
Hit ’em Where it Hurts:
A Live Security Exercise on Cyber Situational Awareness

Adam Doupé, Manuel Egele, Benjamin Caillat, Gianluca Stringhini,
Gorkem Yakin, Ali Zand, Ludovico Cavedon, and Giovanni Vigna

University of California, Santa Barbara
{adoupe, maeg, benjamin, gianluca, gyakin, zand, cavedon, vigna}@cs.ucsb.edu

ABSTRACT
Live security exercises are a powerful educational tool to
motivate students to excel and foster research and develop-
ment of novel security solutions. Our insight is to design
a live security exercise to provide interesting datasets in a
specific area of security research. In this paper we validated
this insight, and we present the design of a novel kind of live
security competition centered on the concept of Cyber Situ-
ational Awareness. The competition was carried out in De-
cember 2010, and involved 72 teams (900 students) spread
across 16 countries, making it the largest educational live
security exercise ever performed. We present both the inno-
vative design of this competition and the novel dataset we
collected. In addition, we define Cyber Situational Aware-
ness metrics to characterize the toxicity and effectiveness of
the attacks performed by the participants with respect to
the missions carried out by the targets of the attack.

1. INTRODUCTION
In recent years, security attacks have become increasingly

wide-spread and sophisticated. These attacks are made pos-
sible by vulnerable software, poorly configured systems, and
a lack of security awareness and education of end users.
While a large portion of the security research efforts are

focused on developing novel mechanisms and policies to de-
tect, block, and/or prevent security attacks, there is also
the need for the development of novel approaches to edu-
cate those who create the computer infrastructure, as well
as those who use it everyday.
This is an often-overlooked aspect of computer security,

but a critical one. Almost all sophisticated, widely deployed,
securitymechanisms can bemade useless by luring an unsus-
pecting user (or a developer) into performing actions that,
eventually, will compromise the security of their environ-
ment. A clear example of the popularity of these attacks
is the proliferation of fake anti-virus scams, in which users
who are not technically savvy are conned into installing a
Trojan application [17].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’11 Dec. 5-9, 2011, Orlando, Florida USA
Copyright 2011 ACM 978-1-4503-0672-0/11/12 ...$10.00.

Security education can be performed at different levels to
reach different segments, from everyday Internet users, to
high school students, to undergraduate and graduate stu-
dents. Recently, competition-based educational tools have
become popular in graduate and undergraduate education,
as competition among students fosters creativity, innovation,
and the desire to excel.
Previous work has described traditional “capture the flag

competitions” [19, 20], and, more recently, new designs for
this type of competition [2]. The development of new de-
signs improved the competition and forced the participants
to analyze and understand unfamiliar, complex sets of inter-
dependent components, similar to those that are part of real-
life networks and malware infrastructures.

Our novel insight is that these competitions, can, in addi-
tion to their educational value, provide interesting datasets
that can be used in research. To validate this idea we de-
signed and developed a novel security competition based on
the concept of Cyber Situational Awareness (described in
Section 2). The competition is called the iCTF (interna-
tional Capture the Flag) and was carried out on December
3rd, 2010, involving 72 teams and 900 students, making it
the largest live educational security exercise ever performed.
This paper presents the design of the competition, the

data that was collected, and the lessons learned. The data
is the first publicly available dataset that explicitly supports
research in Cyber Situational Awareness.
In summary, this paper adds the following contributions:

• We describe the design and implementation of a novel
computer security competition, whose goal is to not
just foster computer security education, but to create
a Cyber Situational Awareness dataset.

• We analyze the collected dataset and discuss its use
in Cyber Situational Awareness research, introducing
a novel metric that characterizes the effectiveness of
attacks with respect to a specific mission.

• We discuss the lessons learned from the competition,
and we provide suggestions to other educators that
might implement similar competitions.

2. BACKGROUND AND HISTORY
In this section, we provide background on two of the most

important aspects of this paper: the design and execution of
live security competitions, and the concepts associated with
Cyber Situational Awareness.

2.1 Live Security Competitions
Security challenges have been a way to attract the in-

terest of security researchers, practitioners, and students.
Live security challenges add a real-time factor that supports
deeper involvement and introduces the “crisis factor” associ-
ated with many real-life security problems: “something bad
is happening right now and has to be taken care of.”
There have been a number of live security challenges,

but the best-known competition is DefCon’s Capture The
Flag (CTF). This competition started with a simple design,
where a host with vulnerable services was made available to
the participants, who would attack the target concurrently.
Whoever was able to break a service and steal the flag first,
obtained the points associated with that service. The origi-
nal design was changed in 2002. In this edition of DefCon’s
CTF, the participating teams received an identical copy of
a virtualized system containing a number of vulnerable ser-
vices. Each team ran their virtual machine on a virtual
private network (VPN), with the goal of maintaining the
service’s availability and integrity whilst concurrently com-
promising the other teams’ services. Since each team had
exactly the same copy of the services, the participants had
to analyze the services, find the vulnerabilities, patch their
own copies, and break into the other teams’ services and
steal the associated flags. Every other DefCon CTF follow-
ing 2002 used more or less the same design [4].

Even though DefCon’s CTF was designed to test the skills
of hackers and security professionals, it was clear that the
same type of competition could be used as an educational
tool. One of the major differences between the iCTF and
DefCon’s CTF is that the iCTF involves educational insti-
tutions spread out across the world, where the DefCon CTF
allows only locally-connected teams. Therefore, DefCon re-
quires the physical co-location of the contestants thus con-
straining participation to a limited number of teams. By
providing remote access, the iCTF allows dozens of remotely
located teams to compete.

