
Hardware Performance Counters Can Detect Malware:
Myth or Fact?

Boyou Zhou, Anmol Gupta, Rasoul Jahanshahi, Manuel Egele, Ajay Joshi
{bobzhou,anmol.gupta1005,rasoulj,megele,joshi}@bu.edu

Eletrical and Computer Engineering Department, Boston University

ABSTRACT

The ever-increasing prevalence of malware has led to the explo-

rations of various detection mechanisms. Several recent works

propose to use Hardware Performance Counters (HPCs) values

with machine learning classiication models for malware detection.

HPCs are hardware units that record low-level micro-architectural

behavior, such as cache hits/misses, branch (mis)prediction, and

load/store operations. However, this information does not reliably

capture the nature of the application, i.e. whether it is benign or

malicious. In this paper, we claim and experimentally support that

using the micro-architectural level information obtained fromHPCs

cannot distinguish between benignware and malware. We eval-

uate the idelity of malware detection using HPCs. We perform

quantitative analysis using Principal Component Analysis (PCA) to

systematically select micro-architectural events that have the most

predictive powers. We then run 1,924 programs, 962 benignware

and 962 malware, on our experimental setups. We achieve 83.39%,

84.84%, 83.59%, 75.01%, 78.75%, and 14.32% F1-score (a metric of

detection rates) of Decision Tree (DT), Random Forest (RF), K Near-

est Neighbors (KNN), Adaboost, Neural Net (NN), and Naive Bayes,

respectively. We cross-validate our models 1,000 times to show

the distributions of detection rates in various models. Our cross-

validation analysis shows that many of the experiments produce

low F1-scores. The F1-score of models in DT, RF, KNN, Adaboost,

NN, and Naive Bayes is 80.22%, 81.29%, 80.22%, 70.32%, 35.66%,

and 9.903%, respectively. To further highlight the incapability of

malware detection using HPCs, we show that one benignware

(Notepad++) infused with malware (ransomware) cannot be de-

tected by HPC-based malware detection.

KEYWORDS

Malware Detection, Hardware Performance Counters, Machine

Learning

ACM Reference Format:

Boyou Zhou, Anmol Gupta, Rasoul Jahanshahi, Manuel Egele, Ajay Joshi.

2018. Hardware Performance Counters Can Detect Malware: Myth or Fact?.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’18, June 4ś8, 2018, Incheon, Republic of Korea

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5576-6/18/06. . . $15.00
https://doi.org/10.1145/3196494.3196515

In ASIA CCS ’18: 2018 ACM Asia Conference on Computer and Communica-

tions Security, June 4ś8, 2018, Incheon, Republic of Korea. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3196494.3196515

1 INTRODUCTION

Distinguishing between malicious and benign software has re-

mained one of the biggest challenges facing computer security

over recent decades. As signature-based anti-virus scanners are

easily thwarted by polymorphic malware, most commercial and

academic anti-malware solutions rely on behavioral analysis. Be-

havioral analysis monitors programs as they execute, collects infor-

mation on the process, and, upon a violation of a behavioral proile,

classiies the program as malware. To this end, software-based

behavioral analysis can draw from a wealth of semantically rich

information sources, such as ile names, registry keys, or network

endpoints, which characterize the program’s behavior. As software-

level behavioral analysis performs malware detection at the cost of

performance overhead, recent research proposes to reduce this per-

formance overhead by leveraging Hardware Performance Counters

(HPCs) to classify programs as benignware or malware.

HPCs are hardware units that count the occurrences of micro-

architectural events such as instruction counts, hits/misses in vari-

ous cache levels and branch (mis)predictions during runtime. Mod-

ern processors can capturemore than 100micro-architectural events,

but a design-imposed strict limit of 4 (on Intel [1]) and 6 (on

AMD [2]) counter registers dictates that HPCs can only monitor a

small subset of these events at one time.

Under these constraints, previous works [3ś6] leverage the mea-

sured HPC values to classify an unknown program as either be-

nign or malicious. To this end, measured HPC values are sampled

at a ixed frequency and the resulting data is aggregated into a

time-series. Previous works record data of labeled programs in

time-series, and use the HPC values in time-series to train various

supervised machine learning models. The measured HPC values

yield classiiers that can subsequently distinguish unknown pro-

grams as either benign or malicious.

The underlying assumption for previous HPC-based malware

detectors is that malicious behavior afects measured HPC values

diferently than benign behavior. However, it is questionable, and in

fact counter-intuitive, why the semantically high-level distinction

between benign and malicious behavior would manifest itself in

the micro-architectural events that are measured by HPCs. As a

concrete example, consider that malware as well as benignware

make use of the cryptographic APIs. While ransomware might ma-

liciously encrypt the user data, the user might rely on encryption

to safeguard privacy and data conidentiality. In both cases, ran-

somware and benignware, the program performs cryptographic

operations. One cannot discriminate between malicious and benign

https://doi.org/10.1145/3196494.3196515
https://doi.org/10.1145/3196494.3196515

usage based on the measured HPC values. The semantic difer-

ence of whether the encryption was performed maliciously or not,

exclusively depends on who holds the decryption keys, i.e., the

attacker or the user. There is no indication that any HPC event

would correlate with the ownership of the keys.

Given the substantial semantic diference between the high-level

malicious behavior and the low-level micro-architectural events, it

is expected from previous works that assert the utility of HPCs for

malware detection to provide a rigorous analysis, interpretation,

and justiication of why the extracted features from measured HPC

values identify the maliciousness of programs. This includes, for

example, an analysis of the events found to be the most predictive of

malicious behavior and a discussion of why these features capture

behavioral information at all. Unfortunately, existing works elide

any such discussions, and instead commit the logical fallacy of łcum

hoc ergo propter hocž1 Ð or concluding causation from correlation.

Moreover, the correlations and resulting detection capabilities re-

ported by previous works frequently result from small sample sets

and experimental setups that put the detection mechanism at an

unrealistic advantage.

To shine a light on the feasibility of using HPCs for detecting

malicious behavior, we survey the existing literature in this ield,

and identify common traits that exhibit impractical setups and mis-

interpretation of data analysis. Subsequently, we design, implement,

and evaluate an experimental setup that allows us to reproduce

previous works in this area, and compare these previous results

with results obtained under more realistic scenarios.

In this work, we build an experimental setup close to the user

environment, and evaluate idelity of machine learning models.

We run all experiments in a bare-metal environment instead of

relying on virtualization techniques. This choice is motivated by

two observations. First, our experiments indicate that measured

HPC values collected for the same program running inside a virtual

machine substantially difer from those collected on a bare metal

system (comparisons in ğ2). Second, regular users likely execute

programs directly on their systems outside of virtual machines.

Further contributing to the realism of our experiments is the se-

lection of training data for the machine learning models. Previous

works [3, 5, 6] test their machine learning models using measured

HPC values from the same programs used during training (In ğ4.3,

we refer to this approach as TTA1). In a real-world deployment,

this scenario would relect a situation where all programs (benign

and malicious) are known and labeled for training. In such situa-

tions, machine learning is unnecessary, as each program could be

perfectly identiied based on its hash. As Anti-Virus (AV) vendors

report thousands of new malware samples every day, this scenario

is highly unlikely to ever occur in reality. Thus, we test our mod-

els with measured HPC values from programs that have not been

observed during training. This relects a realistic scenario where,

during training machine learning models, malware samples from

the same category or family are available, but not the exact same

malware that a user may encounter.

We train 6 diferent machine learning classiiers and compare

the results obtained with both realistic and unrealistic approaches.

Unsurprisingly, we observe that classiiers trained in the realistic

1łwith this, therefore because of thisž

scenario perform worse than those trained in an unrealistic sce-

nario. To rigorously evaluate the performance of our classiiers,

we perform 1,000 iterations of 10-fold cross-validations and con-

sistently observe False Discovery Rate2 of larger than 20%. Such

high False Discovery Rates would disqualify HPC-based malware

detectors from real-world deployments, as it would lag 264 pro-

grams in a default Windows 7 installation as malicious. Finally, we

illustrate how fragile the resulting classiiers are by simply com-

posing a benign program (Notepad++) with malicious functionality

(ransomware). This straight-forward composition evades all our

classiiers, even when they are trained with the benign and mali-

cious components individually. In summary, this work makes the

following contributions:

• We identify the prevalent unrealistic assumptions and the

insuicient analysis used in prior works that leverage HPCs

for malware detection (ğ2).

• We perform thorough experiments with a program count

that exceeds prior works [3, 5ś8] by a factor of 2× ∼ 3×,

and the number of experiments in cross-validations that is 3

orders of magnitude more than previous works.

• We train and test dataset similar to what prior works have

done, as well as, in a realistic setting where testing programs

are not in the training programs. We compare the efects of

this choice on the quality of the machine learning models

(ğ 5).

