
ARTIFACT
EVALUATED

PASSED

PHMon: A Programmable Hardware Monitor
and Its Security Use Cases

Leila Delshadtehrani, Sadullah Canakci, Boyou Zhou, Schuyler Eldridge, Ajay Joshi, and Manuel Egele

Department of Electrical and Computer Engineering, Boston University

{delshad, scanakci, bobzhou, schuye, joshi, megele}@bu.edu

Abstract

There has been a resurgent trend in the industry to enforce a
variety of security policies in hardware. The current trend for
developing dedicated hardware security extensions is an im-
perfect, lengthy, and costly process. In contrast to this trend, a
flexible hardware monitor can efficiently enforce and enhance
a variety of security policies as security threats evolve. Ex-
isting hardware monitors typically suffer from one (or more)
of the following drawbacks: a restricted set of monitoring
actions, considerable performance and power overheads, or
an invasive design. In this paper, we propose a minimally-
invasive and efficient implementation of a Programmable
Hardware Monitor (PHMon) with expressive monitoring rules
and flexible fine-grained actions. PHMon can enforce a va-
riety of security policies and can also assist with detecting
software bugs and security vulnerabilities.

Our prototype of PHMon on an FPGA includes the hard-
ware monitor and its interface with a RISC-V Rocket proces-
sor as well as a complete Linux software stack. We demon-
strate the versatility of PHMon and its ease of adoption
through four different use cases: a shadow stack, a hardware-
accelerated fuzzing engine, an information leak prevention
mechanism, and a hardware-accelerated debugger. Our pro-
totype implementation of PHMon incurs 0.9% performance
overhead on average, while the hardware-accelerated fuzzing
engine improves fuzzing performance on average by 16×
over the state-of-the art software-based implementation. Our
ASIC implementation of PHMon only incurs a 5% power
overhead and a 13.5% area overhead.

1 Introduction

In recent years, there has been a growing demand to enforce
security policies in hardware with the goal of reducing the
performance overhead of their software-level counterparts.
As a response to this growing demand, leading processor
companies have introduced several security extensions. A
successful hardware-based enforcement of security policies,

such as the NX (non-executable) bit, provides an efficient per-
manent security solution. The processor companies have also
established secure and isolated execution environments such
as Intel Trusted Execution Technology (TXT) [64], Intel Soft-
ware Guard Extensions (SGX) [3], ARM TrustZone [62], and
AMD Secure Virtual Machine (SVM) [61]. Additionally, Intel
has introduced Memory Protection Extensions (MPX) [65]
and Control-Flow Enforcement Technology (CET) [67] to
enforce security policies.

Unfortunately, the current trend to develop dedicated hard-
ware security extensions suffers from several drawbacks. Im-
plementing new security extensions in a new generation of
processors is a lengthy and costly process (which can take
up to several years and millions of dollars). Additionally, the
implemented extensions apply fixed security policies. Since
these fixed security policies are built in silicon, any problems
in the design or implementation of these policies requires
a fix in the next generation of the processors. For example,
Intel introduced MPX as a hardware-assisted extension to
provide spatial memory safety by adding new instructions
and registers to assist with software-based bounds check-
ing. Software-based techniques, such as Safe-C (1994) [6]
and SoftBound (2009) [53], existed several years before In-
tel MPX was announced in 2013 and introduced commer-
cially in late 2015. Unexpectedly, Intel MPX incurs a con-
siderable performance overhead (up to 4× slow down in the
worst case [55]) and its supporting infrastructure cannot com-
pile/run 3-10% of legacy programs [55]. Due to various Intel
MPX problems, GCC, LLVM, and Linux discontinued their
support for MPX [42, 43]. Additionally, MPX does not pro-
tect the stack against Return-Oriented Programming (ROP)
attacks. Hence, in 2016, Intel announced a new security tech-
nology specification, called Control-Flow Enforcement Tech-
nology (CET), for full stack protection.

The above Intel MPX example shows the lengthy and im-
perfect process of implementing fixed hardware security ex-
tensions. As a result, these extensions cannot evolve with the
same pace as security threats. In contrast to the current trend
in the industry to develop rigid hardware security extensions,

a flexible hardware implementation can enforce and enhance
a variety of security policies as security threats evolve. Such
a flexible hardware implementation provides a realistic envi-
ronment (a hardware prototype with full software stack) to
evaluate the security policies before a manufacturer enforces
a policy as a dedicated feature in hardware.

A flexible hardware to enforce security policies can be
designed in the form of a hardware-assisted runtime monitor.
To characterize a general runtime monitor, we present an
event-action model. In this model, we define the runtime
monitoring by a set of events, where each event is defined by a
finite set of monitoring rules, followed by a finite sequence of
actions. This definition does not restrict events/actions to high-
level (e.g., accessing a file) or low-level (e.g., execution of an
instruction) events/actions. Accordingly, runtime monitoring
consists of three main steps: 1) collecting runtime execution
information, 2) evaluating the finite set of monitoring rules on
the collected information to detect events, and 3) performing a
finite sequence of follow-up actions. Intuitively, a monitoring
system that allows the user to define generic rules, events, and
actions is more widely applicable than a system that restricts
the expressiveness of these aspects. Such a monitoring system
can be used in a wide range of applications, including, but
not limited to, enforcing security policies, debugging, and
runtime optimization.

A reference monitor [4,70] is a well-known concept, which
defines the requirements for enforcing security policies. A ref-
erence monitor observes the execution of a process and halts
or confines the process execution when the process is about
to violate a specified security policy. The reference monitor
observation can happen at different abstraction levels, e.g.,
OS kernel, hardware, or inline. We can describe a reference
monitor using our event-action monitoring model, where the
events are specified by security policies and the sequence of
actions is limited to halting/confining the process execution.
An event-action monitoring model has a broader scope and is
not restricted to specifying reference monitors for enforcing
security policies.

Software-only runtime monitoring techniques can enforce
the event–action monitoring model with virtually no restric-
tion. However, these software techniques are not suited for
always on monitoring and prevention mechanisms due to their
considerable performance overhead (2.5× to 10× [47, 60]
caused by the dynamic translation process of Dynamic Bi-
nary Instrumentation (DBI) tools). Hardware-assisted moni-
toring techniques reduce this significant overhead [26, 28, 89].
Nonetheless, they commonly restrict the expressiveness of
the event–action monitoring model. Some of the hardware-
assisted monitoring techniques are designed for a specific
monitoring use case, e.g., Bounds Checking (BC) [15, 27, 32,
51, 52], data-race detection [89], and Dynamic Information
Flow Tracking (DIFT) [18, 19, 78, 81]. Other techniques pro-
vide some flexibility [10, 11, 25, 26, 28] and can be applied to
a range of use cases including BC, DIFT, and Control Flow

Integrity (CFI). We refer to these flexible techniques as Flex-
ible Hardware Monitors (FHMons). However, the existing
FHMons suffer from three common limitations:

1. Most existing FHMon techniques (e.g., [25, 26, 28]) ex-
tend each memory address and register with a tag. These
techniques provide a set of actions only for tag propa-
gation and raising an exception (handled by software),
which restricts the expressiveness of their actions. Over-
all, this limits their deployment beyond tag-based mem-
ory corruption prevention. In principle, we can consider
the tag-based FHMons as hardware reference monitors
to enforce memory protection policies.

2. Some FHMon techniques [11, 12, 46] rely on a separate
general-purpose core to perform generic monitoring ac-
tions. These techniques incur large overheads (in terms
of performance, power, and area) despite leveraging fil-
tering and hardware-acceleration strategies.

3. Some FHMons require invasive modifications to the
processor design (e.g., [16,28,76]). This limits the feasi-
bility of FHMon adoption in commercial processors as
well as the composition of FHMon.

Overall, the existing hardware-assisted monitoring techniques
only implement a restricted subset of an ideal event–action
monitoring model. Hence, they suffer from limited applica-
bility. To address the aforementioned limitations and expand
the set of monitoring rules and follow-up actions, we propose
a minimally-invasive and low-overhead implementation of a
Programmable Hardware Monitor (PHMon).

Our PHMon can enforce a variety of security policies and
it can also assist with detecting software bugs and security
vulnerabilities. We interface PHMon with a RISC-V [83]
Rocket [5] processor and we minimally modify the core to
expose an instruction execution trace to PHMon. This execu-
tion trace captures the whole architectural state of the core.
Each event is identified based on programmable monitoring
rules applied to the instruction execution trace. Once PHMon
detects an event, it performs follow-up actions in the form of
hardware operations including ALU operations and memory
accesses or an interrupt (handled by software). We modify the
Linux Operating System (OS) to support PHMon at process
level. Hence, unlike most existing FHMons and tag-based
memory corruption prevention techniques, PHMon offers the
option of enforcing different security policies for different
processes. Additionally, we provide a software API consist-
ing of a set of C functions to program PHMon. A user can
simply use this API to specify the monitoring rules and pro-
gram PHMon to monitor separate events, count the number of
event occurrences, and take a series of follow-up actions. We
demonstrate the versatility of PHMon and its ease of adop-
tion through four representative use cases: a shadow stack, a
hardware-accelerated fuzzing engine, information leak pre-
vention, and hardware-accelerated debugging.

To evaluate PHMon in a realistic scenario, we implement
a prototype of PHMon interfaced with a RISC-V Rocket
core [5] using Xilinx Zedboard FPGA [63]. Our FPGA-based
evaluation shows that PHMon improves the performance of
fuzzing by 16× over the state-of-the art software-based im-
plementation while our programmed shadow stack (for call
stack integrity protection) has 0.9% performance overhead,
on average. When implemented as an ASIC, PHMon incurs
less than 5% power and 13.5% area overhead compared to an
unmodified RISC-V core.

In summary, we make the following contributions:

• Design: We propose a minimally-invasive and efficient
programmable hardware monitor to enforce an event–
action monitoring model with programmable monitor-
ing rules and flexible hardware-level follow-up actions.
Additionally, we provide the OS and software support
for our hardware monitor.

• Application: We demonstrate the flexibility and ease of
adoption of our hardware monitor to enforce different
security policies and to assist with detecting software
bugs and security vulnerabilities via four use cases.

• Implementation: We implement a practical prototype,
consisting of a Linux kernel and user-space running
on a RISC-V processor interfaced with our PHMon,
on an FPGA. Our evaluation indicates that PHMon in-
curs low performance, power, and area overheads. In the
spirit of open science and to facilitate reproducibility
of our experiments, we will open-source the hardware
implementation of our PHMon, our patches to the Linux
kernel, and our software API: https://github.com/bu-
icsg/PHMon.

2 Related work
In this section, we discuss existing hardware features in pro-
cessors and hardware-assisted monitors, which are applied
in security use cases, and compare them with PHMon. We
classify the hardware-assisted runtime monitors into two cate-
gories: “trace-based” and “tag-based”. Trace-based monitors
apply the monitoring rules and actions on the whole execution
trace, while the tag-based monitors restrict the monitoring
rules and/or actions to tag propagation. Table 1 compares
different features of our trace-based PHMon with other tag-
based and trace-based monitors. We can consider the tag-
based monitors as reference monitors that can enforce one or
more security policies for memory corruption prevention. In
general, trace-based monitors are applied to a wider range of
applications than merely memory protection. For example, as
listed in Table 1, data race detection is one of the use cases of
the Log-Based Architectures (LBA) [10, 11].

2.1 Custom Hardware for Monitoring
Dedicated hardware monitors have been used for a variety
of debugging and security applications including hardware-

assisted watchpoints for software debugging [35, 88] and
hardware-assisted Bounds Checking (BC) [27, 32, 51]. Simi-
lar to [35, 88], PHMon can be integrated with an interactive
debugger, such as GDB, and provide watchpoints by effec-
tively filtering and monitoring different ranges of memory
addresses. PHMon can also evaluate conditional break points
and we illustrate this capability in Section 5.4.