The iCTF editions from 2003 to 2007 were similar to
the DefCon CTF: the participants had to protect and at-
tack a virtualized system containing vulnerable services [20].
In 2008 and 2009, two new designs were introduced: in
2008, the competition was designed as a “treasure hunt,”
where the participants had to sequentially break into a se-
ries of hosts; in 2009, the competition focused on drive-by-
download attacks, and the targets were a large pool of vul-
nerable browsers [2]. The iCTF inspired other educational
hacking competitions, e.g., CIPHER [12] and RuCTF [18].
Recently, a different type of competition has received a

significant amount of attention. In the Pwn2Own hacking
challenge [13] participants try to compromise the security
of various up-to-date computer devices such as laptops and
smart phones. Whoever successfully compromises a device,
wins the device itself as a prize. This competition is solely
focused on attack, does not have an educational focus, and
does not allow any real interaction amongst the participants
who attack a single target in parallel.
Another interesting competition is the Cyber Defense Ex-

ercise (CDX) [1,10,14], in which a number ofmilitary schools
compete in protecting their networks from external attack-
ers. This competition differs from the UCSB iCTF in a
number of ways. First, the competition’s sole focus is on
defense. Second, the competition is scored in person by hu-
man evaluators who observe the activity of the participants,

and score them according to their ability to react to attacks.
This evaluation method is subjective and requires a human
judge for each team thus rendering it impractical in a large-
scale on-line security competition.
The 2010 iCTF differed from the 2009 iCTF [2] in the

following way: we realized that a live security exercise could
be structured to create a dataset to enable security research.
We utilized this idea in the 2010 iCTF by creating a Cyber
Situational Awareness security competition that would gen-
erate a useful Cyber Situational Awareness dataset.

2.2 Cyber Situational Awareness
Cyber Situational Awareness (CSA) is an extension of

traditional Situational Awareness (SA) to computer net-
works. The idea behind SA is that by analyzing the sur-
rounding environment and putting perceived events into the
context of the current mission, it is possible to improve
decision-making. In the cyber-world, the concept of Situa-
tional Awareness includes the concept of mission awareness,
which is the analysis of network events with respect to the
mission being carried out by a particular organization.

One of the most important ideas behind CSA is that not
all attacks have the same impact. The relevance of an attack
is determined by the importance of the target with respect
to a specific mission and a specific moment in time. For
example, an attack against an FTP server could be harmless
if the server is not a necessary component for the currently
executing mission(s) in the next, say, eight hours, because
within that time frame the server could be fixed/cleaned
and it could be available when needed. Instead, consider
an attack against a VoIP router when a strategic meeting
must use that particular piece of infrastructure. The attack
will directly impact the mission being carried out, and might
impose delays or cause the mission to fail.
There are several challenges in CSA. First of all, it is dif-

ficult to correctly model missions. In many cases, organi-
zations and companies are not even aware of their cyber-
missions. Usually, identifying cyber-missions is easier in en-
vironments where repetitive tasks are performed cyclically.
For example, banks have well-defined missions with tasks
that must be carried out in specific sequences (e.g., closing
balances, reconcile balance sheets) and must be performed
within a certain time limit (e.g., midnight of the current
day). Another example is military systems, where cycles
of observation/analysis/operation phases are carefully fol-
lowed, with precise time frames and clear dependencies.

In all these cases, one must choose a particular format
to precisely describe a mission. A simple solution is to use
Gantt charts [3], which clearly represent the duration and
dependency of different tasks. For the cyber-missions de-
scribed in this paper, we used Missionary, a Petri net [11]
based formalism we created which extends the basic Petri
net model with timing and code fragments associated with
transitions and states. In this formalism, the tasks are rep-
resented by the states of the Petri net. A token in a state
characterizes an active instance of the task. A task termi-
nates when a token is removed from the corresponding state
as a side-effect of the firing of a transition. Analogously, a
task starts when a token is created in a state as the side-
effect of the firing of a transition. Peterson [11] has a detailed
description of Petri nets and their extensions.
Another challenge in CSA is to represent the dependency

between cyber-missions and both the human actors and as-

sets involved in the missions [5]. For the sake of simplicity
we do not address the former. For the latter, we used Mis-
sionary’s service composition formalism, which allows the
association of different types of service compositions to a
task in a mission. In a nutshell, the formalism allowed us
to specify services that were associated with a state in the
Petri net, thus creating an association between a mission
task and the services necessary to carry out the task.

3. 2010 iCTF
The iCTF competition was held on December 3rd, 2010,

and lasted from 09:00 until 17:00, PST.

3.1 Pre-competition setup
Registration for the iCTF competition began a month be-

fore the start date. Attempting to alleviate the VPN connec-
tion problems that can occur on the day of the competition,
we distributed a VMware [21] image along with VPN con-
nection instructions to each team 11 days before the compe-
tition. The VMware image was meant as an example of the
type of VMware image that would be used for the competi-
tion. We took particular care in making sure that the teams
solved their connectivity problems well in advance, so that
they could focus on the competition.

3.2 Story
The theme of the iCTF competition was “Mission aware-

ness in state-sponsored cyberwar.” The following text was
given to the teams the day before the competition:

The country of Litya has become a major center
for illegal activities of all kinds. The country is
ruled by the ruthless dictator Lisvoy Bironulesk,
who has pioneered the use of large malware in-
frastructures in order to support Litya’s econ-
omy. Recently, he has claimed that Litya has “a
botnet in every country.”

His complete disregard for international laws,
his support of banking fraud and phishing scams,
together with his well-known taste for underage
girls has finally brought the attention of the in-
ternational community into his shady dealings.

Enough is enough. Now, the affected nations
have decided to strike back. Spies who infiltrated
Litya’s corrupt administration have leaked plans
of the most critical missions carried out in the
country. These plans appear to describe the vari-
ous activities of each mission, their ordering and
timing, and their dependency on particular ser-
vices.

In this scenario, each team represented a country with the
common goal of dismantling Litya’s infrastructure, thus end-
ing Bironulesk’s reign. In addition to this text, the teams
were given a number of images that described the various
“missions”carried out by Litya. One of themissions is shown
in Figure 1.

