sizes of seed pools. In fact, the distance-based seed
selection strategy worked e�ectively for baseline seed corpora with
di�erent scales. As an example, TargetFuzz detected almost all the
ground-truth bugs (3 out of 3 in OpenSSL and 4 out of 5 in Libxml2)
in two libraries which di�er by orders of magnitude in their baseline
seed number (i.e., OpenSSL(⇠40K) and Libxml2 (⇠1M)). As we detail
in Section 6.2, we allocated the same fuzzing time limit for all the
libraries to create each baseline seed corpus. Therefore, there is a
di�erence in the number of collected baseline seed result based on
the di�erent characteristics of libraries.

4It is evident that seeds with high seed distance values are less likely to lead to the
target sites. Therefore, for a more fair comparison, we eliminate any seed with a
distance value higher than the geometric mean of the population from baseline seed
corpus.

Magma MINSET

TargetFuzz

2 1

5

9
5

0

3
9

(a) The quantity of found bugs
for di�erent corpora.

0 2

3

14
1

2

0

0.1st
Percentile

1st
Percentile

10th
Percentile

(b) The impact of percentiles on
bug detection.

Figure 3: Unique bug detection.

Table 4 includes the corpus minimization results for MINSET,
DART-0.1BC , DART-1BC , and DART-10C⌘ corpora. Due to varying
seed distance distributions of di�erent programs (see Section 5), the
same percentile value can result in di�erent DART seed number.
For instance, libpng and PHP libraries have di�erent DART seed
number for the 0.1BC percentile although they have similar baseline
seed number. Other than Libxml2 library, the size of MINSET corpus
is always between the size of DART-0.1BC and the size of DART-1BC .

Additionally, DART-10BC corpus contains at least an order of
magnitude more seeds than MINSET corpus for all the libraries. As
detailed in next sections and shown by prior work [25], the corpus
size by itself is not the ultimate metric to evaluate a seed selection
strategy. Di�erent seed selection strategies can result in di�erent
corpus size and the increase in corpus size does not necessarily
increase the e�ectiveness of a fuzzer as shown by our work and also
by Herrera et. al [25]. However, it still helps us to interpret certain
aspects of our evaluation results, especially when interpreting why
some of the corpora achieve/fail to discover certain bugs.

6.4 Unique Bug Detection
Overall results. As discussed by several works [27, 33], the bug-
�nding capability of a fuzzer should be the ultimate metric for
the evaluation. To this end, we evaluate the bug-�nding capability
of AFLGo when equipped with di�erent types of corpora; DART
corpus, Magma corpus, and MINSET corpus. Speci�cally, we equip
AFLGo with each type of corpora separately, fuzz each buggy pro-
gram version, and check if at least one of the twenty fuzzing sessions
triggers the bug.

Our main goal here is to show that a DGF-based corpus outper-
forms a CGF-based corpus when used with a DGF tool. We present
our results as a Venn diagram in Figure 3a. Unfortunately, AFLGo
could not trigger 9 out of 34 bugs with any of the seed corpora5.
DART corpora (i.e., DART-0.1BC , DART-1BC , and DART-10C⌘) trig-
gered 22 out of 25 remaining bugs in total where we provide the
details of the sensitivity analysis later in this section. Magma and
MINSET-based corpus could trigger 14 and 15 bugs, respectively. In
total, DART corpora discovered 5 unique bugs while Magma and
MINSET-based corpora discovered 2 and 1 unique bugs, respectively.
Overall, our experimental results demonstrate that a seed corpus
created with a CGF-based seed selection strategy (i.e., MINSET) can

5The library and id of each bug are as follows; Libxml2 (AAH035), Poppler (AAH049,
JCH212), SQLite3 (JCH216, JCH223, JCH226, JCH227), and PHP (MAE008, MAE014).

Session 5B: Software Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

569

Table 5: Speedups achieved byMagma, MINSET, and DART corpus.We provide TTE (in seconds) for each bug when tested with
AFLGo using di�erent corpora. A maximum of 86400 sec is assigned to a bug if it is not found within the reserved time (24h).