Dynamic Information Flow Tracking (DIFT) is a tech-
nique for tracking information during the program’s execu-
tion by adding tags to data and tracking the tag propagation.
Software-only implementations of DIFT [50, 54, 59] have
large performance overheads. To reduce the performance
overhead, hardware implementations for DIFT have been pro-
posed [13, 19, 78, 81]. These techniques provide different
levels of flexibility for DIFT, from 1-bit tags [59] and multi-
bit tags [19] to more flexible designs [13, 81]. Instead of
comparing PHMon with custom hardware for BC and DIFT,
Section 2.2 provides a comparison with FHMons that are
capable of performing both BC and DIFT.

2.2 Flexible Hardware Monitors (FHMons)

FHMons provide flexible monitoring capabilities and can be
applied to a range of applications. MemTracker [82] imple-
ments tag-based hardware support to detect memory bugs.
Several existing works [25, 26, 28] extend DIFT tag-based
monitoring into more flexible frameworks capable of support-
ing different security use cases. PUMP [28] provides pro-
grammable software policies for tag-based monitoring with
invasive changes to the processor pipeline. FlexCore [25] is
a re-configurable architecture decoupled from the processor,
which provides a range of runtime monitoring techniques.
The programmable FPGA fabric of FlexCore restricts its in-
tegration with a high-performance core. Harmoni [26] is a
coprocessor designed to apply different runtime tag-based
monitoring techniques, where the tagging capability is not
as flexible as FlexCore or PUMP. HDFI [76] and REST [74]
provide memory safety through data-flow isolation by adding
a 1-bit tag to the L1 data cache.

Among the tag-based FHMons, HDFI [76] is the closest
work to PHMon in terms of providing a realistic evaluation
environment. Both HDFI and PHMon implement a hardware
prototype, rather than relying on simulations, and evaluate
a full Linux-based software stack on an FPGA. Contrary to
PHMon, HDFI applies invasive modifications to the processor
pipeline (adds a 1 bit tag to L1 data cache and modifies the
decode and execute stages of the pipeline). HDFI is restricted
to enforcing data-flow isolation policies to prevent memory
corruption. Although PHMon can be used for sensitive data
protection (e.g., preventing Heartbleed), compared to HDFI,
PHMon has limited capabilities to protect against memory
corruption. However, unlike HDFI, PHMon can be applied
in security use cases beyond memory corruption prevention,
such as accelerating the detection of security vulnerabilities

https://github.com/bu-icsg/PHMon
https://github.com/bu-icsg/PHMon

Table 1: Comparison of previous hardware monitoring techniques with PHMon

Mechanism Monitoring Use Cases Source Code Hardware Evaluation Avg. Performance Power/Area
Mechanism Requirement Modification Methodology Overhead Overhead

Hardbound [27] Tag-based BC Yes Inv Sim 5%-9% # N/A

SafeProc [32] Tag-based BC Yes Inv Sim 5% # N/A

Watchdog [51] Tag-based BC Yes Inv Sim 15%-25% # N/A

LIFT [59] SW (DBI) DIFT No SW SW ∼200%-300% # N/A

TaintCheck [54] SW (Tag-based) DIFT No SW SW Avg: # N/A # N/A

Multi-Core DIFT [50] SW (Threads) DIFT No SW Sim 48% # N/A

DIFT [78] Tag-based DIFT No Min-inv Sim & Emul 1.1% # N/A

Raksha [19] Tag-based DIFT No Inv FPGA 48% # N/A

FlexiTaint [81] Tag-based DIFT Yes Min-inv Sim 1%-3.7% # N/A

MemTracker [82] Tag-based MC Yes Inv Sim 2.7% # N/A

DataSafe [13] Tag-based DIFT No Inv Sim Avg: # N/A # N/A

DISE [16] Binary Rewriting FI, (De)compress No Inv Sim Avg: # N/A # N/A

LBA [11] Trace-based MC, DIFT, LOCKSET No Min-inv Sim 390%-700% # N/A

Optimized LBA [12] Trace-based MC, DIFT, LOCKSET No Min-inv Sim 2%-327% # N/A

FADE [30] Trace-based Memory & Propagation Tracking No Min-inv Sim 20%-80% Raw numbers

Partial Monitoring [46] Trace-based MC, RC, DIFT, BC No Min-inv Sim 50% (4%-11%) / (7%)

PUMP [28] Tag-based NXD+NWC, DIFT, CFI, MC Yes Inv Sim ∼8% (47%) / (55%)

Harmoni [26] Tag-based MC, RC, DIFT, BC Yes Min-inv RTL Sim ∼1%-8% (10%) / (110%)

FlexCore [25] Tag-based MC, DIFT, BC, SEC Yes Min-inv RTL Sim 5%-44% (14.6%) / (32.5%)

HDFI [76] Tag-based SL Enhancement, Code Ptr Sep, Info Leak Yes Inv FPGA 0.94% # N/AKernel, Stack, and VTable Ptr Prot

Nile [23] Trace-based Shadow Stack No Min-inv FPGA 0.78% (26%) / (15%)

REST [74] Tag-based Stack & Heap Prot No Inv Sim 2%-25% # N/A

PHMon (This Work) Trace-based Shadow Stack, Fuzzing No Min-inv FPGA 0.94% (5%) / (13.5%)Info Leak, Debugging

“Inv” = Invasive; “Min-inv” = Minimally-invasive; “# N/A” = Numbers not available; Sim = “Simulation”; Emul = “Emulation”; “MC” = Memory Checking; “RC” = Reference Counting
“BC” = Bounds Checking; “FI” = Fault Isolation; “SEC” = Soft Error Checking; “SEP” = Seperation; “SL” = Standard Library; “Ptr” = Pointer; “Prot” = Protection; “Info” = Information; “Leak” = Leakage

(we demonstrate this capability in Section 5).

Overall, to the best of our knowledge, the existing flexible
tag-based monitoring techniques are a subset of an event-
action monitoring model, where the actions are restricted to
tag-propagation and raising an exception (handled by soft-
ware). In this regard, these tag-based FHMons are reference
monitors that enforce memory protection policies. PHMon
provides a more comprehensive language for actions. Hence,
we can leverage PHMon in a wider range of security appli-
cations, not limited as a reference monitor to enforce mem-
ory protection policies. An efficient implementation of a tag-
based FHMon, such as HDFI, is complementary to PHMon.

In a multi-core system, Log-Based Architectures (LBA)
[10, 11] implement trace-based monitors that capture an exe-
cution log from a monitored program on one core and transfer
the collected log to another general-purpose core, where a
dynamic tool (lifeguard) executes and enforces the security
policies. The optimized LBA [12] considerably reduces the
performance overhead of LBA [11] (from 3×-5× to ∼50%)
at the cost of higher power and area overheads. From the
perspective of the event-action monitoring model, LBA’s
expressiveness in terms of monitoring rules and actions is
close to software-based techniques. However, the LBA trace-
based monitor suffers from considerable performance, power,
and area overheads. Similar to optimized LBA, FADE [30],

DISE [16], and partial monitoring [46] apply filtering, pattern
matching, and dropping decisions to the execution trace, re-
spectively. Rather than utilizing an additional general-purpose
core, PHMon provides a programmable hardware capable of
performing a smaller range of monitoring techniques, but
does so efficiently and with significantly lower power and
area overheads. Among the trace-based FHMons, Nile [23] is
the closest work to PHMon. Compared to LBA architectures
and PHMon, Nile provides a restricted set of possible actions;
however, Nile’s actions are not limited to tag propagation.
Nile only supports comparison operations (no other arith-
metic or logical operations), which restricts its applicability
for different use cases.

2.3 Generic Monitoring Hardware Extensions
Modern processors provide hardware features and extensions
to collect runtime hardware usage information. Hardware Per-
formance Counters (HPCs) are hardware units for counting
the occurrence of microarchitectural events, such as cache
hits and misses, at runtime. A number of previous works use
HPCs for malware detection [24, 40, 57, 73]. However, recent
studies [21, 87] shed light on the pitfalls and challenges of
using HPCs for security. Moreover, HPCs are limited to a
predefined pool of microarchitectural events, while PHMon
and FHMons provide a set of monitoring rules to specify cus-

PHMon: Monitor Events/Take Actions

User/Admin

Event/Action
Specification

Using PHMon API

Program
PHMon

PHMon
Monitor the Process

Execution &
Take Actions

Process Is
Terminated?

PHMon Is
Disabled?

PHMon

Stop Monitoring

PHMon: Match Units

A Match to an Event
Is Found?

PHMon: Queue
Enqueue the Match

Packet to Take Actions

Y N

Y

Monitor Events Take Actions

Y

Y

Actions Are Done?

PHMon: Action Unit

Take an Action

Interrupt ALU Operation
Memory

Operation
Skip Actions

PHMon: Queue

Dequeue a
Match Packet

Figure 1: An overview of the event-action model provided in PHMon.

RISC-V Rocket
Microprocessor

Pipelined
Processor Core

L1
Data Cache

PC_GEN
/Fetch

Dec Exe Mem WB

TU

PHMon

Commit Log
- inst (32 bits)
- pc_src (64 bits)
- pc_dst (64 bits)
- addr (64 bits)
- data (64 bits)

CoreInterrupt

Memory Request

Command
 - inst
 - [Rs1]
 - [Rs2]

Response
 - Rd
 - [Rd]

CoprocessorInterrupt

MachineStatus
Busy

PageTableWalker

Memory Response

RoCC Interface

Figure 2: The RoCC interface extended with
commit log execution trace.

tom events. Additionally, PHMon and FHMons are capable
of performing follow-up actions, while HPCs are restricted to
interrupts.

Last Branch Record (LBR) is a hardware feature available
in the recent Intel processors, which records a history of the 16
most recent indirect jumps. Several works [14, 58, 84] rely on
LBR, as a pseudo shadow stack, to mitigate Return-Oriented
Programming (ROP) attacks. However, history-flushing at-
tacks [9, 72] can evade such LBR-based detection techniques.
LBR is not designed for security purposes; hence, it cannot
provide a principled security solution. Unlike LBR, PHMon’s
implemented shadow stack is not limited to maintaining only
the last 16 branch records (the limit for PHMon is the al-
located memory size); hence, PHMon is not vulnerable to
history flushing attacks.

Modern processors also provide architectural extensions,
like Intel Processor Trace (PT) [66] and ARM CoreSight [48],
to capture debugging information. Both Intel PT and ARM
CoreSight provide enormous debugging capabilities; how-
ever, these technologies are primarily designed to provide
debugging traces for post-processing. Online processing ca-
pabilities, however, are essential for the timely detection of
security threats. FHMons and PHMon expand the online mon-
itoring with efficient online processing and prevention capa-
bilities. Although Intel PT is designed for offline debugging
and failure diagnosis, recent techniques [29,31,39] utilize this
hardware extension to enforce Control Flow Integrity (CFI)
at runtime. Similarly, kAFL [71] is a kernel fuzzing engine
that uses Intel PT to obtain code coverage information.

3 Threat Model and Assumptions

In this work, we focus on detecting software security vul-
nerabilities and preventing attackers from leveraging these
vulnerabilities. We follow the common threat model among
the related works. We assume software may include one or
more security bugs and vulnerabilities that attackers can lever-
age to perform an attack. We do not assume any restrictions
about what an attacker would do after a successful attack.

Specifically for our use cases, we assume an application may
suffer from a security vulnerability such as buffer overflow
and an attack can leverage that to gain the control of program’s
stack. Also, motivated by our information leakage prevention
use case, we assume that sensitive memory contents can be
leaked to unauthorized entities.

Since PHMon relies on OS support, we assume that the
OS kernel is trusted. However, in principle, PHMon can be
extended to protect (part of) the OS kernel. Section 7.2 pro-
vides a more detailed discussion about PHMon’s capabilities
and limitations in protecting the OS kernel. Also, we assume
all hardware components are trusted and bug free. Hence,
hardware-based attacks such as row hammer [41] and cache-
based side-channel attacks are out-of-scope of this work.