3.3 Competition Description
At a high level, the competition was designed to force the

teams to exploit services at specific times, when they are
most needed by Litya, thus emulating a Cyber Situational
Awareness scenario. The teams had to access the services,

first by bribing Litya’s administrators, then by keeping their
VMware image connected to a “mothership.” If the teams
generated an intrusion detection system alert, they were
blocked from the network for a fixed amount of time.

3.3.1 Scoring
There were two types of scores: money and points. The

team with the highest points won the competition, thus
points were more important than money. Points were ac-
quired by exploiting services at the correct time. However,
if a team did not have any money, they would be shut off
from the network and not be able to score any points. In
addition to starting the competition with 1000 in money and
zero points, each team earned money by solving challenges.

3.3.2 Firewall and IDS
A substantial innovation introduced in the iCTF was cre-

ating an intrusion prevention system (IPS) by connecting the
Snort [16] intrusion detection system to the firewall. If Snort
detected an intrusion attempt (alert) from a team on traf-
fic directed towards Litya’s services, the offending team was
shut off from the network for ten minutes. The team would
either have to wait until connectivity was allowed again or
spend money bribing Litya’s network administrators to gain
access to the network for a certain amount of time. The
teams had full knowledge of the Snort version and configu-
ration, thus, they could predict if their traffic would generate
an alert. Connecting Snort to the firewall forced the teams
to come up with novel ways to circumvent an IDS.

3.3.3 Botnet
Bribing Litya’s network administrators for access opened

up the network for a limited amount of time (proportional to
the amount of money used to bribe). To remain connected
to the network, the teams needed to run a bot, which we
provided 2 hours before the competition. This bot would
connect to a mothership every 30 seconds and while the bot
was connected to the mothership it would drain money from
the team at a rate of 6 money per minute. As long as the bot
remained connected to the mothership, the team hadmoney,
and the team didn’t generate any Snort alerts, they could
access the services. The two means of connecting to the
network (bot connection or bribing) forced teams to make
strategic decisions about when to connect, when to attack,
how to attack, and when to bribe (spend money). These
strategic decisions added another dimension to the iCTF
competition: Teams had to decide the proper allocation of
money (bot connection or bribing) to maximize their access
to the network and thus maximize points.

Like a real-world bot, these machines were “compromised”
and had 3vilSh3ll [15], a backdoor bind connect, running on
port 8000. This allowed anyone to connect on port 8000,
supply the password: hacked, and obtain a root shell. The
idea was to encourage teams to be careful about their fire-
wall, and force them to defensively select what traffic they
allowed into their network.

3.3.4 Challenges
To gain money to bribe the Litya network administrators,

as well as allow the mothership to steal money and remain
connected to the network, teams needed to solve challenges.
We created 33 challenges to provide multiple ways to earn
money, but also to offer opportunities to test and improve

Figure 1: CARGODSTR mission that was distributed to the
teams.

different skills, from cryptanalysis to forensics, program and
network analysis.

3.3.5 Scoreboard
In a capture the flag competition, a scoreboard showcas-

ing the current status and ranking of each team is vital.
For the iCTF competition, we also needed to show the con-
nection status of each team; if they were connected to the
network, and why they were disconnected: Either from an
IDS alert, lack of a bot connection, or lack of money. The
scoreboard also showed the history of each team’s money
and points. The scoreboard is a very important piece of
the infrastructure, because it provides immediate feedback
to the teams about the success (or failure) of their attacks.
Unfortunately, we had some glitches in our scoreboard that
we will discuss in Section 5.

3.3.6 Missions
The day before the competition each team received an

email containing a link to four pictures. Each picture con-
tained a description of a Cyber Situational Awareness mis-
sion, in the form of a hand-drawn Petri net. Figure 1 shows
one of these missions, the CARGODSTR mission. In the
Petri net, all of the transitions were named (although not
unique across the missions and even within some missions),
as were most of the states. Some of the states were as-
sociated with one or more of the 10 services (S0-S9). For
example, the “Receive” state in the lower right of Figure 1 is
associated with services S7 and S9. The four Petri net mis-
sions given to the teams are graphically shown in Figure 2.
A service that we ran executed the Petri nets by inserting

a token in each of the “Start” states, and running each Petri
net separately. At each time-step, for each of the missions,
one of the eligible transitions (a transition where all inputs
had tokens) was randomly chosen to fire. Then, the token
was consumed on all the inputs to the chosen transitions,
and a token was placed on all the outputs. The four chosen
transitions (one from each mission) were leaked to the teams
after each time-step. Then, after each mission was executed,
the service suspended for a random amount of time between
one and two minutes, and the process repeated until the
end of the competition. If a token was in an “End” state, or

Service Vulnerability
LityaBook Cross-Site Scripting
LityaHot Session Fixation
icbmd Foam Rocket Firing
StormLog Off-By-One Overflow
StolenCC Perl’s open abuse
SecureJava Broken Crypto
IdreamOfJeannie Java JNI Off-By-One Error
WeirdTCP TCP IP Spoofing
MostWanted SQL-Injection
OvertCovert Format String

Table 1: Brief description of vulnerable services.

the network became stuck (no eligible transitions) then the
network was reset.
For example, running the CARGODSTR mission, Fig-

ure 1 and Figure 2a, would involve first placing a token in
its “Start” position. As T1 is the only eligible transition to
fire, it is chosen, and this information is leaked to the teams.
The token moves from “Start” to “Ship.” Because services
S8 and S3 are associated with the “Ship” state, and it has a
token, they are active. After a pause of one to two minutes,
the next time-step occurs. Once again, there is only one
eligible transition, T2. It is chosen, and the token on “Ship”
moves to “Validate Cargo.” Now, services S8 and S3 are no
longer active, but service S1 becomes active. After another
pause, the process repeats, but with two eligible transitions,
T4 and T5. One of these is randomly chosen, say T5, and the
token moves. This process repeats until the end of the com-
petition. A visualization of the execution of all four missions
throughout the iCTF competition is available1.