• Finally, to facilitate reproducibility, and enable future re-

searchers to easily compare their experiments with ours,

we make all code, data, and results of our project publicly

available under an open-source license: https://github.com/

bu-icsg/Hardware_Performance_Counters_Can_Detect_Malware_

Myth_or_Fact

2 RELATED WORK AND MOTIVATION

Malware detection is the process of detecting malicious programs,

for example, viruses. Many previous works commonly utilize sub-

semantic features inmalware detection [3, 5ś11]. Ozsoy et al. deined

the term sub-semantic features as łmicro-architectural information

about an executing program that does not require modeling or

detecting program semanticsž [9]. All these previous works have

several drawbacks to various extent. We categorize the drawbacks

that we observed into the following classes.
I Dynamic Binary Instrumentation (DBI)

II Virtual Machines (VMs)

III Division of Data By Traces (TTA1 in ğ 4.3)

IV No Cross-Validations or Insuicient Validations

V Few Data Samples
Besides HPCs, sub-semantic features can be extracted with dy-

namic binary instrumentation (DBI) tools such as Intel’s Pin [4, 12],

QEMU [13], Valgrind [14], or DynamoRIO [15]. Khasawneh et al.

use Pin to monitor the instructions executed on virtual machines

in their experimental setup [9ś11]. Though DBI can extract sub-

semantic features that are not available from HPCs, DBI introduces

a substantial amount of performance overhead and is thus not

suited to run in an always-on, online protection setting, which is

2F+/(F+ +T+), where F+ is number of benignware classiied as malware and T+ is
number of malware classiied as malware

https://github.com/bu-icsg/Hardware_Performance_Counters_Can_Detect_Malware_Myth_or_Fact
https://github.com/bu-icsg/Hardware_Performance_Counters_Can_Detect_Malware_Myth_or_Fact
https://github.com/bu-icsg/Hardware_Performance_Counters_Can_Detect_Malware_Myth_or_Fact

T
o
o
l
C
h
o
ic
e

E
x
p
er
im

en
ta
l

Se
tu
p
s

E
v
en
t
C
h
o
ic
e

D
at
a

D
iv
is
io
n

C
ro
ss

V
al
id
at
io
n

M
ac
h
in
e

L
ea
rn
in
g

M
o
d
el
s

#
o
f
P
ro
g
ra
m
s

O
p
en
so
u
rc
e

P
ap
er

D
ra
w
b
a
ck

I:
D
B
I
(P
in

o
r
Q
E
M
U
)

D
ra
w
b
a
ck

II
:V

ir
tu
al
M
ac
h
in
e

B
ar
e-
m
et
al
M
ac
h
in
e

Q
u
an
ta
ti
v
e
Se
le
ct
io
n
o
f
E
v
en
ts

D
ra
w
b
a
ck

II
I:
D
at
a
D
iv
id
ed

B
y
T
ra
ce
s
(T
T
A
1
in

ğ
4.
3)

D
at
a
D
iv
id
ed

B
y
Sa
m
p
le
s
(T
T
A
2
in

ğ
4.
3)

D
ra
w
b
a
ck

IV
:N

o
C
ro
ss
-v
al
id
at
io
n

D
ra
w
b
a
ck

IV
:6
0
−
20
−
20
%
D
at
a
D
iv
is
io
n

10
-f
o
ld

C
ro
ss
-v
al
id
at
io
n

1,
00
0
10
-f
o
ld

C
ro
ss
-v
al
id
at
io
n
s

D
T

R
F

K
N
N

N
N

E
n
se
m
b
le
M
o
d
el
(a
co
ll
ec
ti
o
n
o
f
m
o
d
el
s)

D
ra
w
b
a
ck

V
:F
ew

er
th
an

1,
00
0
p
ro
g
ra
m
s

R
el
ea
se

o
f
D
at
a
an
d
C
o
d
es

to
P
u
b
li
c

N
u
m
b
er

o
f
D
ra
w
b
ac
k
s

[3] ⋄ ⋄ • ⋄ • ⋄ • ⋄ ⋄ ⋄ • • • • ⋄ • ⋄ 3

[5] ⋄ ⋄ • ⋄ • • ⋄ ⋄ • ⋄ • • • ⋄ ⋄ • ⋄ 2

[6] ⋄ • ⋄ • • ⋄ • ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ • ⋄ 4

[7] ⋄ • ⋄ • ⋄ • • ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ • ⋄ 3

[8] ⋄ • ⋄ • • ⋄ ⋄ • ⋄ ⋄ • ⋄ ⋄ ⋄ ⋄ • ⋄ 4

[9] • • ⋄ ⋄ ⋄ • ⋄ • ⋄ ⋄ ⋄ ⋄ ⋄ • ⋄ ⋄ ⋄ 2

[10] • • ⋄ ⋄ ⋄ • ⋄ • ⋄ ⋄ ⋄ • ⋄ ⋄ • ⋄ ⋄ 3

[11] • • ⋄ ⋄ ⋄ • ⋄ • ⋄ ⋄ ⋄ • ⋄ ⋄ • ⋄ ⋄ 3

⋆ ⋄ ⋄ • • • • ⋄ ⋄ ⋄ • • • • • • ⋄ • -

Table 1: Comparison between various previous works: Rows are var-

ious works in HPC-based malware detection and columns are de-

sign choices. The alternative shaded and white background repre-

sents diferent categories of tool/setup/model in malware detection

using HPCs. Red texts highlight drawbacks, and black texts express

the suggested tool/setup/model from this work. Solid dots (•) in-

dicate the use of that tool/setup/model (column) by the reference

(row), and hollow dimonds (⋄) indicate the non-use of that tool/se-

tup/model by the reference. Star (⋆) is our work. Our work avoids

the drawbacks discussed in the table, and quantitatively analyzes

how these drawbacks lead to the conclusion that HPCs can reliably

detect hardware.

the default use-case for current anti-malware suites. We denote the

drawbacks of DBI as Drawback I in Table 1.

While DBI is not feasible in online detection systems, other

methods in sampling HPCs can incur inaccurate measurements. A

plethora of previous works run the evaluated programs on VMs [3,

8ś11]. While VMs provide signiicant beneits to analyze unknown

programs (e.g., strong isolation guarantees), HPCs are limited and

shared resource between the host and all VMs. Thus, virtualizing

HPCs is a challenge in itself [16]. We conducted an experiment and

found out that none of the micro-architectural events that HPCs

monitor results in identical measurements in the VM and the host

machine. In our experiments, we measured HPC values of the SPEC

Benchmark Suite[17] 10 times both on a bare-metal machine (Intel

i7-6700 CPU with 8Gb RAM, Ubuntu 16.04 Linux, and VMWare

Workstation version 14.0.0 as the hypervisor), and subsequently in

a VM hosted on the same machine. We used 2 programs bzip and

hmmer from the SPEC Benchmark Suite as examples to show the

diference in measured HPC values from VM and bare-metal. We

used the perf [18] utility to sample HPC values at a maximum rate

of 100Hz in each case. We downsampled the measured HPC values

0.0 0.2 0.4 0.6 0.8 1.0

Correlation Values

0

25

50

75

100

P
er
ce
n
ti
le

o
f
E
ve
n
ts

[%
]

hmmer

bzip

Figure 1: Correlation values between measured HPC values from

VM and bare-metal machine versus percentile of events. The plot

shows that none of the micro-architectural events has a correlation

value of 100% in hmmer and bzip.

from VM experiments to match the length of the sequence with

the measure HPC values from bare-metal experiments. We aver-

aged the measured HPC values to increase Signal-to-Noise Ratio

(SNR=mean/variation). We excluded the measured HPC values with

only zero values in both VM and bare-metal environment. Figure 1

shows the Cumulative Distribution Function (CDF) of correlation

values versus percentiles of events. The correlation values here re-

fer to the Pearson’s Correlation between the measured HPC values

gathered in VM and bare-metal environment. We observe that none

of the events has a correlation of 100% . No events have identical

HPC values, in fact, most of the events have low correlations. Thus,

the measured HPC values obtained in VM are substantially diferent

from HPC values obtained from the bare-metal environment that

real-life users have. To make matters worse, an evasive malware

can detect whether it is running in a VM and ceases to exhibit

malicious behavior (Kirat et al. [19]). These observations motivate

our experimental setup (ğ3) to run all experiments on bare-metal

systems. We label the use of VM in the experimental setups as

Drawback II in Table 1.