As mentioned before, for security enforcement use cases,
we can consider PHMon as a reference monitor [4, 70]. A
reference monitor should satisfy three principles: complete
mediation, tamperproofness, and verifiability. PHMon satis-
fies the complete mediation principle. Whenever a context
switch into a monitored process occurs, PHMon continues
monitoring. Additionally, PHMon monitors the execution of
the forked processes of a parent process. Regarding tamper-
proofness, as we will discuss in Section 4.2, PHMon provides
the option of “sealing” configurations to prevent further modi-
fications. With respect to verifiability, PHMon is small enough
to be subject to verification (13.5% area overhead compared
to an in-order processor).

4 PHMon

We propose a minimally-invasive programmable hardware
monitor (for a general-purpose processor) to enforce an event-
action monitoring model. Figure 1 presents a high-level
overview of PHMon that implements such an event-action
monitoring model. To enable per process monitoring, soft-
ware API (to configure/program the hardware monitor) and
OS support are mandatory. A user/admin can configure the
hardware to monitor the execution of one or more processes.
Then, the hardware monitor collects the runtime execution

information of the processor, checks for the specified events,
and performs follow-up actions. Once the process terminates
or the user/admin disables the monitoring, the hardware mon-
itor stops monitoring. In the rest of this section, we discuss
the challenges associated with designing PHMon and our de-
sign decisions to address these challenges. In the next three
subsections, we explain the hardware design for PHMon, its
software interface, and the OS support for PHMon.

4.1 PHMon: Architecture
In this subsection, we present the hardware design of PHMon.
Our main design goal for our hardware monitor is to pro-
vide an efficient and minimally invasive design. According
to the event-action monitoring model, our hardware monitor
should perform three main tasks: collect the instruction ex-
ecution trace of a processor, examine the execution trace to
find matches with programmed events, and take follow-up ac-
tions. To perform these tasks, PHMon consists of three main
architectural units: a Trace Unit (TU), Match Units (MUs),
and an Action Unit (AU).

4.1.1 Trace Unit (TU)

The TU is responsible for performing the first task, i.e., col-
lecting the instruction execution trace. To design our TU, we
need to answer the following questions: what information
should the TU collect, from where should it collect this infor-
mation, and how to transfer the collected information to the
hardware monitor?

In this work, we only collect information about the architec-
tural state of the processor (not the micro-architectural state).
To this end, the TU collects the entire architectural state of the
processor using five separate entries, i.e., the undecoded in-
struction (inst), the current Program Counter (PC) (pc_src),
the next PC (pc_dst), the memory/register address used in the
current instruction (addr), and the data accessed by the cur-
rent instruction (data). The inst entry contains the opcode
as well as the input and output operand identifiers. In
principle, we can collect this information from different stages
of a processor’s pipeline (i.e., decode, execute, memory, and
write-back stages). We can take advantage of the FIRRTL [45]
compiler1 (via annotations) to extract specific signals with
low effort and transfer them to PHMon. To ensure that we
monitor the instructions that are actually executed and in the
order they are committed, we collect the above-mentioned
information from the commit stage of the pipeline. Hence, we
call the collected information a commit log.

During each execution cycle, the TU collects a commit log
and transfers it to our hardware monitor. To prevent stalling
the processor’s pipeline while PHMon processes each commit
log, we design PHMon as a parallel decoupled monitor. Such

1FIRRTL is an Intermediate Representation (IR) for digital circuits. The
FIRRTL compiler is analogous to the LLVM compiler.

PHMon

ALU
Local

Register
File

Control Unit
(CU)

Ma
tc
h
Qu

eu
e

MU
_d
at

a
MU
_a
dd

r
MU
_i

d
..

.

Match Packet

conf_ptr

Config Unit-0 (CFU-0)

...
Type
2b

In1
3b

In2
3b

Fn
4b

Out
3b

Data
64b

Action Config Table

conf_ctr

Action Unit (AU)
Commit
Log
- inst
- pc_src
- pc_dst
- addr
- data

Cmd/Resp

Interrupt

Memory

Match Unit-0 (MU-0)

Predicate:
- inst = *8067
- pc_src = *
- pc_dst = *
- addr = *
- data = *

Counter Threshold

=?

C
o
m
p
a
r
a
t
o
r

Figure 3: PHMon’s microarchitecture.

a decoupled monitor requires an interface to receive the com-
mit log from the processor. In this work, we design PHMon
as an extension to the open-source RISC-V Rocket proces-
sor [5] via its Rocket Custom Coprocessor (RoCC) interface.
RISC-V [83] is an open standard Instruction Set Architecture
(ISA). We choose the Rocket processor due to the availability
of its RISC-V open ISA and the capability of running the
Linux OS on the processor. However, our PHMon design is
independent of the transport interface and ISA.

Figure 2 depicts the extended RoCC interface used in our
design to communicate with the Rocket processor. The RoCC
interface provides transmitting/receiving register data for com-
munication, status/exception bits, and direct communication
with the memory hierarchy (L1 data cache in our design). We
have extended the RoCC interface to carry the commit log
trace (shown in red in Figure 2). Since Rocket is an in-order
processor, we minimally modify the write-back stage of the
Rocket processor’s pipeline to collect the commit log trace.

PHMon receives the commit log, collected by the TU, from
the RoCC interface. Then, as shown in Figure 3, PHMon
applies the configured monitoring rules to the commit log
to detect events (handled by MUs) and performs follow-up
actions (managed by the AU). As mentioned before, PHMon
is decoupled from the processor and it processes the incoming
commit logs one by one. Hence, we need a queuing mech-
anism to record incoming commit log traces. Rather than
placing a queue between the RoCC interface and PHMon, we
filter the incoming packets using MUs and only record the
matched events in a queue prior to taking actions.

4.1.2 Match Units (MUs)

MUs are responsible for monitoring an incoming commit log
and finding matches with programmed events. Each MU is in
charge of detecting a distinct event using a set of monitoring
rules. An event is specified at bit-granularity by a match
entry and its corresponding care/don’t care mask entry,
which are applied on each commit log entry. An MU matches
the care bits of each match entry with the corresponding
bits in the commit log entry. As an example, consider a sce-
nario where a user wants to monitor any of the four branch
instructions including BLT, BGE, BLTU, and BGEU. The user

can configure an MU to monitor these four instructions using
the following matching condition:

BLT, BGE, BLTU, BGEU: inst = 0x00004063; mask bit = 0xffffbf80

The matching condition for inst evaluates to true when the
current instruction is a match with one of the BLT, BGE, BLTU,
or BGEU instructions. Note that each of these instructions is
identified based on the opcode and func3 bits (refer to [83]).
For each of the remaining entries of the commit log (i.e.,
pc_src, pc_dst, addr, and data), we set the masking bits
to 0xffffffffffffffff, indicating these fields are don’t
cares. In Section 4.2, we will present our software interface
for programming MUs to monitor the target events. Whenever
the predicate (the logical conjunction of the matches on all
the commit log entries) evaluates to true, a counter in the
corresponding MU increases. Once the counter reaches a
programmed threshold value, the MU triggers an activation
signal and sends a match packet to the AU. The AU queues
the incoming match packets, while it performs actions for
the packets arrived earlier. To reduce the queuing traffic, an
MU filters commit log traces based on the monitoring rules
before queuing them.

An MU may be programmed by a user process to mon-
itor only its own execution or by an admin to monitor pro-
cesses with lower permissions. In both cases, MU configu-
ration becomes part of a process’ context and is preserved
across context switches by the OS. In Section 6.2, we evalu-
ate the performance overhead caused by preserving PHMon’s
configuration across context switches.

Although each MU monitors a separate event, PHMon is
capable of monitoring a sequence of events using multiple
MUs communicating through a shared memory space set up
by either the OS or the monitored process itself. For exam-
ple, multiple MUs may all write to or read from the shared
memory.

4.1.3 Action Unit (AU)

The AU is responsible for performing the follow-up actions.
Our main goal in designing the AU is to provide a minimal
design that supports a variety of actions including arithmetic
and logical operations, memory operations, and interrupts. To
this end, we effectively design our AU as a small microcon-
troller with restricted I/O consisting of four microarchitectural
components: Config Units (CFUs), an Arithmetic and Logical
Unit (ALU), a Local Register File, and a Control Unit (CU).
In addition to these four components, the Match Queue that
records the match packets (generated by MUs) is placed in
the AU (see Figure 3).

Each MU is paired with a CFU, where the CFU stores the
sequence of actions to be executed once the MU detects a
match. These programmable actions are in fact the instruc-
tions of a small program that executes in the AU. The CU
performs the sequence of actions via hardware operations

(i.e., ALU operations and memory requests) or an interrupt
(handled by software). The CU uses the registers in the Local
Register File (6 registers in total) to perform the hardware
operations. Our AU implementation enforces the atomic ex-
ecution of actions. To this end, the CU executes all of the
follow-up actions of one match packet before switching to
the actions of the next match packet.

As part of the actions, the AU can access memory by
sending requests to the L1 data cache, a virtually-indexed
physically-tagged cache, through the RoCC interface. Hence,
all memory accesses are to virtual addresses. The L1 data
cache of Rocket processor has an arbiter to handle incom-
ing requests from several agents including the Rocket core
and the RoCC interface. Note that the memory hierarchy of
Rocket core manages the memory consistency.

In Appendix A, we provide a detailed description about
each of the AU’s microarchitectural components.

4.2 PHMon: Software Interface
We use RISC-V’s standard ISA extensions [83], called
custom RISC-V instructions, to configure PHMon’s MUs
and CFUs, as well as to communicate with PHMon. We pro-
vide a list of functions that one can use to communicate with
PHMon, where each function is accessible by a user-space
process, a supervisor, or both. Note that when a user process
programs PHMon, then PHMon only monitors that process’
execution. When an admin programs PHMon, it can be con-
figured to monitor a specific user process or monitor all user
processes. To prevent an unauthorized process from recon-
figuring PHMon (after an MU and its paired CFU are con-
figured), we provide an optional feature to stop any further
configuration. To this end, we leverage the Rocket’s privilege
level (MStatus.priv) provided to PHMon through the RoCC
interface. According to the privilege level, PHMon permits or
blocks incoming configuration requests.

4.3 PHMon: OS Support
In this section, we discuss the necessary modifications to
the Linux OS kernel to support PHMon. We categorize our
modifications into two classes: per process modifications and
interrupt handling modifications.

4.3.1 Per Process OS Support
We extend Linux to support PHMon and provide a complete
computing stack including the hardware, the OS, and soft-
ware applications. We provide the OS support for PHMon
at the process level. To this end, we alter the task_struct
in the Linux Kernel to maintain PHMon’s state for each pro-
cess. We store the MUs’ counters, MUs’ thresholds, the value
of local registers, and CFUs’ configurations as part of the
task_struct (using the custom instructions for reading PH-
Mon register values).

We modify the Linux kernel to initialize the PHMon infor-
mation before the process starts its execution. Once PHMon is

configured to monitor a process, we enable a flag (part of the
task_struct) for that process. Our modified OS allocates
a shared memory space for communication between MUs.
After allocation, the OS maintains the base address and the
size of the shared memory as part of the PHMon information
for the process in the task_struct. Additionally, the OS
sends the base and size values to PHMon. PHMon can sim-
ply protect the shared memory from unauthorized accesses,
where only the AU and the OS are authorized to access the
shared memory. To provide this protection, one of the MUs
can monitor any user-space load or store accesses to this
range of memory and trigger an interrupt in case of memory
access violation.

During a context switch, the OS reads the MU information
(counter and threshold values) as well as the Local Register
File information from PHMon and stores them as the PHMon
information of the previous process in the task_struct.
Before the OS context switches to a monitored process, it
reads the MU information of the next process and writes
it to PHMon registers using the functions provided in the
PHMon API. Note that to retain the atomicity of the pro-
grammed actions, our modifications to the OS delay a context
switch until the execution of the current set of actions and
the corresponding actions of all the match packets stored
in the Match Queue are completed. It is worth mentioning
that our current implementation of PHMon is not designed
for real-time systems. Hence, we currently do not provide any
guarantees for meeting stringent real-time deadlines.