From this example of the execution of the CARGODSTR
mission, the teams received the sequence: T1 T2 T5. With
only this information, they had to reverse engineer the state
of the mission to find out which services were active. The
teams would then attack only the active services. In the
CARGODSTR mission, this is simple because the transi-
tions are unique, however this is not the case for all the
missions, as shown in the SEDAFER mission (Figure 2d).

3.3.7 Flags
A flag was a sequence of hexadecimal values prefixed with

FLG and was specific to a service. Flags were not directly
accessible: a service must be compromised to access the as-
sociated flag. Therefore, flags are used by the participants
as proof that, at a certain time, they were able to compro-
mise a specific service. On each step of the service that
executed the Petri nets, a new flag specific to each service
was distributed to the corresponding service. Each flag con-
tained (cryptographically) the service that it belonged to,
the state of the service (active or not), and a timestamp sig-
nifying when the flag was created. Thus, when a flag was
submitted by a team, the flag submission service had all the
necessary information to determine the flag’s validity (flags
were valid for 5 minutes).

3.3.8 Vulnerable Services
There were 10 services in the iCTF, each service could be

exploited only once per Petri net execution round; exploiting
a service when it was not active resulted in an equal amount
of negative points. Thus, to win the competition it was
essential to understand and follow the missions. Table 1

1http://ictf.cs.ucsb.edu/data/ictf2010/final.gif

(a) CARGODSTR

(b) COMSAT

(c) DRIVEBY

(d) SEDAFER

Figure 2: Graphical representation of the missions given to the teams. The teams were actually given formats similar to
Figure 1. Not shown here are the associations of the services to states in the Perti nets.

briefly summarizes the services. We direct the interested
reader to Appendix A for an extended description of the
services.

4. DATA ANALYSIS
In addition to being an excellent learning exercise for the

teams involved, a security competition, if properly designed,
can be a great source of data that is difficult to obtain in
other contexts. In the iCTF competition, we created a game
scenario to generate a Cyber Situational Awareness dataset.
Traffic collected during a security competition can be eas-

ier to analyze than real-world traffic, because there is more
information about the network and participants in the com-
petition. For example, all teams are identified, the vul-
nerable services are known, and there is no “noise traffic.”
Of course, a dataset collected in such controlled conditions
also suffers from a lack of realism and is limited in scope.
Nonetheless, the data collected during this competition is
the first publicly available dataset that allows researchers to
correlate attacks with the missions being carried out.
The iCTF competition generated 37 gigabytes of network

traffic and complete information about services broken, chal-
lenges solved, flags submitted, bribes paid, IDS alerts, and
bot connections. This data is made freely available2.
As this is the first Cyber Situational Awareness dataset,

many possibilities exist for its use in Situational Awareness
research. One example would be using the dataset to train
a host-based CSA intrusion detection system that could use
more restrictive rules for a rule-based system (or tighter
thresholds in an anomaly-based system) when a service is
critical to a mission. One can also think of extending a
host-based IDS to a network CSA intrusion detection sys-
tem that understands not only the criticality of the services,
but also their dependencies and relationships. Another ex-
ample is the visualization of a network’s activity with CSA
in mind that helps a system administrator know which ser-
vices are currently critical and which will become critical
soon, helping them defend their network.
The firewall, bribing, bot, and money/points system can

be viewed in a game theory light. The teams had to decide
on the best way to allocate a scarce resource (money) to ac-
cess the network and potentially win the game. The teams
could perform any combination of bot connection and/or
bribing to access the network. Further research could in-
vestigate how the choice of resource allocation affected each
team’s final result.

4.1 Description of Results
One problem with designing and implementing a novel

competition is that teams may not understand the rules.
This was a concern during the design of the iCTF competi-
tion. We worried that the novel aspects of the competition,
especially the Petri net mission model, would be too com-
plex for the teams to understand. However, when the first
flags were submitted at 13:29, and subsequently when teams
started submitting flags only for active services, it became
apparent that many teams understood the competition.

Of the 72 teams, 39 submitted a flag, with 872 flags sub-
mitted in total. 48% may seem like a low number, however
this means that almost half the teams broke at least one

2http://ictf.cs.ucsb.edu/data/ictf2010/

Service Total Active Inact. % Inact. Teams Flags/Team

MostWanted 680 562 118 17 38 17.895
OvertCovert 97 82 15 15 6 16.167
IdreamOf. 49 37 12 24 6 8.167
WeirdTCP 24 23 1 4 2 12
LityaBook 16 12 4 25 3 5.333
icbmd 5 3 2 40 1 5
StolenCC 1 0 1 100 1 1

Table 2: Flags submitted per service.

service. Many of the 39 teams submitted multiple flags, in-
dicating that they understood the Petri net mission model.

At 17:00, “Plaid Parliament of Pwning”(PPP) of Carnegie
Mellon University, took first place with 24,000 points. PPP
submitted a total of 93 flags, with only 3 inactive flags
(thus generating negative points), by compromising Idream-
OfJeannie, MostWanted, and OvertCovert. Because PPP
was able to compromise three services as well as understand
the Petri net model (as evidenced by the submission of only
three negative flags), they won first place.
Overall the teams exploited 7 of the 10 services: icbmd,

IdreamOfJeannie, LityaBook, MostWanted, OvertCovert,
StolenCC, and WeirdTCP. We believe this is because we
underestimated the difficulty of the other 3 services. Secure-
Java and StormLog required a complex, multi-step process
that proved too difficult for the teams to exploit. The teams
also had trouble understanding the steps involved to exploit
the session fixation vulnerability in LityaHot.
Table 2 describes the number of flags submitted for each

service. The“Total” column is the total number of flags sub-
mitted for the service, “Active” and “Inact.” are the number
of flags that were submitted when a service was active or
inactive. “% Inact.” is the percent of flag submissions when
the service was inactive. “Teams”shows the number of teams
that submitted flags for the service and“Flags/Team” shows
the average number of flags submitted per team.
MostWanted was the most exploited service, with 680 to-

tal flags submitted, followed by OvertCovert, with 97 flags
submitted. It is clear that we did not estimate the difficulty
of the services correctly, and, as evidenced by the number of
teams that broke it, MostWanted was the easiest. Because
the teams did not know the difficulty of the services, some
luck is involved when teams decide which service to analyze
first.
When we decided to create a complex competition, we

knew that not every team would have the skills, experience,
and luck to exploit a service and understand the Petri net
mission model. However, we included 33 challenges in the
competition of varying levels of difficulty and needing vari-
ous skills to solve. We knew from past experience that even if
a team couldn’t exploit a service or understand the Petri net
model of the missions, they would at least learn from (and
enjoy) solving challenges. In fact, 69 out of 72 teams solved
at least one challenge. Thus, even if a team was unable to
exploit a service, they solved a challenge and hopefully had
fun or learned something while competing in the iCTF.