Library Bug No Magma MINSET DART Speedup
0.1BC 1BC 10C⌘ MINSET 0.1BC 1BC 10C⌘

libpng
AAH001 86400 86400 84804 86079 86400 1.00 1.02 1.00 1.00
AAH007 86400 277 86400 15 69 312.20 1.00 5,760 1,261
AAH008 59910 86400 68168 62491 86400 0.69 0.88 0.96 0.69

LibTIFF

AAH010 86400 79564 86400 86400 86400 1.09 1.00 1.00 1.00
AAH014 37835 10 10 10 10 3,784 3,784 3,784 3,784
AAH017 52326 74227 49053 42116 42116 0.70 1.07 1.24 1.24
AAH020 57084 21533 34219 13799 16170 2.65 1.67 4.14 3.53
AAH022 81682 818 81649 13795 57948 99.89 1.00 5.92 1.41

Libxml2

AAH024 86400 86400 1381 33887 86400 1.00 62.55 2.55 1.00
AAH025 86400 86400 86400 82104 86400 1.00 1.00 1.05 1.00
AAH026 86400 86400 86400 18115 74342 1.00 1.00 4.77 1.16
AAH032 86400 82128 34334 4674 35761 1.05 2.52 18.49 2.42

Poppler

AAH043 86400 84461 51594 51594 71300 1.02 1.67 1.67 1.21
AAH045 86400 86400 86400 86400 85317 1.00 1.00 1.00 1.01
AAH050 86400 86400 647 661 86400 1.00 133.49 130.76 1.00
JCH201 44299 86400 86400 86400 86400 0.51 0.51 0.51 0.51
JCH209 86400 6028 6219 6321 5963 14.33 13.89 13.67 14.49
JCH210 86400 17533 21225 20075 82833 4.93 4.07 4.30 1.04

SQLite3
JCH215 53302 47081 26327 26327 26327 1.13 2.02 2.02 2.02
JCH228 21805 86400 86400 86400 86400 0.25 0.25 0.25 0.25
JCH232 79222 86072 86400 86400 82545 0.92 0.92 0.92 0.96

OpenSSL
AAH055 15721 86400 236 1777 75112 0.18 66.69 8.85 0.21
AAH056 610 95 367 367 1315 6.44 1.67 1.67 0.46
MAE115 80898 8499 86400 86400 26476 9.52 0.94 0.94 3.06

PHP MAE016 800 15 3908 3778 3541 53.33 0.20 0.21 0.23
Geo. mean - 45225 14968 16744 11220 23035 3.02 2.70 4.03 1.96

perform poorly when used with a DGF tool. Moreover, a seed cor-
pus well-suited for CGF (i.e., Magma corpus) can fail to trigger
bugs with a directed greybox fuzzer. By taking the seed distance
metric into account in the seed selection strategy, the bug detection
capability of DGF improves as demonstrated with TargetFuzz.
Sensitivity analysis. As discussed in Section 5, TargetFuzz uses
percentiles to determine the size of DART corpus. By choosing
three di�erent percentile values with di�erent orders of magnitude,
we evaluate how the quality and quantity of seeds in DART corpus
impact the bug-detection capability of a DGF tool. We demonstrate
the impact of the chosen percentile value on the e�ectiveness of
bug detection as a Venn diagram in Figure 3b. Our results demon-
strate that the size of DART corpus clearly a�ects the bug-�nding
capability of DGF. Speci�cally, DART-0.1BC corpus detected least
number of bugs although it is constructed with the closest seeds
to the target sites. In fact, DART-1BC corpus triggered all 16 bugs
that DART-0.1BC corpus triggered and three more bugs that were
not triggered by 0.1BC percentile corpus. The main reason behind
the ine�ectiveness of DART-0.1BC corpus is the limited variety of
seeds compared to DART-1BC and DART-10C⌘ . A clear example is
AAH007 bug where a simple bit-�ip operation of a baseline seed
easily triggers the bug. Since DART-0.1BC does not include this seed
as part of the corpus (i.e., low variety), it failed to trigger this bug

after 24 hours of fuzzing. In fact,� ve out of six bugs, which were
not triggered with DART-0.1BC corpus, were discovered with less
than two hours of fuzzing after a set of mutations on one of the
seeds that resides in either a DART-1BC corpus or a DART-10C⌘ cor-
pus. While DART-1BC and DART-10C⌘ corpora did not show clear
superiority (4 and 3 unique bugs, respectively) over each other in
terms of bug detection capability, they di�er signi�cantly in their
time-to-exposure as detailed in Section 6.5.