Due to inaccurate HPCmeasurements [20], previous works [3, 5ś

7] choose to maximize the measuring granularity by using HPCs

without time-multiplexing. Recall that as modern CPUs only have

6 (AMD) or 4 (Intel) registers for HPCs, malware detection meth-

ods must select the events from more than 100 available micro-

architectural events (130 in AMD Bulldozer and 196 in Intel Sky-

lake). Previous works [3, 5, 9ś11] have not provided a numerical

analysis on how micro-architectural events are selected. In our

experiments, we perform a Principal Component Analysis (PCA)

based approach to select the micro-architectural events. After the

selection of events, we use HPCs to track these events, and trans-

form the measured HPC values to examples in machine learning

models, i.e. feature extraction. We divide examples into training and

testing datasets for machine learning models (training-and-testing

split). Previous works [3, 5, 6, 8] have training-and-testing split

based on the examples (TTA1 in ğ 4.3) that the testing dataset can

have the same examples produced by programs in training dataset.

However, in real-life, it is unlikely that the oline training dataset

can include all the malware that a user might encounter. We mark

the use of data division based on examples as Drawback III in

Table 1.

In this work, we evaluate our model with 1,000 repetitions of 10-

fold cross-validations. The cross-validation examines the machine

learning models with diferent input training-and-testing exam-

ples, which prevent machine learning models from overitting3. We

observe that there is no cross-validation in some of the previous

works [3, 6, 7], while other works [8ś11] present insuicient cross-

validation, i.e. not every example in the dataset is validated. None of

these works report standard deviations of detection rates with cross-

validations. Without a substantial amount of cross-validation, we

cannot assert the reproducibility of detection rates, since a model

can have its high detection rates with speciic training and testing

datasets. We refer to no cross-validation or insuicient validations

as Drawback IV in Table 1.

The prevalence of the above-mentioned drawbacks motivates

us to perform rigorous, quantitative, and reproducible analytics

for HPC-based malware detection in Table 1. In order to perform

a fair comparison with works in Table 1, we use the following

machine learning models all used in previous works: Decision Tree

(DT), Random Forest (RF), K Nearest Neighbors (KNN), Neural Nets

(NN), Naive Bayes and AdaBoost. DT, RF, and KNN are designed to

identify outliers, which it the application of malware detection [21].

NN, NB, and AdaBoost (ensemble machine learning models) are

used in many previous works. We evaluate the detection rates of

all these machine learning models in our work and compare the

results with previous works.

Previous works reported their results with double decimal pre-

cision [3]. However, double decimal precision require at least 100

experiments in testing. With 10-fold cross-validation in the experi-

ments, the total number of programs (benignware and malware)

should be more than 1,000 programs. Thus, at least 1,000 programs

are required to evaluate the machine learning models within nu-

merical rounding error of less than 1%. As a result, we consider

the works with fewer than 1,000 programs as over-generalization

(training and testing with insuicient cross-validation), or over-

interpretation of the results (comparisons beyond rounding er-

rors) [3, 5ś8]. This insuicient number of programs in the experi-

ments is Drawback V in Table 1.

In addition to the drawbacks of the previous works, we found

that there is no public access to their data or codes, which presents a

direct comparison and examinations of the methods applied in these

works. To ease the reproducibility and advance the community’s

eforts to assess the utility of HPC-based malware detection, we

release all the code and data produced for this work under open-

source license.

We present all the tools/setups/models in various previous works

in Table 1. In Table 1, rows are various works in HPC-basedmalware

detection and columns are design choices of the tools/setups/models.

The alternative shaded and white background represents diferent

categories of tool/setup/model in malware detection using HPCs.

Red texts highlight drawbacks, and black texts express the sug-

gested tool/setup/model from this work. Solid dots (•) indicate the

use of that tool/setup/model (column) by the reference (row), and

hollow dimonds (⋄) indicate the non-use of that tool/setup/model

by the reference. Star (⋆) is our work. The last column counts the

drawbacks of the corresponding work. Table 1 shows that there are

at least 2 drawbacks in each work. Based on our work, we provide

3The model corresponds closely or exactly to a particular data and fail to predict other
data reliably.

3 guidelines for evaluating HPC-based malware detection in this

area. First, measurements of HPCs should be done in a bare-metal

environment, without VMs or any DBI. Second, building machine

learning models for malware detection requires the data division

by programs (TTA2 in ğ4.3) instead of division by traces (TTA1

in ğ4.3). Third, repeated cross-validations are required to prevent

overitting of machine learning models.

3 EXPERIMENTAL SETUP

In this section, we explain how we set up the experiments to gather

values of HPCs from benignware and malware. We ran our ex-

periments on a cluster with 15 machines as worker nodes, and a

master node to distribute jobs to measure and to collect data from

worker nodes. We dispatched our jobs to the worker nodes using

the Rabbitmq message system [22]. We collected the data back from

the worker nodes using a Samba [23] server on the master node.

We used Bindfs [24] to fuse the permission bits of Samba server

storage folder to be writable, not modiiable, not readable, and

not executable. Note that the Portable Operating System Interface

(POSIX) permission structure cannot provide the above-mentioned

permission bits. These permission bits allowed the worker nodes to

record the measured HPC values, while these permission settings

prevented malware from overwriting or deleting the measured HPC

values. On the worker nodes, we ran our experiments in Windows

7 32-bit operating system to be compatible with malware experi-

ments in other works [9ś11]. Previous works applied time-based

HPC sampling, i.e., they gathered values at a ixed sampling fre-

quency [3]. We used AMD CodeAnalyst APIs to build a time-based

HPCmonitoring tool, Savitor, since AMD CodeAnalyst itself cannot

provide time-based measured HPC values [25].

3.1 Savitor (HPC measuring tool)

We designed Savitor, a tool that monitors a target process and

gathers HPC values related to the process. Savitor runs the target

process, pins the process to one core, reads the HPC values from that

core and then writes the measured HPCs values to iles on another

core, in order to reduce the noise during the sampling. Savitor

records 6 HPCs at a time, which is the maximum number of HPCs

that can be recorded on the AMD Bulldozer micro-architecture

without time-multiplexing. Savitor performs time-based sampling

and kills the target process at the end of each experiment. Following

the frequency limits in CodeAnalyst, we used themaximumpossible

sampling frequency of 1 KHz for Savitor. Considering our limited

resources (time and hardware), we only ran each experiment of

both malware and benignware for 1 minute.

3.2 Malware and Benignware

For forming the set of malware, we downloaded 1,000 malware from

Virustotal [26], and performed a test run of those 1,000 malware on

worker nodes. After the test run, we identiied 962 malware which

could run for more than 1 minute and used them in our malware

experiments. According to AVClass tool [27], our dataset consisted

of 35 distinct malware families.

In order to collect benignware programs, we irst installed all the

packages and software from Futuremark [28], python performance

module [29], ninite.com [30], and Npackd [31] on the worker nodes.

Receive Job Run Savitor
Run Program

(Malware/Benignware)

Run Monkey

Reset Environment

Reload Partition

Kill All Spawned Processes

Malware

Benignware

Benignware that has a window

Figure 2: Our worklow of benignware/malware experiments: The

worker node receives the dispatched jobs of experiments from the

master node. The worker node spawns a Savitor process, and then

Savitor runs the target process (benignware/malware). The dotted

arrow (d) means that the action does not always happen. If the ap-

plication has awindow for interaction, we attach amonkey tester to

the window. The solid arrow (→) shows that actions always happen.

We reset the environment after each experiment. the worker node

kills any other processes spawned by the target process after each

benignware experiment. At the end of each malware experiment,

we reboot the machine into the Debian partition to reload a clean

Windows image.

After installation, we traversed all the iles in łStartup Menuž and

łC:\Program Filesž folder to include all the unique executable pro-

grams in our benignware dataset. We avoided the complication of

re-installation by excluding all the executable program iles with

łuninstallž in their names. We performed a test run of all these pro-

grams, and selected 1,382 benignware that could run for 1 minute.

To avoid the classiication bias, we matched the number of mal-

ware and benignware used in our experiments. Classiication bias

exists in classiication problems if the number of items in each

class is diferent. For example, in a classiication problem with two

classes, A and B, if class A makes up 80% of the data set and class B

makes up 20% of the dataset, the baseline of precision in classifying

A is 80%. Any designed machine learning models whose precision

is lower than 80% are worse than the precision estimated with prior

probability. In our work, we matched the number of benignware

and malware; at the same time, we reported precision, recall and

F1-score to eliminate any bias.

3.3 Method for Running Experiments

We ran our benignware and malware experiments on identical hard-

ware and operating system. However, there are a few diferences

between malware and benignware experiments. We explain the

worklow of malware and benignware experiments using one dis-

patched job in Figure 2. The boxes are the steps that we follow,

and the solid arrow means that the next step always happens. The

dotted arrow means that the action happens under the conditions

of the labels.