4.3.2 Interrupt Handling OS Support
The OS is responsible for handling an incoming interrupt
triggered by the CU. We configure our RISC-V processor
to delegate the interrupt to the OS. Additionally, we modify
the Linux kernel to handle the incoming interrupts from the
RoCC interface. In our security-oriented use case, the OS
terminates the process that caused the interrupt based on the
assumption that an anomaly or violation has triggered the
interrupt. Note that the OS can handle the interrupt in various
ways according to the user’s requirements (e.g., trapping into
GDB for the debugging use case in Section 5.4).

5 Use Cases
PHMon distinguishes itself from related work by its flexibility,
versatile application domains, and its ease of adoption. To
demonstrate the versatility of PHMon, we present four use
cases: a shadow stack, a hardware-accelerated fuzzing engine,
an information leakage prevention mechanism, and hardware-
accelerated debugging.

5.1 Shadow Stack
Our first use case is a shadow stack, a security mechanism
that detects and prevents stack-based buffer overflows as well
as Return-Oriented-Programming (ROP) attacks. As data on
the stack is interleaved with control information such as func-
tion return addresses, an overflow of a buffer can violate

the integrity of such control information and in consequence
compromise system security. A shadow stack is a secondary
stack that keeps track of function return addresses to protect
them from being tampered with by an attacker. A stack buffer
overflow attack occurs when a program writes data into a
stack-allocated buffer, such that the data is larger than the
buffer itself. ROP is a contemporary code-reuse attack that
combines a sequence of so-called gadgets into a ROP-chain.
Gadgets typically consist of a small number of instructions
ending in a ret instruction. However, executing a ROP-chain
violates function call semantics (i.e., there are no correspond-
ing calls to the rets in the chain). A shadow stack can
therefore detect ROP attacks.

Rather than providing a dedicated hardware solution (e.g.,
Intel’s proposed shadow stack [67]), we leverage PHMon’s
flexibility to implement a hardware shadow stack. A shadow
stack can easily be realized in PHMon with two MUs. We
program one MU (MU0) to monitor call instructions and
another MU (MU1) to monitor ret instructions. Also, we
configure each of the MUs to trigger an action for every mon-
itored instance of call and ret (threshold = 1).

The OS allocates a shared memory space, i.e., space for
the shadow stack, for each process that is being monitored.
Both MUs have access to this shared memory space. We can
simply protect this shared memory space against unautho-
rized accesses by monitoring load and store accesses to this
range of addresses leveraging a third MU (as described in Sec-
tion 4.3). Any user-space access to this memory space results
in an interrupt and termination of the violating process. Once
the OS allocates this memory space (during the initialization
of a new process), it stores the base address and the size of the
allocated memory in the first two general-purpose registers of
the Local Register File in PHMon (refer to Appendix A for
more information about the Local Register File). We config-
ure the CFUs to use the base address register as the shadow
stack pointer. The AU accesses the shadow stack by sending
memory requests to the L1 cache using the RoCC interface.

The summary of our event-action scenario for implement-
ing a shadow stack is as follows: the first MU (MU0) mon-
itors calls and pushes the corresponding pc_src value to
the shadow stack. The second MU (MU1) monitors rets
and compares the pc_dst value with the value stored on
the top of the shadow stack. If there is a mismatch between
calls and rets (e.g., an illegal ret address or a ROP attack),
PHMon triggers an interrupt and the OS handles the inter-
rupt. In our current implementation, the OS simply terminates
the process that caused the interrupt. Note that analogous
to [8], we can address call-ret matching violations caused
by setjmp/longjmp by augmenting the jmp_buf struct with
one more field to store the shadow stack pointer.

5.2 Hardware-Accelerated Fuzzing
Fuzzing is the process of providing a program under test
with random inputs with the goal of eliciting a crash due to

a software bug. It is commonly used by software developers
and security experts to discover bugs and security vulnera-
bilities during the development of a software product and
mostly for the deployed software. Big software companies
such as Google [2] and Microsoft [68] use fuzzing extensively
and continuously. For instance, Google’s OSS-Fuzz platform
found over 1,000 bugs in 5 months [33]. Similarly, American
Fuzzy Lop (AFL) [85] is one of the state-of-the-art fuzzers
that successfully identified zero-day vulnerabilities in popular
programs, such as PHP and OpenSSH.

AFL aims to explore new execution paths in the code to
discover potential vulnerabilities. AFL consists of two main
units: the fuzzing logic and the instrumentation suite. The
fuzzing logic controls the mutation and scheduling of the in-
puts, and also decides if the current input is interesting enough
for further fuzzing. During fuzzing, the instrumentation suite
collects branch coverage information of the program for the
current input. In the current version of AFL (2.52b), the in-
strumentation can be applied either at compile time with a
modified gcc compiler (afl-gcc) if source is available or at
runtime by adding instructions to the native binary through
user-mode QEMU for closed-source programs. As QEMU
uses DBI, it can instrument each control-flow instruction with
the necessary book-keeping logic. While this capability is
flexible, DBI comes at a significant performance overhead
(2.5× to 5× [60]). PHMon can easily monitor the control-
flow instructions and apply the necessary book-keeping logic
without incurring the DBI overhead. In this study, we do
not modify the fuzzing logic of AFL. However, we program
PHMon to implement the instrumentation suite.

AFL uses a shared memory region, called bitmap, to store
the encountered basic block transitions (a basic block is an
instruction sequence with only one entry and one exit point)
for the program executed with the most recent input. Each
basic block has an id, calculated by performing logical and
bitwise operations using the current basic block address. The
address that points to the transition information in the bitmap
is calculated based on the current and the previous block id.

We use PHMon as part of AFL as follows (see Figure 4):
(1) AFL starts executing the target program on the RISC-V
processor. (2) PHMon monitors the control-flow instructions
of the target binary. (3) Whenever PHMon detects a control-
flow instruction, it updates the bitmap. (4) The child process
(fuzzed program) terminates. (5) The fuzzing unit compares
the output bitmap with the global bitmap (the collection
of the previously observed basic block transitions) and de-
termines whether the current input is interesting enough for
further fuzzing.

PHMon conducts step (2) and step (3) of the above-
described AFL process. To this end, we program two MUs to
monitor the control-flow instructions (branches and jumps)
with threshold = 1. Both of these MUs have access to the
bitmap allocated by AFL. We program each MU with 12
actions to update the bitmap.

Parent Process (AFL)

Child Process
(The Fuzzed Program)

Program Execution
On RISC-V Processor

PHMon

Fork+Execv
(1)

Process
terminates

(4)

Updating the
bitmap with the

execution trace (3)

Reading the
execution trace (5)

Monitoring
(2)

Shared Memory Region (BITMAP)

Memory

Figure 4: Integration of PHMon with AFL.

5.3 Preventing Information Leakage

PHMon can also be used to prevent the leakage of sensitive
information, such as cryptographic keys. A concrete example
is Heartbleed [34], a buffer over-read vulnerability in the
popular OpenSSL library that allowed attackers to leak the
private key2 of any web-server relying on that library [34].

To prevent Heartbleed, we first identified the memory ad-
dresses that contain the private key. Second, we manually
white-listed all legitimate read accesses (i.e., instructions that
access the key). As legitimate accesses to the key are confined
to three functions that implement cryptographic primitives,
this was a straightforward task. Finally, we programmed PH-
Mon to trigger an interrupt in case any instruction but those
white-listed above accesses the key. To this end, we configure
an MU to monitor load instructions that access the key, and
the CFU contains a series of actions that compare the pc_src
of the load instruction against the white-list. As a proof of
concept, we programmed PHMon to prevent the leakage of
the prime number p and PHMon successfully prevented the
disclosure. Note that the location of sensitive information
and its legitimate accesses can vary in different environments.
Ideally, the information about the location of an instruction
that accesses sensitive data would be produced by a com-
piler (e.g., by annotating sensitive variables). However, we
leave augmenting a compiler tool-chain to produce such meta-
information which can be readily enforced by PHMon as
future work.

5.4 Watchpoints and Accelerated Debugger
As the last use case, we focus on the debugging capabilities of
PHMon. PHMon can provide watchpoints for an interactive
debugger, such as GDB, by monitoring memory addresses
(addr entry of the commit log) and then triggering an inter-
rupt. Although the number of MUs dictates the maximum
number of unique watchpoints that PHMon can monitor, our
watchpoint capability is not limited by the number of MUs.
Each MU can monitor a range of monitoring addresses, spec-
ified by match and mask bits. Here, the range of watchpoint
addresses can be contiguous or non-contiguous. Additionally,
for each range, the user can configure PHMon to monitor read

2More precisely, the attack leaks the private prime number p which allows
the attacker to reconstruct the private key.

accesses, write accesses, or both by specifying the inst entry
of the commit log. It is worth mentioning that most modern
architectures only provide a few watchpoint registers (e.g.,
four in Intel x86). We have used and validated the watch-
point capability of PHMon as part of the information leak
prevention use case, described in Section 5.3.

In addition to watchpoints, PHMon accelerates the debug-
ging process. As an example, PHMon can provide an efficient
conditional breakpoint and trap into GDB. Consider a debug-
ging scenario for a conditional breakpoint in a loop as “break
foo.c:1234 if i==100”, where i is the loop counter. Here,
we want to have a breakpoint and trap into GDB when the
loop reaches its 100th iteration. To this end, PHMon monitors
an event where pc_src has the corresponding PC value of
line 1234. Then, PHMon triggers an interrupt when the MU’s
counter reaches the threshold of 100. Subsequently, the
interrupt handler traps into GDB. In Section 6.2, we measure
the performance improvement of PHMon over GDB for such
a conditional breakpoint.

For the debugging use cases, such as watchpoints and con-
ditional breakpoints, the only required action in case of de-
tecting an event is triggering an interrupt. As a result, PHMon
is synchronized with the program’s execution.

6 Evaluation
In this section, we discuss our approach to validate the func-
tionality of PHMon as well as our evaluation of PHMon using
performance, power, and area metrics.

6.1 Experimental Setup
We implemented PHMon as a RoCC (using Chisel HDL [7])
and interfaced it with the RISC-V Rocket processor [5] that
we prototyped on a Xilinx Zynq Zedboard evaluation plat-
form [63]. We performed all experiments with a modified
RISC-V Linux (v4.15) kernel. We compared the PHMon de-
sign with a baseline implementation of the Rocket processor.
For both the baseline and PHMon experiments, we used the
same Rocket processor configurations featuring a 16K L1
instruction cache and a 16K L1 data cache. Table 2 lists the
microarchitectural parameters of Rocket core and PHMon.
Note that similar to HDFI [76], we do not include an L2 data
cache in our experiments running on Rocket core. Currently,
TileLink2 (the protocol that Rocket Chip uses to implement
the cache coherent interconnect) does not support L2 cache
while the L2 cache in older versions of TileLink is not mature
enough [76]. Due to the limitations of our evaluation board, in
our experiments, the Rocket Core operated with a maximum
frequency of 25 MHz (both in the baseline and PHMon exper-
iments). Note that for our ASIC evaluation, we synthesized
the Rocket core with a target frequency of 1 GHz.

For our shadow stack use case, we calculated the run time
overhead of 14 applications from MiBench [36], 9 appli-
cations (out of 12) from SPECint2000 [37], and 8 applica-
tions (out of 12) from SPECint2006 [38] benchmark suites.
To measure the performance improvement of our hardware-

Table 2: Parameters of Rocket core and PHMon.
Rocket Core

Pipeline 6-stage, in-order
L1 instruction cache 16 KB, 4-way set-associative
L1 data cache 16 KB, 4-way set-associative
Register file 31 entries, 64-bit

PHMon

MUs 2
Local Register File 6 entries, 64-bit
Match Queue 2,048 entries, 129-bit
Action Config Table 16 entries

accelerated AFL, we evaluated 6 vulnerable applications [85]
including indent 2.2.1, zstd, PCRE 8.38, sleuthkit 4.1.3,
nasm 2.11.07, and unace 1.2b.