6.5 TTE Speedups
We also demonstrate that TargetFuzz helps DGF to reduce the time-
to-exposure of bugs, which is important especially when the project
has limited time for fuzzing. To show the e�ciency of the DART
corpus over the Magma corpus and the MINSET corpus, we report
the TTE of bugs (in seconds) and the speedups in Table 5. When
calculating the speedups, we use the results obtained with Magma
corpus as a baseline since it performed the worst. In summary,
MINSET, DART-0.1BC , DART-1BC , and DART-10C⌘ resulted in 3.02⇥,
2.7⇥, 4.03⇥, 1.96⇥ speedup over Magma corpus, respectively.

Table 5 presents that MINSET corpus (4C⌘ column) outperformed
Magma corpus (3A3 column). Within the� rst 10 hours (36000 sec-
onds) of fuzzing, MINSET corpus triggered several bugs (e.g., AAH007,
AAH014, AAH022) which could not be triggered by Magma corpus.

Session 5B: Software Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

570

Evidently, the e�ciency of MINSET corpus over Magma corpus
mainly comes from the usage of baseline seeds. As an example,
MINSET corpus easily triggered AAH014 after AFLGo applied a sin-
gle bit-�ip on a seed selected from the baseline seed corpus.

The performance bene�t of DART corpus over MINSET corpus
depends on the percentile value that TargetFuzz uses. DART-1BC cor-
pus leads to best results among the three percentile-based corpora
and it outperforms MINSET corpus in bug-�nding speed averaged
for 25 bugs. Compared to MINSET, it discovered several bugs signif-
icantly faster (e.g., AAH032, AAH017, and JCH215) and was able to
discover more bugs within the time limit (e.g., AAH050, and AAH055).
These examples clearly present the bene�t of using distance metric
in the seed selection strategy rather than only relying on code cov-
erage. However, the important observation here is that DART-0.1BC

and DART-10C⌘ are less e�cient than MINSET although the seeds
in those two corpora are also selected using seed distance metric.

The advantage of DART-1BC corpus over DART-0.1BC corpus is
the variety and quantity of seeds. For instance, for some of the
seed distributions, we observe that the distance values in the 1BC
percentile are very close to each other. In this scenario, choosing
0.1BC over 1BC percentile prevents fuzzer from using a high number
of ‘close’ seeds as part of the seed corpus and therefore it is less
likely for the fuzzer to explore new paths with mutations. The
scenarios discussed above for 0.1BC and 1BC percentiles comparison
are valid for 1BC and 10C⌘ percentiles as well. As we demonstrate
in Figure 3b, DART-10C⌘ corpus identi�ed three unique bugs (i.e.,
AAH045, JCH232, MAE115) that could not be triggered by DART-0.1BC
and DART-1BC corpus. While DART-0.1BC and DART-1BC corpus
could not trigger these bugs due to the limited variety of seeds in
their corpora, DART-10C⌘ triggered it by a sequence of mutations
on a seed with a distance value between 1BC and 10C⌘ percentile.

Overall, our experimental results show that there needs to be a
balance between the quantity and the quality of seeds. While a cou-
ple of bugs could be identi�ed by only DART-10C⌘ , the e�ectiveness
of DART-1C⌘ corpus is the highest in terms of bug-�nding capability.
As the number of seeds that construct the seed corpus increases,
a DGF tool allocates less time for each seed. Therefore, the fuzzer
performs a lower number of mutations on each seed (especially
for DART-10C⌘). As an example from Table 4, AFLGo starts with
99500 and 9663 seeds (on average) for Libxml2 library when 10C⌘
and 1BC percentiles are chosen. The 10⇥ di�erence in corpus size
signi�cantly reduces the total time that the fuzzer spends on each
seed including seeds that are likely to lead to the buggy region with
mutations. This increases TTE signi�cantly for several Libxml2
bugs including AAH024, AAH026, AAH032. Similar scenario is valid
for bugs residing in other libraries such as AAH050 from Poppler,
AAH055 from OpenSSL.