3.3.1 Malware Experiment. We follow the steps in Figure 2 to

run the experiments. Before any malware experiments, we dropped

all the requests to any network outside the master node, to ensure

that malware does not afect other machines. At the beginning of

each experiment, the worker node runs a clean copy of Windows

and waits for a new job. Once the worker node receives the job

from the master node, Savitor runs the malware and records the

measured HPC values. After running each malware experiment,

we provide an identical, malware-free environment for the next

malware experiment by reloading the Windows partition. In order

to reload Windows image, we installed Debian 8 in the other parti-

tion of the hard drive on each worker node. Whenever a worker

node boots into the Debian partition, the worker node copies a

clean Windows image to the other partition. We modiied the GNU

GRand Uniied Bootloader (GRUB) to make the machine boot into

an alternate partition every time it reboots. After reloading the

image, the system reboots into Windows again and runs the next

job dispatched from the master node.

3.3.2 Benignware Experiment. Similar to the malware experi-

ments, benignware experiments also follow the worklow in Fig-

ure 2. We connected the worker nodes to the outside network to

ensure the benignware receives network responses. Programs, such

as browsers, require network responses to perform similarly as in

a user environment. When the worker node receives a job from

the master node, Savitor starts the target process (benignware pro-

gram), and a monkey tester is attached to the target process if the

target process has an interactive window. The Monkey tester works

similar to Android’s Monkey tester [32], as it interacts with the tar-

get process by periodically sending random keystroke, mouse clicks,

and scrolling operations to the window of the target process. The

behavior of the monkey tester simulates the interaction between a

user and the programs. After Savitor samples the measured HPC

values, the system resets by killing any processes spawned during

the experiments. Since the benignware does not try to infect the

Windows partition and perform malicious operations, we do not

reload the Windows partition. After killing the spawned processes,

the worker node receives the next job from the master node and

starts the next experiment.

4 MACHINE LEARNING MODELS

In this section, we present how we apply machine learning models

on measured HPC values. One of the common problems in ma-

chine learning is the Curse of Dimensionality. Curse of Dimension-

ality means that machine learning models in a high-dimensional

space have lower detection rates compared to models in lower-

dimensional spaces [21]. The redundant dimensions in high dimen-

sions contribute to the measurement of noise in the training dataset,

which result in a decrease in the detection rates of testing. Curse

of Dimensionality motivates the reduction of dimension; however,

reducing dimensions may cause underitting due to the lack of rep-

resentation during training. In order to overcome both overitting

and underitting, the design of machine learning models requires

the minimum number of features that represent most of the mea-

sured HPC values. To this end, we perform a quantitative analysis

to extract features from the measured HPC values of our selected

micro-architectural events.

4.1 Reduction of Dimensions

In this work, we use Principal Component Analysis (PCA) to reduce

the dimensions. By reducing the dimensions, the machine learning

models can use the linearly independent components to easily

classify the examples into diferent classes. Here, we show one

synthetic dataset (a subset from our experiments) separated from

overlapping measured HPC values by applying PCA results. In

the next subsection (ğ4.2), we explain how we choose the sizes of

examples and features.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Features

Event: The number of Load operations dispatched to the Load-Store unit
Benignware (red box): creative1, Malware (blue box): 37375106291becca8427766e24f54887

(a)

0.00e+00

5.00e+13

V
al

u
es

o
f

ex
am

p
le

s

1 2
PCA

Features
(b)

0.00e+00

2.00e+13

P
C

A
 v

al
u
es

Figure 3: X axis is the feature number and Y axis is the values of each example. Red box corresponds to themalware and blue box corresponds

to the benignware. The dashed line is the mean of each distribution. The boxes represent 25% ∼ 75% of the distributions. The whiskers (the

short, horizontal lines outside the boxes) represent the conidence interval equivalent to µ ± 3σ of Gaussian Distribution (0.3% ∼ 99.7%). We

measure The number of Load operations dispatched to the Load-Store unit event 5 times in one benignware (creative2 from Futuremark) and

one malware. The distributions of the two subplots represent 5 examples in the experiments. (a) Distributions of sampled values before the

reduction of dimensions:We cannot distinguish between the 5malware examples and the 5 benignware examples. (b) Distributions of sampled

values after the reduction of dimensions: We apply the reduction of dimensions to examples in (a) to get examples in (b). We can separate all

the examples in (b) due to the gaps between values of malware and benignware in both features.

PCA applies eigen-decomposition to decompose the training

standard matrix (A), where columns are features and rows are ex-

amples, into the multiplication of eigenvectors (V) and eigenvalues

(λ) in Equation 1. The standard matrix (A) is transformed into lower-

dimensional data space by multiplying the eigenvector matrix V ,

which can also be approximated with the major eigenvector matrix

(V ′).

A = VλV −1 ≈ V ′λV ′−1 (1)

We present the distributions of examples before and after the

reduction of dimensions, A5×32 in Figure 3(a) and A5×32V
′

32×2 in

Figure 3(b). We measure the number of Load operations dispatched

to the Load-Store unit (Table 2) event 5 times in one benignware

(creative2 from Futuremark) and one malware 4. The input matri-

ces (A) of both benignware and malware have 32 features and 5

examples. In Figure 3, X axis shows the feature number and Y axis

shows the values of each example. Red box refers to the malware

and blue box refers to the benignware. The dashed line is the mean

of each distribution. The boxes represent 25% ∼ 75% of the distribu-

tions. The whiskers (the short, horizontal lines outside the boxes)

represent the conidence interval equivalent to µ ± 3σ of Gaussian

Distribution (0.3% ∼ 99.7% of the total distributions).

From Figure 3(a), we can see overlapping of boxes and whiskers

in all the columns. Figure 3(b) shows the results of the data matrix

(A) multiplied with the eigenvector matrix (V ′). We can clearly

classify the malware or benignware, since there are gaps between

the distributions of malware and benignware in both features. By

multiplying the eigenvector matrix, diferent features contribute to

classiication with weights according to their abilities to discrimi-

nate data. Hence, we can achieve higher classiication rates with

lower dimensional data.

4.2 Selection of Events

As discussed in ğ4.1, we reduce the dimensions to extract features

from the measured HPC values to form the machine learning mod-

els. At the same time, the hardware limitation on number of HPCs

without time-multiplexing requires the selection of events from

4SHA256 hash value: 3737 5106 291b ecca 8427 766e 24f5 4887

more than 100 available micro-architectural events. Hence, we de-

signed a method to select our micro-architectural events, while

reducing the dimensions of examples at the same time.

In our method, our selection of events is based on minimizing 3

sources of losses These 3 main sources of losses in the measured

HPC values are:

• Jitter: the timing variations between identical measurements

of the measured HPC values.

• Noise: the amplitude variations between identical measure-

ments at the same time-stamp of the measured HPC values.

• Approximation error: the loss of the minor eigenvectors.

Jitter and noise are introduced due to the limitations in the

measurements. As we will discuss in ğ6, noise and jitter cannot

be eradicated. To minimize the impact from jitter, we divide the

measured results into 32 equal time intervals, and sum the gathered

values in each time interval to form 32 histogram bins (each bin

corresponds to one feature). This is the same design choice as the

one used by Demme et al. [3]. Histogram bins preserve the sampled

information, while reducing the efects of jitter in the values of

HPCs. In addition to jitter, we observe noise in the measured HPC

values, as Weaver et al. do in their work [20, 33]. To minimize

the noise for our selection of events, we repeat the measurements

on the same program and the same events 32 times, and then we

calculate the cumulative sum in each bin, in order to increase the

Signal-to-Noise Ratio (SNR). Assuming the noise introduced during

the measurement is Additive White Gaussian Noise (AWGN) [34],

this approach increases the SNR by a factor of 32.

Approximation error is introduced by the elimination of minor

eigenvectors in V when we transform V to V ′. For each example,

we multiply the measured HPC values to the major eigenvector

matrix V ′ instead of V . In our method, by trading of the number

of eigenvectors in the major eigenvector matrix, we reduce the

dimensionality and increase the approximation error in Equation 2.

We use the product of the standard matrix A and the eigenvector

matrix V ′ as our input matrix in machine learning model as we

described in Equation 1.

1 2 3 4 5

m

0.000

0.005

0.010

0.015

0.020

0.025

α

Figure 4: Error Bound vs the Number of Eigenvetors Plot: when

choosing diferent number of eigenvectors for reduction in dimen-

sions, the error bound α changes according tom eigenvectors.