To assess power and area, we used Cadence ASIC toolflow
for 45nm NanGate process [69] to synthesize PHMon and the
Rocket processor to operate at 1 GHz. We then measured the
post-extraction power consumption and the area of our system
as well as our baseline system, i.e., the unmodified Rocket
processor. We considered all memory blocks (both in PHMon
and Rocket) as SRAM blocks and used CACTI 6.5 [80] to
estimate their power and area.

6.2 Functionality Validation and Performance
Results

In this subsection, we validate the functionality of our use
cases and evaluate their performance overhead. Additionally,
we evaluate the performance overhead PHMon imposes dur-
ing context switches.
Shadow Stack. We validated the functionality of our shadow
stack using benign benchmarks and programs vulnerable to
buffer overflow attacks. All benchmark programs ran suc-
cessfully with the shadow stack enabled resulting in no false
detections from PHMon. We developed simple programs vul-
nerable to the buffer overflow using strcpy and exploited
this vulnerability.3 As designed, PHMon detected the mis-
matches between calls and rets, triggered an interrupt, and
the Linux Kernel terminated the process.

We measured the runtime overhead of our shadow
stack on different benchmark applications from MiBench,
SPECint2000, and SPECint2006 benchmark suites. We ran
each benchmark five times and calculated the average runtime
overhead. All standard deviations were below 1.5%. Unfortu-
nately, we were not able to successfully cross-compile and run
three of the SPECint2000 benchmarks, i.e., eon, perlbmk, and
vortex, for RISC-V. For the rest of the SPECint2000 bench-
marks, we used -O2 for compilation and reference input
for evaluation (we clarify the exceptions in the results). For
SPECint2006 benchmark applications, we used -O2 for com-
pilation. Considering the limitations of our evaluation board,

3We disabled Address Space Layout Randomization (ASLR) to simplify
our buffer overflow attack.

m
cf

†

gz
ip

⋆

tw
ol

f

bz
ip

⋆

vp
r

gc
c

cr
af

ty

ga
p±

pa
rs

er

Ge
om

et
ric

M
ea

n

bz
ip

2

lib
qu

an
tu

m

go
bm

k

hm
m

er

as
ta

r

h2
64

re
f

xa
la

nc
bm

k

gc
c

Ge
om

et
ric

M
ea

n

FF
T

su
sa

n

bl
ow

fis
h

(d
ec

)

GS
M

 (e
nc

)

IF
FT

bl
ow

fis
h

(e
nc

)

GS
M

 (d
ec

)

sh
a

AD
PC

M
 (e

nc
)

ba
sic

m
at

h

jp
eg

 (e
nc

)

qs
or

t

AD
PC

M
 (d

ec
)

jp
eg

 (d
ec

)

bi
tc

ou
nt

di
jk

st
ra

pa
tri

cia

rij
nd

ae
l (

en
c)

st
rin

gs
ea

rc
h

Ge
om

et
ric

M
ea

n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Pe
rfo

rm
an

ce
 O

ve
rh

ea
d

(%
)

0.4

1.1 1.1 1.2
1.3 1.4 1.4

1.9

4.8

1.4

0.3
0.5

1.1 1.1 1.2

2.6 2.7

3.4

1.2

0.0 0.1 0.1 0.1 0.2 0.2 0.3
0.4 0.5 0.6

0.8 0.9 0.9

1.3
1.5

1.8 1.9

3.1

5.1

0.5

SPECint2000 SPECint2006 MiBench

Figure 5: The performance overhead of PHMon as a shadow stack.
† We were not able to run mcf benchmark with reference input on our evaluation board; as a result, we used the test input for this benchmark.
? Due to the memory limitations of our evaluation board, we had to reduce the buffer size of the reference input to 3 MB for gzip and bzip2 benchmarks.
± We had to use -O0 and an input buffer size of 96 MB to successfully run gap benchmark.

we used the test inputs to evaluate SPECint2006. Never-
theless, we were not able to run mcf, sjeng, omnetpp, and
perlbench benchmarks mainly due to memory limitations.
Figure 5 shows the performance overhead of PHMon as a
shadow stack over the baseline Rocket processor. On average,
PHMon incurs 0.5%, 1.4%, and 1.2% performance overhead
for our evaluated MiBench, SPECint2000, and SPECint2006
applications, respectively. Overall, PHMon has a 0.9% perfor-
mance overhead on the evaluated benchmarks.

Table 3 (the first three columns) provides a head-to-head
comparison for the performance overhead of PHMon-based
and HDFI-based shadow stacks. For both PHMon and HDFI,
the evaluation baseline is the RISC-V Rocket processor. Un-
fortunately, HDFI only provides the shadow stack overhead
numbers for four SPECint2000 benchmarks [76]. These four
benchmarks are cross-compiled for RISC-V using the GCC
toolchain. On average, for these four benchmarks, PHMon
has a 1.0% performance overhead compared to a 2.1% perfor-
mance overhead of HDFI.

In the last column of Table 3, we reported the performance
overhead of our front-end pass LLVM implementation of a
shadow stack. Our LLVM pass instruments the prologue and
epilogue of each function to push the original return address
and pop the shadow return address, respectively. We used
Clang to compile four SPECint2000 benchmarks and used
the reference input for our evaluations. We only compiled
the main executable of SPEC benchmarks (without libraries
such as glibc) using Clang. Hence, the implemented front-
end pass only protects the main executable. On average, our

Table 3: Performance overhead of PHMon-based shadow
stack compared to that of HDFI-based (as reported in [76])
and LLVM-based shadow stacks.

Benchmark PHMon HDFI LLVM Plugin

gzip 1.12%? 1.12% 2.24%?

mcf 0.42%† 1.76% 8.42%†

gap 1.92%± 3.34% 12.30%±

bzip2 1.15%? 3.05% 3.66%?

? Similar to HDFI, due to the memory limitations of our evaluation board, we had to reduce the
buffer size of the reference input to 3 MB for gzip and bzip2 benchmarks.
± We used -O0 for PHMon and -O2 for LLVM and an input buffer size of 96 MB to run gap.
† Due to memory limitation of our evaluation board, we used test input for mcf benchmark.

LLVM plugin has a 5.4% performance overhead.
The main source of performance overhead for PHMon is

an increase in the number of memory accesses. Unlike our
Rocket processor configuration, in a realistic deployment, the
processor would at least include an L2 data cache. Hence, we
expect PHMon’s performance overhead to be lower in a real-
istic deployment, which alleviates the significant performance
overhead caused by a cache miss.

To put PHMon’s performance overhead into perspective,
Table 4 compares PHMon’s overhead with that of other state-
of-the-art software and hardware shadow stack implementa-
tions. To facilitate this comparison, we have only listed the
implementations that measure their performance overhead
on SPEC benchmarks. As an overall criterion, the average
overhead of a technique should be less than 5% for getting
adopted by industry [79], which PHMon’s shadow stack im-

Table 4: Performance overhead of previous software and hard-
ware implementations of shadow stack compared with PH-
Mon.

Mechanism Methodology Performance Overhead

[79] Software (LLVM plugin) 5% on SPEC2006

[1] Software (binary rewriting) 21% on SPEC2000 (CFI + ID check)

[17] Software (binary rewriting) 20.53% on SPEC2000 (encoding)
53.60% on SPEC2000 (memory isolation)

[22] Software (Pin tool) 2.17× on SPEC2006

[75] Software (DynamoRIO) 18.21% on SPEC2000

[86] Software (static binary instrumentation) 18% on SPEC2006

[20] Software 3.5% on SPEC2006

[56] Hardware ∼0.5%-∼2.4% on SPEC2000

[49] Hardware 0.24% on SPEC2006

[76] Hardware 2.1% on SPEC2000

PHMon Hardware 1.4% on SPEC2000, 1.2% on SPEC2006

sl
eu

th
ki

t

zs
td

un
ac

e

in
de

nt

na
sm

pc
re

G
eo

m
et

ri
c

M
ea

n

Benchmarks

0

5

10

15

20

25

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t (

X)

11.3

13.7

16.4
17.8

18.9
20.6

16.1

3.7

7.6

4.2
6.1

5.2
6.3

5.4

1.0 1.0 1.0 1.0 1.0 1.0 1.0

(0
.1
1)

(0
.1
8)

(0
.1
5)

(0
.1
4)

(0
.1
3)

(0
.1
2)

(0
.1
4)

Baseline AFL
PHMon
Fork Server

Figure 6: Performance improvement of PHMon over the base-
line AFL compared to fork server AFL. The numbers below
the “Baseline AFL” bars show the number of executions per
second for the baseline AFL.

plementation satisfies.
Hardware-Accelerated Fuzzing. To fuzz RISC-V programs,
we integrated AFL into the user-mode RISC-V QEMU ver-
sion 2.7.5. We fuzzed each of the 6 vulnerable programs for
24 hours using QEMU on the Zedboard FPGA. To provide
a fair comparison, for the PHMon-based AFL experiments,
we fuzzed each of these programs for the same number of
executions as in the QEMU experiments. Similar to other
works in fuzzing [71, 77], we used the number of executions
per second as our performance metric. We fuzzed each vul-
nerable program three times and calculated the average value
of performance (all standard deviations were below 1%).

For performance evaluation, we used the user-mode
QEMU-based AFL running on the FPGA as our baseline.
We also ran the QEMU-based fork server version of AFL
as a comparison point for PHMon. Figure 6 shows the
performance improvement of the PHMon-based AFL over
our baseline compared to the performance improvement of
the fork server version of AFL. On average, PHMon improves
AFL’s performance by 16× and 3× over the baseline and
fork server version, respectively. Similar to the baseline AFL,
we can integrate PHMon with the fork server version of
AFL. We expect this integration to further enhance PHMon’s
performance improvement of AFL. We validated the correct

functionality of the PHMon-based AFL by examining the
found crashes. On average, for the 6 evaluated vulnerable
programs, PHMon-based AFL and the baseline AFL detected
12 and 11 crashes, respectively, for the same number of
executions. The mismatch between the two approaches is
due to the probabilistic nature of AFL-based fuzzing. Since
PHMon improves the performance of AFL, it increases the
probability of finding more unique crashes compared to the
baseline.

Detecting Information Leakage. To validate that PHMon
detects and prevents confidential information leakage, specifi-
cally private key of a server, we reproduced the Heartbleed
attack on the FPGA by using OpenSSL version 1.0.1f. We ini-
tially sent non-malicious heartbeat messages to the server. As
expected, none of these messages resulted in false positives.
Next, we sent malicious heartbeat messages to the server to
leak information. PHMon successfully detected the informa-
tion leakage attempt and triggered an interrupt; and then, the
OS terminated the process. For the non-malicious heartbeat
messages, PHMon has virtually no performance overhead
(only once a key is accessed, PHMon performs a few ALU
operations).
Watchpoints and Accelerated Debugger. We have used

and validated the watchpoint capability of PHMon as part of
the information leak prevention use case. Also, we evaluated
PHMon’s capability in accelerating a conditional breakpoint
in a loop. Once the program execution reaches the breakpoint,
PHMon triggers an interrupt. We evaluated two scenarios
for handling the interrupt, trapping into GDB (PHMon_GDB)
and terminating the process by generating the core dump file
(PHMon_CoreDump). Figure 7 shows the activation time of the
breakpoint over the loop index value for GDB compared to
two PHMon-accelerated scenarios. In case of GDB, which
uses software breakpoints, each loop iteration results in two
context switches to/from GDB, where GDB compares the
current value of the loop index with the target value.