6.6 Continuous Fuzzing
In addition to the Magma benchmark, we tested TargetFuzz on
several commit sequences obtained from the real-world project
repositories. The goal of this experiment is to show that TargetFuzz
can successfully be deployed as part of CI systems. For instance,
Google’s OSS-fuzz has a service that builds a project using its source
code at a particular commit and subsequently runs a fuzzing session.
Currently, OSS-fuzz includes only coverage-based fuzzers [15] (a�,

Table 6: Total line coverage percentage achieved by fuzzing
SQLite3, LibTIFF, and libpng over a commit sequence.

Library Commit Line Coverage (%) Total
Line #Magma DART

SQLite3

14c4d42 82.14 100 28
c00727a 0 100 21
bf7f3a0 100 100 10
542812 0 80 10
7cc73b3 0 100 5
be12083 10 100 10

Average - 32.02 96.67 13.16

LibTIFF

4ecf751 0 0 10
de7617a 93 100 15
f0f68dc 66.67 66.67 3
120aa39 0 0 54
86a8232 0 0 2
1c7e305 100 100 2

Average - 43.33 44.44 14.3

libpng

a37d483 0 0 11
3796518 100 100 1
c4bd411 0 100 1
eb67672 0 100 2

Average - 25 75 2.1

honggfuzz, libFuzzer) and provides a corpus minimization tool
tailored for coverage-based fuzzers [19]. TargetFuzz outputs DART
corpus tailored for DGF; therefore, it can be potentially used as part
of OSS-fuzz if a directed greybox fuzzer like AFLGo is actively used
and maintained in the OSS-fuzz infrastructure.

Since there are no available ground-truth for project repositories,
we rely on code coverage. Speci�cally, we use the line coverage as
the metric since the lines of code need to be executed in order to
�nd a bug. The details of our evaluation data set are provided in
Table 6. We used the latest commits from the master branch of three
di�erent libraries SQLite3, LibTIFF, libpng at the time we started
the experiments. The commit numbers are provided in the second
column.We preferred these libraries because of their lower compila-
tion times when generating AFLGo-speci�c binaries. As a reference
point, it takes ⇠6 hours to compile OpenSSL and PHP while it is
around 20 minutes for LibTIFF. The commit numbers are listed from
newest (top) to oldest (bottom) for each library (e.g., 14c4d42 and
be12083 are the newest and the oldest commits for SQLite3, respec-
tively). The time limit is determined for each repository based on
the commit frequency to that repository. Speci�cally, we dedicated
12, 24, and 24 hours to SQLite3, LibTIFF, and libpng libraries, respec-
tively. After fuzzing each commit with a commit-speci�c DART
corpus, we collected the all the seeds that increased coverage in the
fuzzing sessions and combined them with the available accumula-
tor seed corpus as described in Section 4. For this experiment, we
used Magma corpus as a comparison point to DART-1BC corpus. As
described in Section 6.2, Magma corpus contains a subset of seeds
sourced from the actual repositories. Therefore, our evaluation aims
to compare the e�ectiveness of AFLGo when equipped with a seed
corpus sourced from the actual repository and DART corpus.

Session 5B: Software Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

571

The achieved line coverage by Magma and DART corpora are
provided under the third and fourth columns of Table 6, respectively.
The results present the advantage of using DGF-based DART corpus
over a generic CGF-based corpus. For SQLite3 library, DART corpus
achieved 3⇥ more line coverage over Magma corpus (32% and 96%).
For several commits, Magma corpus failed to reach the target code
lines. Similar observations apply to libpng library as well, where
DART corpus achieved 3⇥ more line coverage over Magma corpus
(25% and 75%). The line coverage results for these two libraries
clearly signify the contribution of TargetFuzz when testing a certain
program region under a limited fuzzing time.