AV =

m∑

i=1

v (i)λ(i) +

n∑

i=m+1

v (i)λ(i) (2)

=

m∑

i=1

v (i)λ(i) + ϵ (αvλ) (3)

In equation 2, λ(i) denotes the ith largest eigenvalue with n

eigenvalues (λ). v (i) is the corresponding eigenvector of λ(i) , and

m is the number of reduced dimensions. Equation 2 represents the

separation ofm major and n −m minor eigenvectors. The irst term

in Equation 2 is AV ′. The approximation error is the diference

between AV and AV ′, which is the second term in Equation 2. In

Equation 3, ϵ denotes the upper bound function. α denotes error

coeicient, with the error term (AV −AV ′) divided by the original

input data (AV). Equation 3 expresses that with a givenm value,

we can estimate the approximation error using α . By having more

eigenvectors in the eigenvector matrixV ′ (largerm), we can reduce

α , which corresponds to a lower approximation error. Aswe observe

from Equation 3, the approximation error depends on the choice of

eigenvectors. We cannot determine the eigenvectors before we train

and test our dataset. However, we can use a subset of programs to

compute the eigenvectors and choose the parameters in Equation 3.

As in real-life, it is impossible to use the entire dataset for the

selection of events. Here, we chose a subset of programs, 7 pro-

grams from the Futuremark [28] benchmark for the selection of

events. The choice of programs from Futuremark benchmark suite

is driven by the fact that Futuremark has analyzed user behavior

and automated this behavior in the benchmarks. All the programs of

Futuremark benchmark are real-world applications commonly used

in oice. We measured the programs at at the frequency of 1 kHz

for 1 minute, as we described in ğ3.1. Our experimental hardware

(AMD Bulldozer micro-architecture) enables us to monitor 130

events 6 at a time. We accumulated the measured HPC values into

32 bins, with each measurement summed into 32-dimension vector.

Thus we ran each of the 7 programs from Futuremark Benchmarks

on 130 micro-architectural events 32 times (130×32×7).

AekVek =

m∑

i=1

v
(i)
ek λ

(i)
ek + ϵ (αvek λek) (4)

α (m) = min
ej

∑n
i=m+1v

(i)
ej λ

(i)
ej

vej λej
(5)

Table 2: Description of the Selected Events [2]

Events Deinition

0x04000 The number of accesses to the data cache for load and store references

0x03000 The number of CLFLUSH instructions executed

0x02B00 The number of System Management Interrupts (SMIs) received

0x02904 The number of Load operations dispatched to the Load-Store unit

0x02902 The number of Store operations dispatched to the Load-Store unit

0x02700 The number of CPUID instructions retired

With the results (130×32×7) from the experiments, we denote

the kth event as ek , its i
th eigenvalue as λ

(i)
ek , and the corresponding

eigenvector as v
(i)
ek for k = 1, 2, . . . 130 in Equation 3, in order to

re-write Equation 3 into Equation 4. In Equation 5, ej corresponds

to the 6 events with the minimum α when j = 1, 2, . . . 6, excluding

the events whose measured HPC values are all zeros. We apply

Equation 1 to compute vek and λek . We calculate the eigenval-

ues for 130 events and ind out that there is no event among 130

events with more than 10 eigenvectors (n ≤ 10). We exclude all

the events that only have zero values in the measured HPC values,

since these events provide no signal in the measured HPC values.

By changing the number of eigenvectors (m), we can calculate the

error coeicient (α) in Equation 5. We plotted the error coeicients

for m = 1, 2 . . . 5 in Figure 4. The gradient of α decreases when

m is more than 2. Subsequently, we consider the optimal trade-of

between m and α when m = 2 and α (2) = 0.072%, which corre-

sponds to the upper bound of error as 0.072% AV , with the linear

combination of 2 components from vej .

The 6 events, which we selected in our experiments, are listed in

Table 2. We assemble the eigenvectors of 6 events, 2 for each event,

and we get the v matrix in Equation 6.

v192×12 =
















v
(1)
ek1
,v

(2)
ek1
,

v
(1)
ek2
,v

(2)
ek2
,

. . .

v
(1)
ek6
,v

(2)
ek6















(6)

In Equation 6, v
(i)
ekj

represents the ith largest eigenvector in

jth event. Each v
(i)
ekj

is a 32 × 1 eigenvector. By multiplying each

example with the v eigenvector, we reduce the dimensions from

192 (6 events × 32 bins) to 12 (6 events × 2 components).

In summary, we list following steps to select the events:

• Run 7 programs 32 times andmeasure 130micro-architectural

events.

• Divide the total run time of each program into 32 intervals

and sum the measured HPC values in each interval into a

separate bin.

• Sum the bins across diferent runs of the identical measure-

ments.

• Apply PCA on 130 events with 7 programs.

• Compute the approximation errors for 7 programs.

• Find 6 events with the least approximation errors.

Four of the selected events in our experiments align with other

works that do not provide any analysis of their selection of events [3,

5, 9ś11]. We observe that one event is related to data cache load and

store references. Two other micro-architectural events are related

to load and store operations, which have also been used in other

works. It is not clear how load and store operations deterministi-

cally contain the information of malicious behavior. Any statistics

of memory behavior should be legitimate in program execution,

since the memory accesses inheretly exist in every program. In

our selection of events, we include the events in kernel mode to

capture complete program behavior. The remaining 3 selected hard-

ware events related to cache lush behavior, system management

interrupts and CPUID instructions. However, we cannot infer any

reasons why these instructions/operations by the kernel can be

mapped to any malicious user-level behavior.

4.3 Classiication Models

In ğ4.2, we selected the 6 events to monitor and formulate the

eigenvector matrix in Equation 6. With this method, we can extract

features from the measured HPC values to get examples for ma-

chine learning models, i.e. traces in our datasets of benignware and

malware.

To have the same number of measurements on the same pro-

gram samples as in ğ4.2, we run each benignware program and

each malware program 32 times, and collect 61,568 (2 × 962 × 32),

30,784 for benignware and 30,784 for malware, measured HPC val-

ues (1,026 CPU hours). We sum the measured HPC values into 32

histogram bins (as described in ğ4.2) for each of 6 events. Each ex-

ample of histogram binned HPC values has 192 (6 events × 32 bins)

features. By multiplying each example with the v eigenvector in

Equation 6, we reduce the dimensions from 192 (6 events × 32 bins)

to 12 (6 events × 2 components). To this end, we convert themea-

sured HPC values into histogram bins, and then transform them

into traces.

Using the reduction of dimensions (ğ4.2), the inputmatrixA30,784×192

(30,784 examples and 192 features) of benignware or malware is

transformed to lower-dimensional space as A′30,784×12 (30,784 ex-

amples and 12 features). For training and testing of the machine

learning models, we are going to separate the examples in matrix

A′ into training and testing datasets (training-and-testing split). In

our experiments, we consider 2 Training-and-Testing Approaches

(TTA) to divide our dataset into training set and testing set. The

two approaches are as follows:

TTA1 Dividing 30,784 traces with a split of 90:10 ratio, resulting in

27,704 traces (90% of 30,784 traces) as training dataset and

3,078 traces (10% of 30,784 traces) as testing dataset both in

benignware and malware experiments.

TTA2 Dividing 962 programs with a split of 90:10 ratio, result-

ing in traces of 866 programs (90% of programs) as training

dataset and traces of 96 programs (10% of programs) as test-

ing dataset both in benignware and malware experiments.

In the irst training-and-testing approach (TTA1), we randomly

choose 27,704 traces as training dataset and 3,078 traces as test-

ing dataset both in benignware and malware experiments. In this

approach, the traces resulting from the same program sample can

appear in both training and testing datasets. As a result, such an ap-

proach corresponds to a highly optimistic and unrealistic scenario

where the testing programs (benignware or malware) are available

during training. Given that thousands of new malware appearing

everyday, it is impossible to include all the malware that user may

encounter. Hence, TTA1 should not be applied in training machine

learning models for malware detection.

In the second training-and-testing approach (TTA2), we ran-

domly choose traces of 866 programs as training dataset and traces

of 96 programs as testing dataset both in benignware and malware

experiments. TTA2 corresponds to a realistic case where during

training model, we do not have access to the exact programs, benign

or malicious, that users run in the real life. To validate across our

models, we perform 10-fold cross-validations 1,000 times. For each

10-fold cross-validation, we randomly shule the dataset to ensure

diference across 1,000 rounds. In each 10-fold cross-validation,

each example in the dataset is used in training 9 times and testing

once. This ensures the identical times of training and testing for

every single example, compared to randomly shuling the data

and validating the machine learning models. With 1,000 10-fold

cross-validations, we can ensure that the standard deviations of

detection rates increase no more with more rounds of validations.

In our experiments, we perform training and testing with both

TTA1 and TTA2. We compare the detection results in terms of

precision, recall, F1-score, and Area Under Curve (AUC) in both ap-

proaches. We use the implementations of machine learning models

in scikit-learn package [35]: DT, RF, NN, KNN, AdaBoost, and Naive

Bayes. The seed for randomness in machine learning initialization

and division of data comes from the random number generator

ł/dev/urandomž. During training, we set the parameters of the ma-

chine learning models as described below to prevent the machine

learning models from underitting due to default limitations in com-

putational resources set by scikit-learn. We used default values for

the remaining parameters in scikit-learn.