For the PHMon_GDB case, since PHMon monitors and eval-
uates the conditional breakpoint, GDB can omit the software
breakpoints used in the previous case. Due to the initial over-
head of running GDB, PHMon_GDB has a similar execution
time as GDB for the first breakpoint index (i = 0). By in-
creasing the breakpoint index, PHMon_GDB’s execution time
virtually stays the same while GDB’s execution time increases
linearly. For the PHMon_CoreDump case, since PHMon mon-
itors the conditional breakpoint and generates a core dump
(without running GDB), the performance overhead is neg-
ligible (i.e., virtually 0). This experiment clearly indicates
PHMon’s advantage as an accelerated debugger.
Context Switch Performance Overhead. We measured the
performance overhead of maintaining PHMon’s configuration
(including the configuration of MUs and CFUs, the counter
and threshold of each MU, and local registers) across con-
text switches for mcf benchmark with test input. On aver-
age, over three runs, PHMon increases the execution time

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Conditional Break Loop Index

0
50

100
150
200
250
300
350

Ti
m

e
(s

)

GDB
PHMon_GDB
PHMon_CoreDump

Figure 7: The performance overhead of PHMon compared to
GDB for a loop conditional breakpoint.

1MU 2MUs 3MUs 4MUs 5MUs 6MUs
Number of Matching Units

0

2

4

6

8

10

12

14

[%
]

P
o
w

e
r

O
v
e
rh

e
a
d

Area

Match Queue

MU

ALU

CU + other logic

0

5

10

15

20

25

[%
]

A
re

a
 O

v
e
rh

e
a
d

Figure 8: The power and area overheads of PHMon compo-
nents compared to the baseline Rocket processor.

of a context switch by 4.01%. In total, for mcf benchmark,
maintaining PHMon’s configuration during context switches
takes 0.14 ns, while overall context switches on the baseline
processor take 23.80 ns (the total execution time of the pro-
cess is 5.93 s, where on average 175 context switches happen).
The required operation to maintain PHMon’s configuration
during a context switch is constant. Hence, we expect the per-
formance overhead of PHMon during context switches to be
the same for other benchmarks. According to our evaluations
for the shadow stack use case, the activation queue is empty
before each context switch and there is no need to delay a con-
text switch to complete the remaining actions. However, for
different use cases depending on the actions, we might need
to delay a context switch to perform the remaining actions.

6.3 Power and Area Results
We measured the post-extraction power and area consumption
of PHMon and the Rocket processor using the Cadence Genus
and Innovus tools (at 1 GHz clock frequency). In this mea-
surement, we used black box SRAMs for all of the memory
components; then, we used CACTI 6.5 to estimate the leak-
age power and energy/access of memory components. Rocket
contains an L1 data cache and L1 instruction cache while PH-
Mon includes a Match Queue and Action Config Table
as the main memory components. In our implementation,
the Match Queue and each Action Config Table consist
of 2,048 and 16 elements, respectively. Each Match Queue
element is 129-bit wide (for a configuration with 2 MUs),
while each Action Config Table is 79-bit wide. Due to
the small size of the Action Config Table, its power and
area overheads are negligible.

To estimate the dynamic power of the Rocket’s L1 caches
and PHMon’s Match Queue, we determined the average

Table 5: The power and area of PHMon’s AU and RISC-V
Rocket core determined using 45nm NanGate.

Power (µW/MHz)Description @1 GHz @180 MHz Area (mm2)

Rocket core 534.3 556.7 0.359
PHMon’s AU 43.8 25.0 0.048

memory access rate of these components using PHMon and
CSR cycle address. We estimated the access rate of the
Match Queue for two of our use cases,4 i.e., the shadow stack
and the hardware-accelerated AFL, by leveraging PHMon (2
MUs with threshold=max) to count the number of calls
and rets, jumps and branches, and call and branches,
respectively. We averaged the access rates of our two use
cases and determined the average dynamic power consump-
tion based on this metric. Figure 8 depicts the total area over-
head as well as the power overhead of the main components
of PHMon compared to the baseline Rocket processor. There
is a trade-off between the number of MUs and the power and
area overheads of PHMon. For the number of MUs ranging
from 1 to 6, PHMon incurs a power overhead ranging from
3.6% to 10.4%. Similarly, area overhead ranges from 11%
to 19.9% as we increase the MU count from 1 to 6. For all
of our use cases in this paper, we used a design with only 2
MUs. This design has a 5% power overhead and it incurs a
13.5% area overhead. Table 5 lists the absolute power and
area consumed by PHMon’s AU and the Rocket core.5 Our
FPGA evaluation shows that a PHMon configuration with 2
MUs increases the number of logic Slice LUTs by 16%.

7 Discussion and Future Work
In this Section, we address some of undiscussed aspects of
PHMon and present our future work.

7.1 Architecture Aspect
As discussed in Section 4, PHMon maintains the incoming
match packets in a queue prior to performing follow-up ac-
tions. The size of this queue is a design decision, which affects
the number of match packets that PHMon can have in flight.
We envision that when the queue is full, PHMon can take
one of the following actions: 1) PHMon may opt to drop the
incoming match packets; 2) PHMon could stall the instruction
fetch stage of Rocket’s pipeline; 3) PHMon could raise an
interrupt, then the OS stays in a sleep state, until a certain
number of empty slots are available. In our current prototype,
PHMon stalls the pipeline once the queue gets full. For all our
experiments, a size of 2KB entries for the queue was sufficient
to avoid any stalling.

PHMon performs actions in a blocking manner, i.e., it only
performs one action at a time. Although the L1 data cache

4The access rate for the other two use cases is negligible.
5Note that in 40GPLUS TSMC process, Rocket processor has 0.034

mW/MHz dynamic power consumption and its area is 0.39 mm2 [44]. Here,
we use a non-optimized but publicly available process (45nm NanGate) for
power and area measurements.

in Rocket is non-blocking, PHMon blocks the rest of the
actions while waiting to receive a memory response. This can
increase the run time for performing actions. The evaluation
results presented in the paper include the effect of blocking
actions. Potentially, we can modify PHMon such that it can
perform non-blocking actions. Although such a design will
improve the performance, it will increase the complexity and
power/area overheads of PHMon.

In this paper, we interface our PHMon with an in-order
RISC-V processor. We implement the AU of PHMon as a mi-
crocontroller with restricted I/O, which implements a limited
hand-crafted 16-bit ISA and provides a safe and restricted
domain to take actions. Our developed ISA does not include
branches/jumps, i.e., our AU is not Turing complete. This
limited processing implementation is useful for preventing se-
curity threats. However, if a user requires actions that cannot
be implemented by our restricted ISA, the option of trigger-
ing an interrupt provides the user with flexibility of executing
actions in form of arbitrary programs. Then, PHMon can
enforce the programmed security policies on these arbitrary
action programs.

In the current implementation, we monitor the committed
instruction stream. However, PHMon can apply the same
monitoring model using other data streams, e.g., execution
information from different stages of the pipeline or cache ac-
cess information. Applying PHMon to other data streams will
require minimal modifications to the processor for collecting
the data streams and transmitting them to PHMon.

The number of MUs is another design decision when de-
signing PHMon. The number of MUs directly affects power
and area overheads. A user can monitor more events than
the available number of MUs by time-multiplexing the MUs
(similar to HPCs). Note that several MUs may trigger actions
simultaneously; in this case, several match packets enter
the Match Queue, where the MU with the lowest MU_id gets
the highest priority to enter the queue. The user has an option
to set a priority order for MUs. Currently, PHMon does not
include a dedicated local memory shared between MUs. For
future work, we will include a scratchpad memory or a Con-
tent Addressable Memory (CAM) in PHMon to reduce the
number of outgoing accesses to the L1 data cache and in turn
further reduce the performance overhead.

7.2 Security Aspect
Regarding the security capabilities, in principle, we can ex-
tend PHMon to protect (parts of) the OS kernel as well. How-
ever, to achieve this protection from an attacker who has com-
promised the kernel, PHMon must be able to guarantee that
an attacker cannot reprogram or disable engaged protections.
As PHMon is configured from the kernel, providing such a
guarantee is challenging against an adversary who holds the
same privilege as the defense mechanism. The same is true
for most architecturally supported security features, such as
page permissions or Intel’s proposed CET. While PHMon

can easily be configured to ensure the integrity of configura-
tion information and control instructions, integrity is merely
a necessary condition to protect against a kernel-level adver-
sary, it is not sufficient. For example, with integrity intact,
attackers can launch mimicry or confused deputy attacks to
reprogram PHMon. “Sealing” configurations (as mentioned in
Section 4.2) and protecting integrity will raise the bar against
kernel-level adversaries, but a complete solution that protects
an OS kernel with a kernel-controlled defense mechanism
requires further study.

7.3 Application Aspect
The user can leverage multiple MUs to apply several moni-
toring policies simultaneously. For example, one can use 6
MUs to simultaneously apply all four use cases of PHMon
presented in this paper. PHMon enables per process monitor-
ing capabilities; hence, we can reuse an MU to apply different
policies based on the requirements of the running process. For
example, an MU that is used for debugging of a specific pro-
cess can be reconfigured to prevent Heartbleed in any other
process that is using openssl.

8 Conclusion
We presented the design, implementation, and evaluation of
PHMon, a minimally-invasive programmable hardware mon-
itor. PHMon is capable of enforcing a variety of security
policies at runtime and also assisting with detecting software
bugs and security vulnerabilities. Our PHMon prototype in-
cludes a full FPGA implementation that interfaces the monitor
with a RISC-V processor, along with the necessary OS and
software support. We demonstrated the versatility and ease of
adoption of PHMon through four use cases; a shadow stack,
a hardware-accelerated fuzzing engine, information leak pre-
vention, and a hardware-accelerated debugger. On average,
our shadow stack incurs 0.9% performance overhead while
our hardware-assisted AFL improves the performance by up
to 16×. An ASIC implementation of PHMon with 2 MUs has
less than 5% and 13.5% power and area overheads, respec-
tively.

Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1916393 and CCF-
1533663 and a Google Faculty Research award.

References

[1] ABADI, M., BUDIU, M., ERLINGSSON, Ú., AND LIGATTI, J.
Control-flow integrity principles, implementations, and applica-
tions. ACM Transactions on Information and System Security
(TISSEC) 13, 1 (2009).

[2] AIZATSKY, M., SEREBRYANY, K., CHANG, O., ARYA, A.,
AND WHITTAKER, M. Announcing OSS-Fuzz: continuous
fuzzing for open source software. Google Testing Blog (2016).

[3] ANATI, I., GUERON, S., JOHNSON, S. P., AND SCARLATA,
V. R. Innovative technology for CPU based attestation and
sealing. In Proceedings of the International Workshop on
Hardware and Architectural Support for Security and Privacy
(HASP) (2013).

[4] ANDERSON, J. P. Computer security technology planning
study. Tech. Report ESD-TR-73-51, The Mitre Corporation,
Air Force Systems Division, Hanscom AFB, Badford, 1972.

[5] ASANOVIĆ, K., AVIZIENIS, R., BACHRACH, J., BEAMER,
S., BIANCOLIN, D., CELIO, C., COOK, H., DABBELT, D.,
HAUSER, J., IZRAELEVITZ, A., KARANDIKAR, S., KELLER,
B., KIM, D., KOENIG, J., LEE, Y., LOVE, E., MAAS, M.,
MAGYAR, A., MAO, H., MORETO, M., OU, A., PATTERSON,
D. A., RICHARDS, B., SCHMIDT, C., TWIGG, S., VO, H.,
AND WATERMAN, A. The Rocket Chip generator. Tech. Re-
port, EECS Department, UC Berkeley (2016).

[6] AUSTIN, T. M., BREACH, S. E., AND SOHI, G. S. Efficient
detection of all pointer and array access errors. In Proceedings
of the Conference on Programming Language Design and
Implementation (PLDI) (1994).

[7] BACHRACH, J., VO, H., RICHARDS, B., LEE, Y., WATER-
MAN, A., AVIŽIENIS, R., WAWRZYNEK, J., AND ASANOVIĆ,
K. Chisel: constructing hardware in a scala embedded lan-
guage. In Proceedings of the Design Automation Conference
(DAC) (2012).