The coverage results of DART corpus for LibTIFF do not present a
clear advantage overMagma corpus. However, interestingly, AFLGo
detected two unique bugs (stack over�ow and heap-based bu�er
over�ow) when fuzzing 1c7e305, 120aa39, and 4ecf751 commits
only with DART corpus. We con�rmed that the bugs reside in the
most recent commit of the repository as well. We reported the
stack over�ow bug to the developers and also observed that the
heap-based bu�er over�ow bug was an old bug reported by another
group in the past. Our further analysis showed that none of the bugs
reside in the modi�ed lines of the code by the commits. To realize
why using DART corpus resulted in bug detection while using
Magma corpus failed, we plotted the seed distributions in Figure 4.
Speci�cally, we provide four di�erent seed distribution histograms
that are generated using seeds collected from AFLGo’s fuzzing
sessions (including seeds that form initial seed corpus) for Magma
corpus and DART corpus. Figure 4a and Figure 4c present seed
distributions when we set the modi�ed lines by 4ecf751 commit as
targets. Figure 4b and Figure 4d show seed distributions when the
buggy line that caused the stack over�ow is set as target. In each
�gure, we highlighted seeds generated during fuzzing with red.
The histograms provide several takeaways. First, for both Magma
and DART corpus, the collected seeds are signi�cantly closer to
the crashing line which can be observed from the seed distance
values (e.g., seed distances in Figure 4c and Figure 4d for DART
corpus). Therefore, some of the seeds reached buggy line of the code
during fuzzing with DART corpus and eventually triggered the bug.
Second, when using Magma corpus as an initial seed corpus, AFLGo
generated a variety of seeds to cover certain program regions which
were already covered by some of the seeds in DART corpus. Indeed,
in Figure 4d, we see a subset of seeds generated during fuzzing
session (highlighted with red) accumulating around 800 distance.
While AFLGo spends the limited fuzzing-time to generate seeds
around ⇠800 when equipped with Magma corpus (see Figure 4b),
DART corpus provides seeds with ⇠800 seed distance as part of the
initial seed corpus. Therefore, AFLGo is served with seeds closer to
the buggy line by DART corpus when the fuzzing session starts and
eventually performing a sequence of mutations on one of the seeds
with seed distance value ⇠800 resulted in discovering the bug.

7 DISCUSSION
Seed trimming. Seed trimming approaches such as afl-tmin [50]
and MoonShine [37] attempt to transform a seed into another ver-
sion that is smaller in size yet achieves the same code coverage as
the original seed. Seed trimming is useful since smaller seeds con-
sume less I/O (thus having higher throughput). The seed trimming

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Seed Distance (bin size = 10)

0

1000

2000

3000

4000

co
un

t

(a) Magma (commit change)

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Seed Distance (bin size = 10)

0

1000

2000

3000

4000

co
un

t

(b) Magma (crashing line)

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Seed Distance (bin size = 10)

0

10000

20000

30000

40000

co
un

t

(c) DART (commit change)

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Seed Distance (bin size = 10)

0

2000

4000

6000

8000

co
un

t

(d) DART (crashing line)

Figure 4: The seed distance distributions for Magma and
DART corpus when setting targets as modi�ed lines by
4ecf751f commit and crashing line of bu�er over�ow bug.

approaches are orthogonal to our work and can be readily applied
within TargetFuzz, too. Speci�cally, we can leverage seed trimming
to reduce seed sizes in the baseline seed corpus and DART corpus.
Baseline seed corpus. As the software evolves with new features,
the coverage of baseline seeds can potentially change. When the
baseline seeds do not cover the project well (i.e., the code coverage
decreases), it is necessary to update the baseline seed corpus. The
update frequency of the baseline seed corpus is highly project
dependent since di�erent projects have di�erent characteristics. For
instance, in recent years, the libpng developers submit very limited
number of commits where each commit modi�es a few lines of
code. However, PHP developers are more active (i.e., higher commit
frequency where some of the commits modify a large number of
lines). Mechanisms that determine the update frequency of baseline
seed corpus are useful, yet out of scope of this paper.

8 CONCLUSION
Existing DGF tools use seed corpora mainly designed for CGF. Pro-
viding coverage-based corpora with DGF unnecessarily wastes the
fuzzing e�ort on the unrelated program regions, thereby hindering
the bug-�nding capability. This work presents TargetFuzz, a mech-
anism that outputs a seed corpus tailored for DGF. By using the
seed distances, TargetFuzz provides DART corpus only consisting
of the ‘close’ seeds to the modi�ed code region. When a DGF tool
is equipped with DART corpus, the execution of the DGF tool is
steered towards stressing modi�ed code regions, thereby increasing
the chance of detecting bugs. Experimental results show that DART
corpus improves the bug-�nding capability and the speedup in bug
detection time of DGF compared to CGF-based corpora.