• DT:We set themaximumdepth as 100 to classify themalware

and benignware. The number of levels is suicient to avoid

any underitting of the model.

• RF: We set the maximum depth to be the same as in the DT.

We enable a maximum 200 estimators in the RF. The number

of estimators is suicient to avoid any underitting of the

model.

• NN: The network we use here is a Multilayer Perceptron

(MLP) neural network having 4 layers with 100 neurons

in each layer. We apply łtanhž function as the activation

function. We use L2 regularization on the parameters in the

NN.

• KNN: We choose 5 as the number of nearest neighbors, and

perform experiments with K value varying from 1 to 20.

When K equals to 5, the F1-score reaches the highest detec-

tion rates.

• AdaBoost: Adaboost is an Ensemble classiier, which utilizes

a collection of estimators. Adaboost its a sequence of classi-

iers on the training data. The predictions are decided based

on a majority vote [36]. The default value of the number of

estimators is 50. We use 200 estimators instead of 50, since

our test experiments show that 200 estimators have a higher

detection rate for AdaBoost.

• Naive Bayes: We use the same number of malware and be-

nignware traces in the model. The prior probability is 50%.

Table 3: Detection Rates with TTA1 and TTA2: Red means the value is less than 50% and bold means that the value is more than 90%

TTA1 TTA2

Models Precision[%] Recall[%] F1-Score[%] AUC[%] Precision[%] Recall[%] F1-Score[%] AUC[%]

Decision Tree 83.04 83.75 83.39 89.65 83.21 77.44 80.22 87.36

Naive Bayes 70.36 7.97 14.32 58.11 56.72 5.425 9.903 58.38

Neural Net 82.41 75.4 78.75 84.41 91.34 22.16 35.66 66.43

AdaBoost 78.61 71.73 75.01 80.57 75.78 65.6 70.32 77.96

Random Forest 86.4 83.34 84.84 91.84 84.36 78.44 81.29 89.94

Nearest Neighbors 84.84 82.37 83.59 89.26 82.7 77.88 80.22 86.98

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

o
si

ti
v
e

R
at

e

ROC Curve

Decision Tree: 89.65%

Neural Net: 84.41%

AdaBoost: 80.57%

Random Forest: 91.84%

Nearest Neighbors: 89.26%

(a)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

o
si

ti
v
e

R
at

e

ROC Curve

Decision Tree: 87.36%

Neural Net: 66.43%

AdaBoost: 77.96%

Random Forest: 89.94%

Nearest Neighbors: 86.98%

(b)

Figure 5: Receiver Operating Characteristic (ROC) curve of 5 models. (a) The AUC of DT, NN, AdaBoost, RF, and KNN using (TTA1) is 89.65%,

84.41%, 80.57%, 91.84%, and 89.26%, respectively. (b) The AUC of DT, NN, AdaBoost, RF, and KNN using (TTA2) is 87.36%, 66.43%, 77.96%, 89.94%,

and 86.98%, respectively.

5 EXPERIMENTAL RESULTS

In this section, we show our results with the experiments to detect

malware using HPCs and contrast the ones obtained in previous

works. We report malware detection rates in terms of precision,

recall, F1-score, and Area Under Curve (AUC) in Receiver Operating

Characteristic (ROC) plots. We use the positive label to denote

malware and the negative label to denote benignware. True positive

samples (T+) are malware programs that are classiied as malware.

False positive samples (F+) are benign programs that are classiied

as malware. False negative samples (F−) are malware programs that

are classiied as benignware. Precision is deined as the number of

true positive samples (T+) divided by the number of all the positive

samples, (T+ + F+) in Equation 7. Recall is deined as the number

of true positive samples (T+) divided by the sum of the number of

true positive (T+) and the number of false negative (F−) samples in

Equation 7. The F1-score is the harmonic mean of precision and

recall in Equation 8.

Precision =
T+

T+ + F+
Recall =

T+

T+ + F−
(7)

F1 − score =
2 × Recall × Precision

Precision + Recall
=

2T+
2T+ +T− + F−

(8)

The ROC curve represents how the true positive rate varies with

diferent thresholds for the false positive rate. We can reach 100%

true positive rate only if we accept a false positive rate of 100%.

Conversely, if we want to achieve a 0% false positive rate, then

that leads to 0% true positive rate. By changing the false positive

rate threshold, we can trade-of the false positive rate with the true

positive rate. Thus we use AUC of ROC curve to measure how

efective classiiers are at various false positive rate thresholds.

5.1 Malware Detection

In this section, we report the detection rates (precision, recall, and

F1-score) with 2 diferent data divisions, TTA1 and TTA2. TTA1

is the division of data according to the traces; while TTA2 is the

division of data according to the programs, as deined in ğ4.3.

5.1.1 Results from TTA1 Experiments. We train and test traces

using various machine learning models and determine the detection

rates (precision, recall, and F1-score) with TTA1. Then we plot the

ROC curves and compute the AUCs. Table 3 shows the precision,

recall, F1-score, and the AUCs of ROC curves. Any results with a

value larger than 90% and smaller than 50% are set in bold and red,

respectively. Figure 5 shows the ROC curves and the AUCs of ROC

for diferent machine learning models.

DT uses the diferent features to classify examples at diferent

tree branches. RF uses a collection of DTs to perform classiications.

KNN determines the classes of each examples by comparing the

number of examples within predeined distances. DT, RF, and KNN

models target classifying outliers in the dataset [37], which it our

malware detection problem. According to our results, the detection

rates of precision, recall, and F1-score are higher in DT, RF, and KNN

models than any other models. The F1-scores in DT, RF, and KNN

models are 83.39%, 84.84%, and 83.59%. Figure 5 shows the higher

true positive rates of RF and DTwith diferent thresholds, compared

to other models. Accordingly, the AUCs in DT, RF, and KNN are

89.65%, 91.84%, and 89.26%. Figure 5(a) shows that the AUCs of

ROC curves in DT and RF are the highest in various thresholds of

false positive rates.

AdaBoost model leverages a collection of machine learning mod-

els. AdaBoost and NN model are designed to classifying clusters

of examples. They perform worse in terms of detection rates com-

pared to DT, RF, and KNN, as these models are designed to classify

outliers. The F1-scores in AdaBoost and NN are 75.01% and 78.75%.

In Figure 5(a), AdaBoost and NN models are also worse than DT

and RF models. The AUC values for AdaBoost and NN are 80.57%

and 84.41%.

The classiication of Naive Bayes is only based on the probabil-

ities of the occurrences of malware and benignware, which is a

poor assumption to design classiiers [38]. In our design, we use the

prior probability (50%) to design the Naive Bayes classiier. Naive

Bayes model has many false negatives, which causes the F1-score

value to be as low as 14.32%. The AUC of Naive Bayes is 58.11%.

As a result, Naive Bayes classiies examples between malware and

benignware with low detection rates.

5.1.2 Results from TTA2 Experiments. We perform another ex-

periment of training and testing using various machine learning

models to show the detection rates (precision, recall, and F1-score)

with TTA2. The F1-scores of DT, RF, KNN, Naive Bayes, AdaBoost,

and NN models are 80.22%, 81.29%, 80.22%, 9.903%, 70.32%, and

35.66% using TTA2, compared to 83.39%, 84.84%, 83.59%, 14.32%,

75.01%, and 78.75% using TTA1 in Table 3. By using TTA2, the

detection rates are lower compared to the scenario using TTA1.

Figure 5(b) shows the ROC curves and the AUCs of ROC for dif-

ferent machine learning models using . The AUCs of ROC of DT, RF,

KNN, Naive Bayes, AdaBoost, and NN models are 87.36%, 89.94%,

86.98%, 58.38% 77.96%, and 66.43% using TTA2 in Figure 5(b), com-

pared to 89.65%, 91.84%, 89.26%, 58.11%, 80.57%, and 84.41% using

TTA1 in Figure 5(a).

Demme et al. showed precision varying from 25% ∼ 100% [3]

among diferent families of malware, without any recall values

reported using TTA1. The median precision among all the families

of malware is around 80%, with TTA1. Precision value of 80%

corresponds to the False Discovery Rate5 of 20%. Consider that a

default Windows 7 installation has 1,323 executable iles, an AV

system with a 20% False Discovery Rate would lag 264 of these iles

incorrectly as malware ś clearly such a detection system would not

be practical. As a result, such a malware detection method is not

usable in real-life systems. With thousands of malware reported

everyday, the oline training of malware detection cannot capture

the same malware program that a user may encounter. In real-life

cases, the malware detection rates of HPC-based malware detection

would be those in columns of TTA2 of Table 3 and Figure 5(b).

These results show that high detection rates and robustness in

5False Discovery Rate (F+/(F+ +T+)

detection are over-estimated due to division of data during training.