4.2 Network Analysis
A benefit of designing a security competition is the ability

to create an environment that allows for the testing of mod-
els and theories. By focusing the iCTF on Cyber Situational
Awareness, we were able to create and evaluate Situational
Awarenessmetrics. Thesemetrics are applicable tomany as-

pects of CSA. We introduce toxicity and effectiveness, which
are explained in the rest of this section.
First, we define three functions: C(s, t), A(a, s, t), and

D(s, t), each with a range of [0, 1]. Every function is specific
to a service, s, and A(a, s, t) represents an attacker, a.

C(s, t) represents how critical a service, s, is with respect
to time for a specific mission or set of missions. A value of
1 means that the service is very critical, while 0 means that
the service is not critical.
A(a, s, t) represents an attacker’s, a, activity with respect

to a service, s, throughout time. The value of the function is
the perceived risk to the mission associated with the service.
In most cases, the function has a value of 1 when an attack
occurs and a value of 0 when there is no malicious activity.
However, other, more complex models could be used (e.g.,
the type of attack could be taken into account).
D(s, t) represents the damage to any attacker for attempt-

ing an attack on a service, s, at a given time, t. This func-
tion models the fact that every time an attack is carried
out, there is a risk to the attacker, e.g., an intrusion detec-
tion system might discover the attack, the person using the
targeted machine/service might notice unusual activity, etc.
We wish to define a metric, called toxicity, that captures

how much damage an attacker has caused to a service over
a time frame. Intuitively, it is the total amount of havoc the
attacker has caused to the mission (or missions) associated
with a service. Toxicity is calculated by first subtracting the
damage to an attacker, D(s, t), from the criticality of the
service, C(s, t). The resulting function, with a range of [-1,
1], describes at each point in time how much any attacker
can profit by attacking at that moment. A negative value
indicates that the attacker should not attack at that time.
The previously calculated function is general and has no

bearing on a particular attacker. To calculate the damage
caused by a specific attacker over time, we take the pre-
viously calculated function, C(s, t) − D(s, t), and multiply
it by A(a, s, t). The resulting function, with a range of [-
1, 1], shows how much damage a specific attacker caused
to a given service. To calculate toxicity from this function,
for a given time interval, t1 to t2, we take the integral of
A(a, s, t) ∗ (C(s, t) − D(s, t)) with respect to time. Equa-
tion (1) shows the calculation of the toxicity metric.
Toxicity is a measure for how much damage an attacker

has caused to a given service, and can compare two attackers
against the same service to see who did the most damage,
however, it is specific to one service, and thus is useless as
a comparison between a single attacker attacking multiple
services or two attackers attacking different services. We
propose effectiveness as a measure of how close an attacker
is to causing the maximum toxicity possible. Intuitively, it is
the ratio of the toxicity caused by an attacker to the toxicity
an optimal attacker would cause. We define an optimal at-
tacker as an attacker who attacks whenever C(s, t) - D(s, t)
is positive, and this is shown in Equation (2). By substi-
tuting the optimal attacker in Equation (1) for A(a, s, t),
we obtain the formula for maximum toxicity, given in Equa-
tion (3). Taking the ratio of toxicity to maximum toxicity
gives effectiveness, shown in Equation (4).
Toxicity, effectiveness, and C(s, t), A(a, s, t), and D(s, t)

can be used in future Cyber Situational Awareness research.
By using the ideas presented here, an IDS could predict the
behavior of an optimal attacker. Other tools could enable
a network defender to perform “what-if” scenarios, seeing

what would happen by increasing the damage to an attacker
(e.g., by getting a new IDS), versus decreasing the criticality
of the service (e.g., by getting a new server to perform the
same function).

Toxicity(a, s, t1, t2) =∫ t2

t1

A(a, s, t) ∗ (C(s, t)−D(s, t)) dt (1)

OptimalAttacker(s, t) ={
1 if C(s, t)−D(s, t) > 0
0 otherwise

(2)

MaxToxicity(s, t1, t2) =∫ t2

t1

OptimalAttacker(s, t) ∗ (C(s, t)−D(s, t)) dt (3)

Effectiveness(a, s, t1 , t2) =

Toxicity(a, s, t1, t2)

MaxToxicity(s, t1, t2)
(4)

The definitions of toxicity and effectiveness are general
and apply to any arbitrary functions C(s, t), A(a, s, t), and
D(s, t). However, we constructed the iCTF competition so
that we could measure and observe these functions and en-
sure they are valid metrics. We expected the higher ranked
teams to show high toxicity and effectiveness for the services
they broke.
The criticality, C(s, t), of each service was defined in the

following way: the function takes the value 1 when the ser-
vice is active, and 0 when the service is inactive. Figure 3
shows the criticality graph for the most exploited service:
MostWanted. When the function has a value of 1, one of
the missions is in a state associated with the MostWanted
service, otherwise the function has a value of 0. Note that
for these and all the rest of the graphs of the competition,
the X-axis is time, and starts at 13:30 PST, when the first
flag was submitted, and ends at 17:00 PST, which was the
end of the competition.
In our analysis, we define the damage to the attacker,