9 ACKNOWLEDGMENTS
This material is based on research sponsored by BU Hariri Research
Incubation Award (#2020-06-005).

Session 5B: Software Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

572

REFERENCES
[1] Humberto Abdelnur, Obes Jorge Lucangeli, and Olivier Festor. 2010. Spectral

Fuzzing: Evaluation & Feedback. Ph.D. Dissertation. INRIA.
[2] a�go. 2017. AFLGO: Directed Greybox Fuzzing. https://github.com/a�go/a�go.
[3] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten Holz. 2020.

Ijon: Exploring deep state spaces via fuzzing. In IEEE S&P. 1597–1612.
[4] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.

2017. Directed greybox fuzzing. In ACM CCS. 2329–2344.
[5] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2017. Coverage-

based greybox fuzzing as markov chain. IEEE TSE 45, 5 (2017), 489–506.
[6] Lutz Bornmann, Loet Leydesdor�, and Rüdiger Mutz. 2013. The use of percentiles

and percentile rank classes in the analysis of bibliometric data: Opportunities
and limits. Journal of informetrics 7, 1 (2013), 158–165.

[7] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,
and Yang Liu. 2018. Hawkeye: Towards a desired directed grey-box fuzzer. In
ACM CCS. 2095–2108.

[8] Peng Chen and Hao Chen. 2018. Angora: E�cient fuzzing by principled search.
In IEEE S&P. 711–725.

[9] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang,
Tao Wei, and Long Lu. 2020. Savior: Towards bug-driven hybrid testing. In IEEE
S&P. 1580–1596.

[10] Nicolas Coppik, Oliver Schwahn, and Neeraj Suri. 2019. Memfuzz: Using memory
accesses to guide fuzzing. In IEEE ICST. 48–58.

[11] Leila Delshadtehrani, Sadullah Canakci, Boyou Zhou, Schuyler Eldridge, Ajay
Joshi, and Manuel Egele. 2020. Phmon: a programmable hardware monitor and
its security use cases. In USENIX Security. 807–824.

[12] Firefox. 2021. Fuzzing. https://�refox-source-docs.mozilla.org/tools/fuzzing.
[13] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and

Zuoning Chen. 2018. Colla�: Path sensitive fuzzing. In IEEE S&P. 679–696.
[14] glennrp. 2018. https://github.com/glennrp/libpng/tree/libpng16/contrib/

testpngs.
[15] Google. 2016. OSS-Fuzz. https://github.com/google/oss-fuzz/.
[16] Google. 2020. AFL dictionaries. https://github.com/google/AFL/tree/master/

dictionaries.
[17] Google. 2020. AFL test cases. https://github.com/google/AFL/tree/master/

testcases.
[18] Google. 2020. American Fuzzy Lop. https://github.com/google/AFL.
[19] Google. 2021. ClusterFuzz. https://google.github.io/clusterfuzz/setting-up-

fuzzing/libfuzzer-and-a�/#a�-limitations.
[20] Google. 2021. Continuous Integration. https://google.github.io/oss-fuzz/getting-

started/continuous-integration/.
[21] Google. 2021. Honggfuzz. https://github.com/google/honggfuzz.
[22] Gustavo Grieco, Martín Ceresa, and Pablo Buiras. 2016. QuickFuzz: An automatic

random fuzzer for common� le formats. SIGPLAN Notices 51, 12 (2016), 13–20.
[23] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma. hexhive.

ep�.ch/magma/docs/bugs.html.
[24] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-

Truth Fuzzing Benchmark. ACM POMACS 4, 3 (2020), 1–29.
[25] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer,

and Antony L Hosking. 2021. Seed selection for successful fuzzing. In ACM
SIGSOFT ISSTA. 230–243.

[26] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with code
fragments. In USENIX Security. 445–458.

[27] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating fuzz testing. In ACM SIGSAC CCS. 2123–2138.

[28] Gwangmu Lee, Woochul Shim, and Byoungyoung Lee. 2021. Constraint-guided
Directed Greybox Fuzzing. In USENIX Security.