Our comparison using TTA1 and TTA2 shows that using TTA2

can cause the precisions to be even lower. Thus, prior works could

have even worse precisions by using TTA2. In the next subsection,

we will show that the results presented in this subsection are not

an exception.

5.2 Cross-Validation

Cross-validation is a common practice in machine learning for

avoiding the overitting ofmachine learningmodels. Cross-validation

is used to validate whether the detection rates are consistent with

repeated training and testing [39]. If the detection rates luctuate

during cross-validation, we can infer that themachine learningmod-

els are not trained properly. We observe that previous works either

have no cross-validation or report no results from cross-validations.

The lack of proper cross-validation motivates us to further evaluate

the machine learning models using cross-validation. We use 3 times

standard deviation (3σ) to quantify the luctuations in detection

rates. 3σ refers to 0.3% ∼ 99.7% of random instances distributed

within the range of 3σ . In the context of malware detection, a high

value of 3σ in detection rates means that the performance of the

model is not stable across diferent datasets.

5.2.1 Cross-validations for TTA1 Experiments. A common prac-

tice of cross-validation is using 10-fold cross-validation [39]. 10-

fold cross-validation divides the dataset into 10 subsets with equal

number of examples. It then performs training on 9 subsets and

testing on the remaining one, with each subset as a testing sub-

set. The standard deviations of detection rates in 10 experiments

show whether the detection rates of the model are stable across

10 experiments. We consider that either a split of 60 − 20 − 20

training-testing-validation or 10-fold cross-validation is not sui-

cient cross-validation, since the standard deviations of the detection

rates increase with more examples in the dataset. We repeated the

10-fold cross-validations until the standard deviations of detection

rates do not increase with more cross-validations. In this work,

we perform cross-validation 1,000 times (randomly shuling the

examples before each training-and-testing split), which is 3 orders

of magnitude more than previous works.

Figure 6 shows the distributions of detection rates (precision,

recall, and F1-scores) with both TTA1 and TTA2 for various ma-

chine learning models. In Figure 6, the red diamonds are the means,

and the blue boxes correspond to distributions of detection rates

(Precisions, Recalls, and F1-scores) lying between 25 and 75 per-

centiles. The whiskers (the short, horizontal lines outside the blue

box) represent the distributions of detection rates lying between

0.3% and 99.7%, which is equivalent to µ ± 3σ of a Gaussian Dis-

tribution. The blue dots are outliers that are outside the µ ± 3σ

regime. A wide spread of distributions in detection rates means that

the detection rates luctuate across diferent training datasets. Con-

versely, a narrow spread of distributions means that the detection

rates are stable across diferent training datasets. In DT, RF, KNN,

NN, AdaBoost, and Naive Bayes models, the mean of distributions

of F1-scores are 82.17%, 83.75%, 82.28%, 74%, 72.27%, 12.15%, with

3 standard deviations (3σ) of 1.416%, 1.326%, 1.388%, 13.2%, 2.365%,

2.392%,

Pre
c

R
ec F1

A
U

C

20

40

60

80

100

P
er

ce
n
ta

g
e[

%
]

Decision
Tree

Pre
c

R
ec F1

A
U

C

Naive
Bayes

Pre
c

R
ec F1

A
U

C

Neural
Net

Pre
c

R
ec F1

A
U

C

AdaBoost

Pre
c

R
ec F1

A
U

C

Random
Forest

Pre
c

R
ec F1

A
U

C

Nearest
Neighbors

(a)

Pre
c

R
ec F1

A
U

C

20

40

60

80

100

P
er

ce
n
ta

g
e[

%
]

Decision
Tree

Pre
c

R
ec F1

A
U

C

Naive
Bayes

Pre
c

R
ec F1

A
U

C

Neural
Net

Pre
c

R
ec F1

A
U

C

AdaBoost

Pre
c

R
ec F1

A
U

C

Random
Forest

Pre
c

R
ec F1

A
U

C

Nearest
Neighbors

(b)

Figure 6: Box plots of distributions of 10-fold cross-validation experiments using (a) TTA1 and (b) TTA2. Red diamonds are means, and blue

box corresponds to cross-validation experiment results that lie between 25 and 75 percentiles. Thewhiskers (the short, horizontal lines outside

the blue box) represent conidence interval equivalent to µ ± 3σ of a Gaussian Distribution. The blue dots are outliers that are outside the

µ ±3σ regime. On the X-axis, Prec is precision, Rec is recall, and F1 is F1 score. AUC is area under curve in ROC. These 10-fold cross-validation

experiments show that we cannot achieve 100% malware detection accuracy.

5.2.2 Cross-validations for TTA2 Experiments. In DT, RF, KNN,

NN, AdaBoost, Naive Bayes models, the mean of distributions of

F1-scores using TTA2 are 82.13%, 83.61%, 82.2%, 73.69%, 73.43%,

12.21%, compared to 82.17%, 83.75%, 82.28%, 74%, 72.27%, 12.15%

using TTA1, respectively. In DT, RF, KNN, NN, AdaBoost, Naive

Bayes models, the mean of distributions of F1-scores using TTA2

are 2.145%, 2.336%, 2.248%, 14.88%, 3.29%, 2.611%, compared to

1.416%, 1.326%, 1.388%, 13.2%, 2.365%, 2.392% using TTA1, respec-

tively. Comparing the results using TTA1 and TTA2, the standard

deviations of DT, RF, KNN, NN, AdaBoost, Naive Bayes models

increased by 1.515×, 1.762×, 1.62×, 1.127×, 1.391×, 1.092×, respec-

tively. The overall detection rates using TTA2 have much higher

variations compared to ones using TTA1.

As previous works did not report standard deviations of their

cross-validations, we cannot compare these results. From the Fig-

ure 6, we can conclude that reporting results of one training-and-

testing experiment does not provide suicient information in per-

formance of machine learning models. We can only evaluate the

performance of these models by providing a distribution of detec-

tion rates.

The diference between standard deviations in Figure 6(a) and

Figure 6(b) is due to the unrealistic assumption that the programs

in the training set appear in the testing dataset. Figure 6(b) presents

the results where the malicious program is not included in the

training dataset. In conclusion, the mean of the distribution using

TTA2 is lower than that using TTA1, while the standard deviation

of distribution using TTA2 is higher than that using TTA1. In

order to have a full evaluation on the machine learning models, it

is imperative to use TTA2 and exhibit a distribution of precision,

recall, F1-score, and AUC of ROC curves.

5.3 Ransomware

In previous sections, the machine learning models are trained over

the traces of HPCs to discriminate malware from benignware. We

build a malware embedded in benignware and then show that this

malware can evade HPC-based malware detection.

We craft the malware simply by infusing Notepad++ with a

ransomware. Ransomware is malware that maliciously encrypts

iles and extorts users in exchange for the decryption keys [40].

By 2016, ransomware has become one of the most popular mal-

ware, as Kaspersky Security Bulletin 2016 has shown that at least

one business is attacked by ransomware every 40 seconds [41].

We implement our ransomware to encrypt iles when Notepad++

launches. The embedded ransomware traverses all the iles in the

łPicturesž folder and encrypts each ile every 5 seconds with Mi-

crosoft Cryptography APIs [42]. We measure the values of HPCs for

modiied Notepad++ in our experimental setup (ğ 3). We randomly

select 90% of the benignware and malware samples as the training

set, while we test on Notepad++ and modiied Notepad++. The

precision of DT, Naive Bayes, NN, AdaBoost, RF and KNN is 0%,

0%, 0%, 50.85%, 0%, and 0%, respectively.

These results are not surprising, as machine learning models

tolerate the noise and jitters during training on sampled HPCs,

in order to extract the malicious behavior in the programs. These

tolerance necessitates the machine learning algorithms to have

errors even with the training datasets. In our malware example, the

changes of HPC values caused by ransomware is overshadowed in

the sampled values of HPCs from running Notepad++. The vari-

ation tolerance results in classifying the modiied Notepad++ as

benignware.

6 DISCUSSION

We run Windows 7 32-bit operating system on AMD 15h family

Bulldozer micro-architecture machine. Weaver et al. performed

extensive studies investigating the determinism of the measured

HPC values in various micro-architectures [33]. By comparing the

HPC values across diferent micro-architectures, Weaver et al. show

that the HPCs in various architectures have similar levels of vari-

ations during sampling. Hence, our conclusions from Bulldozer

micro-architecture are applicable to other micro-architectures. In

our benignware and malware experiments, we chose to allow the

access to the network for benignware and prevent malware from

accessing network. This design choice does not afect the results

of HPC measurements, since benignware and malware both func-

tion properly during experiments. For the reduction of dimensions,

many other approaches can server the same purpose as PCA. We

use PCA in our designs as PCA is one of the most popular methods

for reduction of dimensions.