D(s, t), as the complement of the criticality graph, because
if an attacker attacked a service when it was not active, they
would get an equal amount of negative points. The damage
graph alternates between 0 and 1, becoming 1 when the crit-
icality is 0 and 0 when the criticality is 1. In our analysis, the
criticality and damage functions are related as a byproduct
of our design; however our definitions of toxicity and effec-
tiveness do not depend on this; criticality and damage can
be arbitrary and independent functions.
In order to calculate the toxicity of Plaid Parliament of

Pwning against the various services, we must first calculate
A(a, s, t) ∗ (C(s, t) −D(s, t)) (note that this function has a
range of [-1, 1]. Negative values in this context denote flags
submitted when a service was inactive). This is shown in
Figure 4 for the service MostWanted, and Figure 5 for the
service OvertCovert. As can be seen in Figure 4, PPP did
not attack at the incorrect time for the MostWanted ser-
vice, but submitted several incorrect flags for OvertCovert,
as evidenced by the negative values in Figure 5.
Toxicity is calculated by taking the integral of this func-

tion between 13:30 and 17:00 PST. However, since the time
in-between each flag change is a random value between 60
and 120 seconds, and a team is able to exploit the service
only once per flag change, we simplified the time between

0

1

13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00

Time During Competition

Figure 3: C(s, t) of the service MostWanted.

-1

0

1

13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00

Time During Competition

Figure 4: A(a, s, t) ∗ (C(s, t)−D(s, t)) of team PPP against the service MostWanted.

flags as 1, which returned a round number for the toxicity
metric. In the general case, however, the amount of time
a service is critical is very important for calculating toxic-
ity and should not be oversimplified. Because the criticality
of our services changed at discrete intervals, we are able to
make this simplification without adversely affecting our re-
sults.
Table 3 shows the toxicity and effectiveness of the top

5 teams for each of the services that were successfully ex-
ploited. The results are as we expected; many of the most
effective teams placed high in the final rankings. The first
place team, PPP, team #113, was not only the most ef-
fective for three different services: IdreamOfJeannie, Most-
Wanted, and OvertCovert, but, also, with 65% effective-
ness on MostWanted, had the highest effectiveness of any
team. PPP’s dominance is apparent because they did not
just break three services, but they were also highly effective.
The second place team, 0ld Eur0pe (team #129), was the
second most effective at IdreamOfJeannie and third most
effective at MostWanted.

5. LESSONS LEARNED
For this edition of the iCTF competition, we tried to cap-

italize on our previous experience by learning from mistakes
of years past. However, we may hope to the contrary, we
are still human: we made some mistakes and learned new
lessons. We present them here so that future similar com-
petitions can take advantage of what worked and avoid re-
peating the same mistakes.

5.1 What Worked
The pre-competition setup worked extremely well. Having

the teams connect to the VPN and host their own VMware
bot image was helpful in reducing the support burden on the
day of the competition, where the time is extremely limited.

In the past, having a complex competition frustratedmany
teams and caused them to spend a substantial amount of
time trying to figure out the competition instead of actually
competing. To combat this, we released details about the
structure of the game, the Petri net models of the missions,
and the Snort configuration in advance. We hoped that this
would give teams the opportunity to come to the compe-
tition well-prepared. Another advantage in giving advance
notice is that it rewards teams who put in extra time outside
of the eight hours of the competition. This is important, as
the larger part of the education process is actually associated
with the preparation phase, when students need to become
familiar with different technologies and brainstorm possible
attack/defense scenarios.
Another positive feedback we received through informal

communication was that the theme of the competition was
clear and consistent. The iCTF competition has always had
a well-defined background story, which supports understand-
ing and provides hints on how to solve specific challenges.
People explicitly appreciated the effort put into creating a
consistent competition environment and complained about
competitions that are simply a bundle of vulnerable services
to exploit.
From the comments of the players, it was clear that a

substantial amount of effort was put into preparing and de-
veloping the right tools for the competition. This is one of
the most positive side-effects of the participation in this kind
of live exercises. Having to deal with unknown, unforeseen
threats forces the teams to come up with general, config-
urable security tools that can be easily repurposed once the
focus of the competition is disclosed. The continuous change
in the iCTF design prevents the “overfitting” of such tools
to specific competition schemes.

In general, through the past three years we found that
radical changes in the competition’s design helped leveling
the playing field. Although the winning teams in the 2008,

-1

0

1

13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00

Time During Competition

Figure 5: A(a, s, t) ∗ (C(s, t)−D(s, t)) of team PPP against the service OvertCovert.

Service Team Toxicity Effectiveness Service Team Toxicity Effectiveness
icbmd 126 3 0.03896 MostWanted 113 42 0.65625
icbmd 124 1 0.01298 MostWanted 114 40 0.625
IdreamOfJeannie 113 14 0.23728 MostWanted 129 36 0.5625
IdreamOfJeannie 129 12 0.20338 MostWanted 105 34 0.53125
IdreamOfJeannie 123 10 0.16949 MostWanted 152 30 0.46875
IdreamOfJeannie 111 2 0.03389 OvertCovert 113 36 0.48648
IdreamOfJeannie 128 -6 -0.10169 OvertCovert 131 16 0.21621
LityaBook 149 8 0.11428 OvertCovert 123 10 0.13513
LityaBook 166 5 0.07142 OvertCovert 117 9 0.12162
LityaBook 150 -1 -0.01428 OvertCovert 127 2 0.02702
LityaBook 137 -2 -0.02857 WeirdTCP 156 13 0.23214
StolenCC 123 1 0.02040 WeirdTCP 105 6 0.10714
StolenCC 105 1 0.02040
StolenCC 152 0 0.0

Table 3: Top 5 most effective teams per service.

2009, and 2010 editions were still experienced groups, teams
of first-time competitors placed quite high in the ranking.
This was possible because we intentionally did not disclose
in advance to the teams the nature of these new competi-
tions. Many “veteran” teams expected a standard CTF and
were surprised to learn that this was not the case. Of course,
it is hard to keep surprising teams, as designing new compe-
titions requires a substantial amount of work. However, it
is arguable that this type of competition is inherently easier
for novice teams to participate in.
Finally, the competition generated a unique, useful dataset

that can be used to evaluate cyber situation awareness ap-
proaches. This aspect of security competitions cannot be
overemphasized, as a well-designed data-capturing frame-
work can provide a wealth of useful data to security re-
searchers.