[8] BROADWELL, P., HARREN, M., AND SASTRY, N. Scrash: a
system for generating secure crash information. In Proceedings
of the USENIX Security Symposium (2003).

[9] CARLINI, N., AND WAGNER, D. ROP is still dangerous:
breaking modern defenses. In Proceedings of the USENIX
Security Symposium (2014).

[10] CHEN, S., FALSAFI, B., GIBBONS, P., KOZUCH, M., MOWRY,
T., TEODORESCU, R., AILAMAKI, A., FIX, L., GANGER,
G., AND SCHLOSSER, S. Logs and lifeguards: accelerating
dynamic program monitoring. Tech. Report IRP-TR-06-05,
Intel Research (2006).

[11] CHEN, S., FALSAFI, B., GIBBONS, P. B., KOZUCH, M.,
MOWRY, T. C., TEODORESCU, R., AILAMAKI, A., FIX, L.,
GANGER, G. R., LIN, B., AND SCHLOSSER, S. W. Log-based
architectures for general-purpose monitoring of deployed code.
In Proceedings of the Workshop on Architectural and System
Support for Improving Software Dependability (ASID) (2006).

[12] CHEN, S., KOZUCH, M., STRIGKOS, T., FALSAFI, B., GIB-
BONS, P. B., MOWRY, T. C., RAMACHANDRAN, V., RUWASE,
O., RYAN, M., AND VLACHOS, E. Flexible hardware accel-
eration for instruction-grain program monitoring. In Proceed-
ings of the International Symposium on Computer Architecture
(ISCA) (2008).

[13] CHEN, Y.-Y., JAMKHEDKAR, P. A., AND LEE, R. B. A
software-hardware architecture for self-protecting data. In Pro-
ceedings of the Conference on Computer and Communications
Security (CCS) (2012).

[14] CHENG, Y., ZHOU, Z., YU, M., DING, X., AND ROBERT H.,
D. ROPecker: A generic and practical approach for defend-
ing against ROP attack. In Proceedings of the Network and
Distributed System Security Symposium (NDSS) (2014).

[15] CLAUSE, J., DOUDALIS, I., ORSO, A., AND PRVULOVIC,
M. Effective memory protection using dynamic tainting. In
Proceedings of the International Conference on Automated
Software Engineering (ASE) (2007).

[16] CORLISS, M. L., LEWIS, E. C., AND ROTH, A. DISE: a
programmable macro engine for customizing applications. In
Proceedings of the International Symposium on Computer Ar-
chitecture (ISCA) (2003).

[17] CORLISS, M. L., LEWIS, E. C., AND ROTH, A. Using DISE
to protect return addresses from attack. ACM SIGARCH Com-
puter Architecture News 33, 1 (2005).

[18] CRANDALL, J. R., AND CHONG, F. T. Minos: control data
attack prevention orthogonal to memory model. In Proceedings
of the International Symposium on Microarchitecture (MICRO)
(2004).

[19] DALTON, M., KANNAN, H., AND KOZYRAKIS, C. Raksha:
a flexible information flow architecture for software security.
Proceedings of the International Symposium on Computer Ar-
chitecture (ISCA) (2007).

[20] DANG, T. H., MANIATIS, P., AND WAGNER, D. The per-
formance cost of shadow stacks and stack canaries. In Pro-
ceedings of the Symposium on Information, Computer and
Communications Security (ASIACCS) (2015).

[21] DAS, S., WERNER, J., ANTONAKAKIS, M., POLYCHRON-
AKIS, M., AND MONROSE, F. SoK: the challenges, pitfalls,
and perils of using hardware performance counters for secu-
rity. In Proceedings of the Symposium on Security and Privacy
(S&P) (2018).

[22] DAVI, L., SADEGHI, A.-R., AND WINANDY, M. ROPde-
fender: a detection tool to defend against return-oriented pro-
gramming attacks. In Proceedings of the Symposium on Infor-
mation, Computer and Communications Security (ASIACCS)
(2011).

[23] DELSHADTEHRANI, L., ELDRIDGE, S., CANAKCI, S.,
EGELE, M., AND JOSHI, A. Nile: a programmable monitoring
coprocessor. Computer Architecture Letters (CAL) 17, 1
(2018).

[24] DEMME, J., MAYCOCK, M., SCHMITZ, J., TANG, A., WAKS-
MAN, A., SETHUMADHAVAN, S., AND STOLFO, S. On the
feasibility of online malware detection with performance coun-
ters. In Proceedings of the International Symposium on Com-
puter Architecture (ISCA) (2013).

[25] DENG, D. Y., LO, D., MALYSA, G., SCHNEIDER, S., AND

SUH, G. E. Flexible and efficient instruction-grained run-time
monitoring using on-chip reconfigurable fabric. In Proceedings
of the International Symposium on Microarchitecture (MICRO)
(2010).

[26] DENG, D. Y., AND SUH, G. E. High-performance parallel
accelerator for flexible and efficient run-time monitoring. In
Proceedings of the International Conference on Dependable
Systems and Networks (DSN) (2012).

[27] DEVIETTI, J., BLUNDELL, C., MARTIN, M. M., AND

ZDANCEWIC, S. Hardbound: architectural support for spa-
tial safety of the C programming language. In Proceedings
of the International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS)
(2008).

[28] DHAWAN, U., HRITCU, C., RUBIN, R., VASILAKIS, N.,
CHIRICESCU, S., SMITH, J. M., KNIGHT JR, T. F., PIERCE,
B. C., AND DEHON, A. Architectural support for software-
defined metadata processing. In Proceedings of the Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2015).

[29] DING, R., QIAN, C., SONG, C., HARRIS, B., KIM, T., AND

LEE, W. Efficient protection of path-sensitive control security.
In Proceedings of the USENIX Security Symposium (2017).

[30] FYTRAKI, S., VLACHOS, E., KOCBERBER, O., FALSAFI, B.,
AND GROT, B. FADE: a programmable filtering accelera-
tor for instruction-grain monitoring. In Proceedings of the
International Symposium on High Performance Computer Ar-
chitecture (HPCA) (2014).

[31] GE, X., CUI, W., AND JAEGER, T. GRIFFIN: guarding control
flows using Intel processor trace. In Proceedings of the Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2017).

[32] GHOSE, S., GILGEOUS, L., DUDNIK, P., AGGARWAL, A.,
AND WAXMAN, C. Architectural support for low overhead
detection of memory violations. In Proceedings of the Con-
ference on Design, Automation and Test in Europe (DATE)
(2009).

[33] GOOGLE. OSS-Fuzz: five months later, and rewarding
projects. https://opensource.googleblog.com/2017/
05/oss-fuzz-five-months-later-and.html/, 2017.

[34] GRAHAM-CUMMING, J. Searching for the
prime suspect: how heartbleed leaked pri-
vate keys. https://blog.cloudflare.com/
searching-for-the-prime-suspect-how-heartbleed-/
leaked-private-keys/, 2015.

[35] GREATHOUSE, J. L., XIN, H., LUO, Y., AND AUSTIN, T. A
case for unlimited watchpoints. In Proceedings of the Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2012).

[36] GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D., AUSTIN,
T. M., MUDGE, T., AND BROWN, R. B. MiBench: a free,
commercially representative embedded benchmark suite. In
Proceedings of the International Workshop on Workload Char-
acterization (WWC) (2001).

[37] HENNING, J. L. SPEC CPU2000: measuring CPU perfor-
mance in the new millennium. Computer 33, 7 (2000).

[38] HENNING, J. L. SPEC CPU2006 benchmark descrip-
tions. Special Interest Group on Computer Architecture News
(SIGARCH) 34, 4 (2006).

[39] HU, H., QIAN, C., YAGEMANN, C., CHUNG, S. P. H., HAR-
RIS, W. R., KIM, T., AND LEE, W. Enforcing unique code
target property for control-flow integrity. In Proceedings of the
Conference on Computer and Communications Security (CCS)
(2018).

[40] KHASAWNEH, K. N., OZSOY, M., DONOVICK, C., ABU-
GHAZALEH, N., AND PONOMAREV, D. Ensemble learning

for low-level hardware-supported malware detection. In Pro-
ceedings of the International Symposium on Recent Advances
in Intrusion Detection (RAID) (2015).

[41] KIM, Y., DALY, R., KIM, J., FALLIN, C., LEE, J. H., LEE,
D., WILKERSON, C., LAI, K., AND MUTLU, O. Flipping bits
in memory without accessing them: an experimental study of
DRAM disturbance errors. In Proceedings of the International
Symposium on Computer Architecture (ISCA) (2014).

[42] LARABEL, M. Intel MPX support will be removed from
Linux. https://www.phoronix.com/scan.php?page=
news_item&px=Intel-MPX-Kernel-Removal-Patch/,
2018.

[43] LARABEL, M. Intel MPX support removed from GCC
9. https://www.phoronix.com/scan.php?page=news_
item&px=MPX-Removed-From-GCC9/, 2018.

[44] LEE, Y., WATERMAN, A., AVIZIENIS, R., COOK, H., SUN,
C., STOJANOVIĆ, V., AND ASANOVIĆ, K. A 45nm 1.3 GHz
16.7 double-precision GFLOPS/W RISC-V processor with
vector accelerators. In Proceedings of the European Solid
State Circuits Conference (ESSCIRC) (2014).

[45] LI, P. S., IZRAELEVITZ, A. M., AND BACHRACH, J. Speci-
fication for the FIRRTL language. Tech. Report UCB/EECS-
2016-9, EECS Department, UC Berkeley (2016).

[46] LO, D., CHEN, T., ISMAIL, M., AND SUH, G. E. Run-time
monitoring with adjustable overhead using dataflow-guided
filtering. In Proceedings of the International Symposium on
High Performance Computer Architecture (HPCA) (2015).

[47] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER,
A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZEL-
WOOD, K. Pin: building customized program analysis tools
with dynamic instrumentation. In Proceedings of the Confer-
ence on Programming Language Design and Implementation
(PLDI) (2005).

[48] MIJAT, R. Better trace for better software: introducing the new
ARM CoreSight system trace macrocell and trace memory
controller. ARM, White Paper (2010).

[49] MOON, H. Hardware techniques against memory corruption
attacks. PhD thesis, Seoul National University, 2017.

[50] NAGARAJAN, V., KIM, H.-S., WU, Y., AND GUPTA, R. Dy-
namic information flow tracking on multicores. In Proceedings
of the Workshop on Interaction Between Compilers and Com-
puter Architectures (INTERACT) (2008).

[51] NAGARAKATTE, S., MARTIN, M. M., AND ZDANCEWIC,
S. Watchdog: hardware for safe and secure manual memory
management and full memory safety. In Proceedings of the
International Symposium on Computer Architecture (ISCA)
(2012).

[52] NAGARAKATTE, S., MARTIN, M. M., AND ZDANCEWIC, S.
Watchdoglite: hardware-accelerated compiler-based pointer
checking. In Proceedings of the International Symposium on
Code Generation and Optimization (CGO) (2014).

[53] NAGARAKATTE, S., ZHAO, J., MARTIN, M. M., AND

ZDANCEWIC, S. Softbound: highly compatible and complete
spatial memory safety for C. In Proceedings of the Confer-
ence on Programming Language Design and Implementation
(PLDI) (2009).

https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html/
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html/
https://blog.cloudflare.com/searching-for-the-prime-suspect-how-heartbleed-/leaked-private-keys/
https://blog.cloudflare.com/searching-for-the-prime-suspect-how-heartbleed-/leaked-private-keys/
https://blog.cloudflare.com/searching-for-the-prime-suspect-how-heartbleed-/leaked-private-keys/
https://www.phoronix.com/scan.php?page=news_item&px=Intel-MPX-Kernel-Removal-Patch/
https://www.phoronix.com/scan.php?page=news_item&px=Intel-MPX-Kernel-Removal-Patch/
https://www.phoronix.com/scan.php?page=news_item&px=MPX-Removed-From-GCC9/
https://www.phoronix.com/scan.php?page=news_item&px=MPX-Removed-From-GCC9/

[54] NEWSOME, J., AND SONG, D. Dynamic taint analysis: auto-
matic detection, analysis, and signature generation of exploit
attacks on commodity software. In Proceedings of the Network
and Distributed Systems Security Symposium (NDSS) (2005).