[29] Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-Han Lee, Yueyao Chen,
Chenyang Lyu, ChunmingWu, Raheem Beyah, and Peng Cheng. 2021. Unifuzz: A
holistic and pragmatic metrics-driven platform for evaluating fuzzers. In USENIX
Security.

[30] Hongliang Liang, Yini Zhang, Yue Yu, Zhuosi Xie, and Lin Jiang. 2019. Sequence
coverage directed greybox fuzzing. In IEEE/ACM ICPC. 249–259.

[31] LLVM. 2021. libFuzzer. https://llvm.org/docs/LibFuzzer.html#corpus.
[32] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and

Raheem Beyah. 2019. MOPT: Optimized mutation scheduling for fuzzers. In
USENIX Security. 1949–1966.

[33] Valentin Jean Marie Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha,
Manuel Egele, Edward J Schwartz, and Maverick Woo. 2019. The art, science,
and engineering of fuzzing: A survey. IEEE TSE (2019).

[34] K Paul Nesselroade Jr and Laurence G Grimm. 2018. Statistical applications for
the behavioral and social sciences. John Wiley & Sons.

[35] Manh-Dung Nguyen, Sébastien Bardin, Richard Bonichon, Roland Groz, and
Matthieu Lemerre. 2020. Binary-level directed fuzzing for use-after-free vulnera-
bilities. In RAID. 47–62.

[36] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giu�rida. 2020.
Parmesan: Sanitizer-guided greybox fuzzing. In USENIX Security. 2289–2306.

[37] Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. Moonshine: Optimizing
OS fuzzer seed selection with trace distillation. In USENIX Security. 729–743.

[38] Jiaqi Peng, Feng Li, Bingchang Liu, Lili Xu, Binghong Liu, Kai Chen, and Wei
Huo. 2019. 1dvul: Discovering 1-day vulnerabilities through binary patches. In
IEEE/IFIP DSN. 605–616.

[39] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing seed selection
for fuzzing. In USENIX Security. 861–875.

[40] sqlite. 2021. SQLite Source Repository. https://github.com/sqlite/sqlite/tree/
master/test.

[41] Spandan Veggalam, Sanjay Rawat, Istvan Haller, and Herbert Bos. 2016. Ifuzzer:
An evolutionary interpreter fuzzer using genetic programming. In ESORICS.
581–601.

[42] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu, Shengchao
Qin, Hongxu Chen, and Yulei Sui. 2020. Typestate-guided fuzzer for discovering
use-after-free vulnerabilities. In ACM/IEEE ICSE. 999–1010.

[43] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Sky�re: Data-driven
seed generation for fuzzing. In IEEE S&P. 579–594.

[44] YanhaoWang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Ti�any Bao, DinghaoWu, and
Purui Su. 2020. Not all coverage measurements are equal: Fuzzing by coverage
accounting for input prioritization. NDSS.

[45] Cheng Wen, Haijun Wang, Yuekang Li, Shengchao Qin, Yang Liu, Zhiwu Xu,
Hongxu Chen, Xiaofei Xie, Geguang Pu, and Ting Liu. 2020. Memlock: Memory
usage guided fuzzing. In ACM/IEEE ICSE. 765–777.

[46] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017. Designing
new operating primitives to improve fuzzing performance. In ACM SIGSAC CCS.

[47] Dingning Yang, Yuqing Zhang, and Qixu Liu. 2012. Blendfuzz: A model-based
framework for fuzz testing programs with grammatical inputs. In IEEE TrustCom.
1070–1076.

[48] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu, and Xu Zhou. 2020.
Ecofuzz: Adaptive energy-saving greybox fuzzing as a variant of the adversarial
multi-armed bandit. In USENIX Security. 2307–2324.

[49] Michal Zalewski. 2017. a�-cmin. https://github.com/mirrorer/a�/blob/master/a�-
cmin.

[50] Michal Zalewski. 2020. a�-tmin. https://github.com/google/AFL/blob/master/a�-
tmin.c.

[51] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang, and Kai
Chen. 2020. Fuzzguard: Filtering out unreachable inputs in directed grey-box
fuzzing through deep learning. In USENIX Security. 2255–2269.

Session 5B: Software Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

573