5.2 What Did Not Work
LityaLeaks, the part of the infrastructure used to dis-

tribute the fired transitions of the Petri nets, as well as
various hints and clues about services and challenges, was
an integral part of our design (and the name fit in nicely
with the theme). However, using a base MediaWiki [9] in-
stallation on a virtual machine with 256 MB of RAM was
a mistake. As soon as the competition started, LityaLeaks
was brought to a crawl due to the amount of traffic created
by the teams.

Having LityaLeaks down was very problematic, because if
teams couldn’t see which transitions were firing then they
couldn’t submit flags. Eventually, a static mirror of Litya-
Leaks was brought up. Because of this, we had to change the
Petri net software on the fly to update a publicly accessible
file with the transition firings instead of using LityaLeaks.

Once the change was made, at 13:30 PST, teams started
submitting flags, and the rest of the competition went fairly
smoothly.
As the scoreboard is the only way for teams to under-

stand the current state of the game, making the scoreboard
accurately reflect the status of the competition was essen-
tial. However, each piece of the competition’s infrastructure
was developed and tested independently. Knowing that get-
ting the firewall, mothership, and Snort systems working
properly was very important, those parts of the functional-
ity were heavily tested in isolation. However, the interaction
of these systems with the scoreboard was not tested before
the competition. Thus, during the competition we discov-
ered that the reasons given to teams for being blocked on
the scoreboard were not correct, and in some instances the
connection status of some teams were incorrect. Due to one
of the developers being ill, it took us most of the competition
to completely resolve this issue. While we were fixing the
issue, we communicated to teams that to test their network
connectivity, they could simply try connecting to one of the
services. In the future, we will be testing our infrastructure
as a whole, including important pieces like the scoreboard.
One issue with creating a complex and novel competition

is that some teams might not “get” the competition. This
can be on a number of levels, perhaps the team has never
heard of Petri nets or could not exploit any of the services.
This puts them at an extreme disadvantage in the rankings,
as they cannot score any points. This was the case for 33
teams. However, for the 39 teams that submitted flags, a
novel competition challenged them to create new solutions
and tools, learning in the process. Ultimately, it is up to the
competition administrators to balance novelty, complexity,
and fairness.

5.3 What Worked?
Putting a backdoor into the bot VM that we distributed

to the teams was something that we implemented five hours
before the distribution of the VM. Something that we saw
as funny turned out to have serious implications. One team
came to us and said that they had an exploit to reduce ev-
ery team’s money to zero, effectively removing everyone else
from the competition. Using the backdoor, they could bribe
the Litya administrators as the team’s bot, thus draining all
of the team’s money. We asked them not to do this, as it was
unsporting to completely shut off most team’s access to the
services, and fixed this avenue of attack. We also alerted the
teams to the existence of a backdoor on their VMs. Later in
the competition, a team came to us complaining that their
points kept decreasing. Looking into it, a team was exploit-
ing a service, and submitting all the inactive flags (worth
negative points) through another team’s compromised bot.
The team that this happened to came in last place (with
-3300 points).
The backdoor provided some interesting (and funny) sit-

uations, however it came at a price. The last place team
felt that this was an unsporting thing to do and were rightly
upset over their last-place standing. We ruled that, since
we had given notice about the backdoor, and given the ex-
tremely easy fix (filter the traffic from other teams), the out-
come was acceptable. However, this situation did highlight
an issue that these kind of “easter eggs” can produce: while
itmay be exciting and interesting for the teams who discover
them, the more inexperienced teams who are not looking for
them and/or can’t find them are put at a disadvantage. This
just increases the gap between the experienced and inexpe-
rienced.

6. CONCLUSIONS
Live cyber-security exercises are a powerful educational

tool. The main drawback of these exercises is that they
require substantial resources to be designed, implemented,
and executed. It is therefore desirable that these exercises
provide long-lasting byproducts for others to use for secu-
rity research. In this paper, we presented a unique, novel
design for a live educational cyber-security exercise. This
design was implemented and a competition involving almost
a thousand world-wide students was carried out in December
2010. We discussed the lessons learned, and we presented
the dataset we collected, which we believe is the first public
dataset focused on Cyber Situational Awareness. We hope
that this dataset will be useful to other researchers in this
increasingly popular field and that future security exercises
will yield interesting datasets.

7. REFERENCES
[1] T. Augustine and R. Dodge. Cyber Defense Exercise:

Meeting Learning Objectives thru Competition. In
Proceedings of the Colloquium for Information
Systems Security Education (CISSE), 2006.

[2] N. Childers, B. Boe, L. Cavallaro, L. Cavedon,
M. Cova, M. Egele, and G. Vigna. Organizing Large
Scale Hacking Competitions. In Proceedings of the
Conference on Detection of Intrusions and Malware
and Vulnerability Assessment (DIMVA), Bonn,
Germany, July 2010.

[3] W. Clark. The Gantt chart: A working tool of
management. New York: Ronald Press, 1922.

[4] C. Cowan, S. Arnold, S. Beattie, C. Wright, and
J. Viega. Defcon Capture the Flag: defending
vulnerable code from intense attack. In Proceedings of
the DARPA Information Survivability Conference and
Exposition, April 2003.

[5] A. D’Amico, L. Buchanan, J. Goodall, and
P. Walczak. Mission Impact of Cyber Events:
Scenarios and Ontology to Express the Relationships
between Cyber Assets, Missions and Users. In
Proceedings of the International Conference on
Information Warfare and Security, Dayton, Ohio,
April 2010.

[6] D. R. Hipp. Sqlite. http://www.sqlite.org/, 2010.

[7] Justin.tv. http://justin.tv/.