7 CONCLUSION

HPCs are hardware units that are designed to count low-level,

micro-architectural events. Many works have investigated malware

detection using HPC proiles. However, we believe that there is no

causation between low-level micro-architectural events and high-

level software behavior. The strong positive results in the previous

works are due to a series of optimistic assumptions and unrealistic

experimental setups. In this work, we rigorously evaluate the idea

of malware detection using HPCs through realistic assumptions

and experimental setups. We observe the low idelity in HPC-based

malware detection when we increase number of programs by a

factor of 2 ∼ 3 and the experiment numbers in cross-validation to

3 orders of magnitude higher than previous works. Our best result

shows an F1-score of 80.78%. The corresponding False Discovery

Rate (F+/(F+ +T+) is 15%. This means that among 1,323 executable

iles in the Windows operating system iles, 198 iles will be lagged

as malware. We also demonstrate the infeasibility in HPC-based

malware detection with Notepad++ infused with a ransomware,

which cannot be detected in our HPC-based malware detection

system.

REFERENCES
[1] Intel Itanium Architecture Software Developer’s Manual. Intel Corporation, 2010.
[2] BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h Models 10h-1Fh

Processors. Advanced Micro Devices, Inc., 2015.
[3] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman,

Simha Sethumadhavan, and Salvatore Stolfo. On the feasibility of online mal-
ware detection with performance counters. In Proceedings of the 40th Annual
International Symposium on Computer Architecture (ISCA), page 559, 2013.

[4] Harish Patil, Robert Cohn, Mark Charney, Rajiv Kapoor, Andrew Sun, and Anand
Karunanidhi. Pinpointing representative portions of large intel itanium programs
with dynamic instrumentation. In Proceedings of 37th International Symposium
on Microarchitecture (MICRO), pages 81ś92, 2004.

[5] Mikhail Kazdagli, Vijay Janapa Reddi, and Mohit Tiwari. Quantifying and improv-
ing the eiciency of hardware-based mobile malware detectors. In Proceedings
of the 49th International Symposium on Microarchitecture (MICRO), pages 1ś13,
2016.

[6] Xueyang Wang, Sek Chai, Michael Isnardi, Sehoon Lim, and Ramesh Karri. Hard-
ware performance counter-based malware identiication and detection with adap-
tive compressive sensing. Transactions on Architecture and Code Optimization
(TACO), 2016.

[7] Adrian Tang, Simha Sethumadhavan, and Salvatore J Stolfo. Unsupervised
anomaly-based malware detection using hardware features. In International
Workshop on Recent Advances in Intrusion Detection (RAID), pages 109ś129, 2014.

[8] Baljit Singh, Dmitry Evtyushkin, Jesse Elwell, Ryan Riley, and Iliano Cervesato.
On the detection of kernel-level rootkits using hardware performance counters.
In Proceedings of the 17th Asia Conference on Computer and Communications
Security (AsiaCCS), pages 483ś493. ACM, 2017.

[9] Meltem Ozsoy, Caleb Donovick, Iakov Gorelik, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. Malware-aware processors: A framework for eicient onlinemalware
detection. In Proceedings of the 21st International Symposium on High Performance
Computer Architecture (HPCA), pages 651ś661, 2015.

[10] Khaled N Khasawneh, Meltem Ozsoy, Caleb Donovick, Nael Abu-Ghazaleh, and
Dmitry Ponomarev. Ensemble learning for low-level hardware-supported mal-
ware detection. In International Workshop on Recent Advances in Intrusion Detec-
tion (RAID), pages 3ś25, 2015.

[11] Khaled N Khasawneh, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Lei Yu. Rhmd:
evasion-resilient hardware malware detectors. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 315ś327,
2017.

[12] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geof
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. InAcm sigplan
notices, volume 40, pages 190ś200. ACM, 2005. extras:luk05:pin.

[13] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX Annual
Technical Conference, FREENIX Track, pages 41ś46, 2005.

[14] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In ACM Sigplan notices, volume 42, pages
89ś100. ACM, 2007.

[15] Dynamorio dynamic instrumentation tool platform. http://www.dynamorio.org/,
2017. (Accessed on 12/02/2017).

[16] Benjamin Serebrin and Daniel Hecht. Virtualizing performance counters. In
Proceedings of the European Conference on Parallel Processing, pages 223ś233,
Bordeaux, France, August 2011.

[17] John LHenning. Spec cpu2006 benchmark descriptions. ACM SIGARCHComputer
Architecture News, 34(4):1ś17, 2006.

[18] Linux perf. http://www.brendangregg.com/perf.html, 2017. (Accessed on
11/19/2017).

[19] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. Barecloud: Bare-metal
analysis-based evasive malware detection. In USENIX Security Symposium (SP),
pages 287ś301, 2014.

[20] Vincent M Weaver and Sally A McKee. Can hardware performance counters be
trusted? In Proceedings of International Symposium on Workload Characterization
(IISWC), pages 141ś150. IEEE, 2008.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[22] Pivotal Software Inc. Rabbitmq. http://www.rabbitmq.com/, 2017. (Accessed on
11/12/2017).

[23] Samba - opening windows to a wider world. https://www.samba.org/, 2017.
(Accessed on 12/05/2017).

[24] bindfs. https://bindfs.org/, 2017. (Accessed on 12/05/2017).
[25] Paul J. Drongowski. An introduction to analysis and optimization with amd

codeanalyst performance analyzer, 2008.
[26] Virustotal. Virustotal. https://www.virustotal.com/, 2017. (Accessed on

07/12/2017).
[27] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. Avclass: A

tool for massive malware labeling. In International Symposium on Research in
Attacks, Intrusions, and Defenses, pages 230ś253. Springer, 2016.

[28] Futuremark. https://www.futuremark.com/, 2017. (Accessed on 11/15/2017).
[29] Performance: Python package index. https://pypi.python.org/pypi/performance/

0.5.1, 2017. (Accessed on 11/30/2017).
[30] Ninite. https://ninite.com/, 2017. (Accessed on 11/15/2017).
[31] Npackd. https://npackd.appspot.com/, 2017. (Accessed on 11/15/2017).
[32] Android debug bridge. https://developer.android.com/studio/command-line/adb.

html, 2017. (Accessed on 11/12/2017).
[33] Vincent M Weaver, Dan Terpstra, and Shirley Moore. Non-determinism and

overcount on modern hardware performance counter implementations. In Pro-
ceedings of International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 215ś224. IEEE, 2013.

[34] S.S. Haykin. Communication System. Wiley Series in Management Series. John
Wiley & Sons, 1983.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825ś2830, 2011.

[36] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line
learning and an application to boosting. In European conference on computational
learning theory, pages 23ś37. Springer, 1995.

[37] George H John. Robust decision trees: Removing outliers from databases. In
KDD, pages 174ś179, 1995.

[38] J Rennie, L Shih, J Teevan, and D Karger. Tackling the poor assumptions of naive
bayes classiiers (pdf). ICML, 2003.

[39] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy esti-
mation and model selection. In Ijcai, volume 14, pages 1137ś1145. Stanford, CA,
1995.

[40] Adam Young and Moti Yung. Cryptovirology: Extortion-based security threats
and countermeasures. In Proceedings of Security and Privacy, pages 129ś140.
IEEE, 1996.

[41] Kaspersky security bulletin 2016. review of the year. overall statistics for 2016.
https://securelist.com/kaspersky-security-bulletin-2016-executive-summary/
76858/. (Accessed on 12/10/2017).

[42] Cryptography reference (windows). https://msdn.microsoft.com/en-us/library/
aa380256.aspx, 2017. (Accessed on 11/18/2017).

http://www.dynamorio.org/
http://www.brendangregg.com/perf.html
http://www.rabbitmq.com/
https://www.samba.org/
https://bindfs.org/
https://www.futuremark.com/
https://pypi.python.org/pypi/performance/0.5.1
https://pypi.python.org/pypi/performance/0.5.1
https://ninite.com/
https://npackd.appspot.com/
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/command-line/adb.html
https://securelist.com/kaspersky-security-bulletin-2016-executive-summary/76858/
https://securelist.com/kaspersky-security-bulletin-2016-executive-summary/76858/
https://msdn.microsoft.com/en-us/library/aa380256.aspx
https://msdn.microsoft.com/en-us/library/aa380256.aspx

	Abstract
	1 Introduction
	2 Related Work and Motivation
	3 Experimental Setup
	3.1 Savitor (HPC measuring tool)
	3.2 Malware and Benignware
	3.3 Method for Running Experiments

	4 Machine Learning Models
	4.1 Reduction of Dimensions
	4.2 Selection of Events
	4.3 Classification Models

	5 Experimental Results
	5.1 Malware Detection
	5.2 Cross-Validation
	5.3 Ransomware

	6 Discussion
	7 Conclusion
	References