[8] S. Liang. Java Native Interface: Programmer’s Guide
and Reference. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1st edition, 1999.

[9] Mediawiki. http://www.mediawiki.org/.

[10] B. Mullins, T. Lacey, R.Mills, J. Trechter, and
S. Bass. How the Cyber Defense Exercise Shaped an
Information-Assurance Curriculum. IEEE Security &
Privacy, 5(5), 2007.

[11] J. Peterson. Petri Nets. ACM Computing Surveys,
9(3), September 1977.

[12] L. Pimenidis. Cipher: capture the flag.
http://www.cipher-ctf.org/, 2008.

[13] Pwn2own 2009 at cansecwest. http://dvlabs.
tippingpoint.com/blog/2009/02/25/pwn2own-2009,
March 2009.

[14] W. Schepens, D. Ragsdale, and J. Surdu. The Cyber
Defense Exercise: An Evaluation of the Effectiveness
of Information Assurance Education. Black Hat
Federal, 2003.

[15] Simpp. 3vilsh3ll.c. http://packetstormsecurity.
org/files/view/64687/3vilSh3ll.c.

[16] Snort. http://www.snort.org/.

[17] B. Stone-Gross, R. Abman, R. Kemmerer, C. Kruegel,
D. Steigerwald, and G. Vigna. The Underground
Economy of Fake Antivirus Software.

[18] The HackerDom Group. The ructf challenge.
http://www.ructf.org, 2009.

[19] G. Vigna. Teaching Hands-On Network Security:
Testbeds and Live Exercises. Journal of Information
Warfare, 3(2):8–25, 2003.

[20] G. Vigna. Teaching Network Security Through Live
Exercises. In C. Irvine and H. Armstrong, editors,
Proceedings of the Third Annual World Conference on
Information Security Education (WISE 3), pages
3–18, Monterey, CA, June 2003. Kluwer Academic
Publishers.

[21] VMware. http://www.vmware.com/.

APPENDIX
A. VULNERABLE SERVICES

A brief description of the 10 services in the iCTF and the
vulnerabilities associated with it follows.
LityaBook was a social networking website, similar to Face-
book. By creating an underage girl profile, the attacker
would cause President Bironulesk to visit their profile. They
could then use a Cross-Site Scripting attack to steal Presi-
dent Bironulesk’s browser’s cookie, which contained the flag.
LityaBook also had a session fixation vulnerability. The

authentication cookie contained the MD5 of the session ID.
Therefore, an attacker could lure a victim to log in with
a specific session ID, allowing an attacker to impersonate
the victim. This vulnerability could have been exploited by
using another website, LityaHot.
LityaHot was a website where young models posted links
to their pictures, waiting for casting agents to contact them.
Periodically, a member of President Bironulesk’s staff, Fem-
ily Edeo, visited this site, clicking on links people had posted.
If the link was a LityaBook page, he logged in to check the
pictures. Thus an attacker could post a link on LityaHot,
leveraging the session fixation vulnerability to log into Litya-
Book as Edeo and obtain the flag.
icbmd was the first iCTF service with perceptible effects on
the real world. A USB foam rocket launcher was connected
to a control program, pointing in the direction of a phys-
ical target. A time-sharing mechanism was used to share
the missile launcher amongst the teams. Each team had a
visual clue of where the launcher was aiming, via a web-
cam mounted on the missile launcher with a live streamed
video to the Justin.tv on-line video streaming service [7].
The team currently controlling the missile launcher could
exclusively connect to the control and move the launcher’s
turret. An encoded version of the launch code was leaked to
the teams. After deciphering the code, the teams were able
to launch a missile. Once a team successfully hit the target,
the flag was sent to them.
StormLog was a web application that displayed log files
generated by a fake botnet called “Storm.” This service had
a directory traversal vulnerability which allowed an attacker
to download a copy of the cgi-bin program. An attacker had
to exploit an off-by-one overflow in the cgi-bin program to
execute arbitrary code and obtain the flag.
StolenCC was a web service that displayed text files con-
taining credit card numbers. The cgi-bin program was writ-
ten in Perl and contained a directory traversal vulnerability.
By inserting a null character into the filename parameter,
an attacker could bypass the program’s sanity checking and
open any file. Then, an attacker could use additional func-
tionality of Perl’s open to execute any command, finding and
displaying the flag.
SecureJava was a web service that used a Java applet to
perform authentication. An attacker needed to get past the
authentication to find the flag. This involved reverse en-
gineering the encryption algorithm. Once understood, the
attacker leveraged a flaw in the encryption algorithm to steal
the flag.
IdreamOfJeannie was a Java service that collected credit
card information. Even though the bulk of the service was
written in Java, JNI [8] was used to include a function writ-
ten in C, which contained an off-by-one error. The attacker
could utilize the off-by-one error to obtain the flag.

WeirdTCP was a C service that acted as a file server with
a trust relationship with a specific IP address. A blind
TCP spoofing attack against the service pretending to be
the trusted IP address was required to find the key. How-
ever, due to the VPN technology we were using, packets
could not be spoofed. A custom IP protocol RFC was given
to the teams, which introduced an IP option that could be
used to overwrite the source address of an IP packet. Thus
an attacker had to use the IP option to spoof the trusted
IP address, and, in addition, perform a sequence number
guessing attack, in order to provide the correct acknowledg-
ment number during the TCP handshake. Once the TCP
connection was established, the attacker received the flag.
MostWanted was a Python service with a SQLite [6] back-
end. The service hosted mugshots of various wanted “crimi-
nals,” and allowed a user to create or view mugshots. Most-
Wanted had a stored SQL-injection vulnerability, which an
attacker had to exploit to access the flag.
OvertCovert was a C-based service that allowed a user
to store and access encrypted data. An attacker had to
first exploit a printf vulnerability (which disallowed %n) to
extract the encryption key. Then, an off-by-one error was
used to access the encrypted flag. Using the key previously
obtained, the attacker could decrypt the flag and exploit the
service.