[55] OLEKSENKO, O., KUVAISKII, D., BHATOTIA, P., FELBER,
P., AND FETZER, C. Intel MPX explained: a cross-layer anal-
ysis of the Intel MPX system stack. In Proceedings of the
ACM on Measurement and Analysis of Computing Systems
(SIGMETRICS) (2018).

[56] OZDOGANOGLU, H., VIJAYKUMAR, T., BRODLEY, C. E.,
KUPERMAN, B. A., AND JALOTE, A. SmashGuard: a hard-
ware solution to prevent security attacks on the function return
address. IEEE Transactions on Computers (TC) 55, 10 (2006).

[57] OZSOY, M., DONOVICK, C., GORELIK, I., ABU-GHAZALEH,
N., AND PONOMAREV, D. Malware-aware processors: a
framework for efficient online malware detection. In Pro-
ceedings of the International Symposium on High Performance
Computer Architecture (HPCA) (2015).

[58] PAPPAS, V., POLYCHRONAKIS, M., AND KEROMYTIS, A. D.
Transparent ROP exploit mitigation using indirect branch trac-
ing. In Proceedings of the USENIX Security Symposium
(2013).

[59] QIN, F., WANG, C., LI, Z., KIM, H.-S., ZHOU, Y., AND WU,
Y. Lift: a low-overhead practical information flow tracking
system for detecting security attacks. In Proceedings of the In-
ternational Symposium on Microarchitecture (MICRO) (2006).

[60] REDDI, V. J., SETTLE, A., CONNORS, D. A., AND COHN,
R. S. Pin: a binary instrumentation tool for computer architec-
ture research and education. In Proceedings of the Workshop
on Computer Architecture Education (WCAE) (2004).

[61] ADVANCED MICRO DEVICES. AMD64 architecture pro-
grammer’s manual volume 2: system programming. https:
//support.amd.com/techdocs/24593.pdf, 2006.

[62] ARM. ARM security technology, building a se-
cure system using TrustZone technology. http:
//infocenter.arm.com/help/topic/com.arm.
doc.prd29-genc-009492c/PRD29-GENC-009492C_
trustzone_security_whitepaper.pdf, 2009.

[63] DIGILENT’S ZEDBOARD ZYNQ FPGA. Development
board documentation. http://www.digilentinc.com/
Products/Detail.cfm?Prod=ZEDBOARD/, 2017.

[64] INTEL CORPORATION. Intel trusted execution tech-
nology. https://www.intel.com/content/dam/
www/public/us/en/documents/white-papers/
trusted-execution-technology-security-paper.pdf,
2006.

[65] INTEL CORPORATION. Introduction to In-
tel memory protection extensions. https:
//software.intel.com/en-us/articles/
introduction-to-intel-memory-protection-extensions/,
2013.

[66] INTEL CORPORATION. Intel 64 and IA-32 architectures soft-
ware developer’s manual. System Programming Guide, Part
3C (2016).

[67] INTEL CORPORATION. Control-flow enforce-
ment technology preview. https://software.
intel.com/sites/default/files/managed/4d/2a/
control-flow-enforcement-technology-preview.pdf,
2017.

[68] MICROSOFT CORPORATION. Microsoft security develop-
ment lifecycle. https://www.microsoft.com/en-us/sdl/
process/verification.aspx/, 2017.

[69] NANGATE, SUNNYVALE, CALIFORNIA. 45nm open cell li-
brary.

[70] SCHNEIDER, F. B. Enforceable security policies. ACM Trans-
actions on Information and System Security (TISSEC) 3, 1
(2000).

[71] SCHUMILO, S., ASCHERMANN, C., GAWLIK, R., SCHINZEL,
S., AND HOLZ, T. kAFL: hardware-assisted feedback fuzzing
for OS kernels. In Proceedings of the USENIX Security Sym-
posium (2017).

[72] SCHUSTER, F., TENDYCK, T., PEWNY, J., MAASS, A.,
STEEGMANNS, M., CONTAG, M., AND HOLZ, T. Evaluating
the effectiveness of current anti-ROP defenses. In Proceed-
ings of the International Symposium on Research in Attacks,
Intrusions and Defenses (RAID) (2014).

[73] SINGH, B., EVTYUSHKIN, D., ELWELL, J., RILEY, R., AND

CERVESATO, I. On the detection of kernel-level rootkits us-
ing hardware performance counters. In Proceedings of the
Asia Conference on Computer and Communications Security
(AsiaCCS) (2017).

[74] SINHA, K., AND SETHUMADHAVAN, S. Practical memory
safety with REST. In Proceedings of the International Sympo-
sium on Computer Architecture (ISCA) (2018).

[75] SINNADURAI, S., ZHAO, Q., AND FAI WONG,
W. Transparent runtime shadow stack: protec-
tion against malicious return address modifications.
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.120.5702&rep=rep1&type=pdf, 2008.

[76] SONG, C., MOON, H., ALAM, M., YUN, I., LEE, B., KIM, T.,
LEE, W., AND PAEK, Y. HDFI: hardware-assisted data-flow
isolation. In Proceedings of the Symposium on Security and
Privacy (S&P) (2016).

[77] STEPHENS, N., GROSEN, J., SALLS, C., DUTCHER, A.,
WANG, R., CORBETTA, J., SHOSHITAISHVILI, Y., KRUEGEL,
C., AND VIGNA, G. Driller: augmenting fuzzing through se-
lective symbolic execution. In Proceedings of the Network and
Distributed System Security Symposium (NDSS) (2016).

[78] SUH, G. E., LEE, J. W., ZHANG, D., AND DEVADAS, S. Se-
cure program execution via dynamic information flow tracking.
In Proceedings of the International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS) (2004).

[79] SZEKERES, L., PAYER, M., WEI, T., AND SONG, D. SoK:
Eternal war in memory. In Proceedings of the Symposium on
Security and Privacy (S&P) (2013).

[80] THOZIYOOR, S., MURALIMANOHAR, N., AHN, J. H., AND

JOUPPI, N. P. CACTI 5.1. Tech. rep., HPL-2008-20, HP Labs,
2008.

https://support.amd.com/techdocs/24593.pdf
https://support.amd.com/techdocs/24593.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://www.digilentinc.com/Products/Detail.cfm?Prod=ZEDBOARD/
http://www.digilentinc.com/Products/Detail.cfm?Prod=ZEDBOARD/
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions/
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions/
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions/
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://www.microsoft.com/en-us/sdl/process/verification.aspx/
https://www.microsoft.com/en-us/sdl/process/verification.aspx/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.5702&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.5702&rep=rep1&type=pdf

[81] VENKATARAMANI, G., DOUDALIS, I., SOLIHIN, Y., AND

PRVULOVIC, M. Flexitaint: A programmable accelerator for
dynamic taint propagation. In Proceedings of the Interna-
tional Symposium on High Performance Computer Architec-
ture (HPCA) (2008).

[82] VENKATARAMANI, G., ROEMER, B., SOLIHIN, Y., AND

PRVULOVIC, M. Memtracker: efficient and programmable
support for memory access monitoring and debugging. In Pro-
ceedings of the International Symposium on High Performance
Computer Architecture (HPCA) (2007).

[83] WATERMAN, A., LEE, Y., PATTERSON, D. A., AND

ASANOVIĆ, K. The RISC-V instruction set manual, volume i:
Base user-level ISA. Tech. Report UCB/EECS-2011-62, EECS
Department, UC Berkeley (2011).

[84] YUAN, P., ZENG, Q., AND DING, X. Hardware-assisted fine-
grained code-reuse attack detection. In Proceedings of the
International Symposium on Research in Attacks, Intrusions
and Defenses (RAID) (2015).

[85] ZALEWSKI, M. American fuzzy lop (AFL) fuzzer. http:
//lcamtuf.coredump.cx/afl/, 2017.

[86] ZHANG, M., QIAO, R., HASABNIS, N., AND SEKAR, R. A
platform for secure static binary instrumentation. In Proceed-
ings of the International Conference on Virtual Execution En-
vironments (VEE) (2014).

[87] ZHOU, B., GUPTA, A., JAHANSHAHI, R., EGELE, M., AND

JOSHI, A. Hardware performance counters can detect mal-
ware: myth or fact? In Proceedings of the Asia Conference on
Computer and Communications Security (ASIACCS) (2018).

[88] ZHOU, P., QIN, F., LIU, W., ZHOU, Y., AND TORRELLAS,
J. iWatcher: efficient architectural support for software de-
bugging. In Proceedings of the International Symposium on
Computer Architecture (ISCA) (2004).

[89] ZHOU, P., TEODORESCU, R., AND ZHOU, Y. HARD:
hardware-assisted lockset-based race detection. In Proceed-
ings of the International Symposium on High Performance
Computer Architecture (HPCA) (2007).

A Appendix
In this appendix, we present the microarchitectural details of PH-
Mon’s Action Unit (AU) design. As discussed in Section 4.1, PHMon
receives the commit log from the RoCC interface and then PHMon
applies the configured monitoring rules to the commit log to detect
events and perform follow-up actions. Once an MU finds a match,
the MU sends an activation signal alongside a match packet to
the AU. The match packet consists of an address (MU_addr), data
(MU_data), and an MU identification number (MU_id). The MU_addr
contains the address of the instruction in the commit log (i.e., pc_src
element), while MU_data is programmable and can contain the con-
tents of any one of the commit log entries. The MU_id specifies
the index of the MU that triggered the activation signal. The AU
enqueues an incoming match packet from the MU into the Match
Queue while it performs actions for the packets arrived earlier. To
perform actions, as shown in Figure 3, the AU consists of four dis-
tinct microarchitectural components: Config Units (CFUs), Local
Register File, Arithmetic and Logic Unit (ALU), and Control Unit
(CU). In the next subsections, we explain each of AU’s microarchi-
tectural components in detail.

A.1 Config Units (CFUs)
In the PHMon design, each MU is paired with a CFU. Each CFU
consists of three main components: an Action Config Table, a
conf_ctr, and a conf_ptr. The Action Config Table contains
the list of actions (programmed by the user) that PHMon should
perform after the MU finds a match and triggers the activation signal.
The conf_ctr and conf_ptr preserve the index of the total number
of actions and the current action, respectively. Each entry in the Ac-
tion Config Table, called action description, consists of Type,
In1, In2, Fn, Out, and Data elements (see Figure 3).

Type specifies one of the following four types: ALU operation,
memory operation, interrupt, and skip actions. In case of an ALU
operation, In1 and In2 act as programmable input arguments of the
ALU whereas for memory operations, In1 and In2 are interpreted
as data and address of the memory request. In both cases, In1 and
In2 can be programmed to hold the local register values (maintained
in Local Register File) or an immediate value. The Out element
specifies where the output of the ALU/memory operation is stored.
The Fn element determines the functionality of an ALU operation or
the type of the memory request. The Data element only applies to
an ALU operation as immediate data. Note that in case of a memory
operation, PHMon sends a memory request through the L1 data
cache using the RoCC interface. The interrupt action triggers an
interrupt, which will be handled by the OS. The skip actions provide
the option of early action termination. In this case, when the result
of an ALU operation is equal to zero, the AU will skip the remaining
actions of the current event.

A.2 Local Register File
The Local Register File consists of three dedicated registers for
memory requests and their responses: Mem_addr, Mem_data, and
Mem_resp, and three general-purpose registers: Local_1, Local_2,
and Local_3. Memory operations occur using Mem_addr and
Mem_data registers as the addr and data of the request while the re-
sult gets stored in the Mem_resp register. The user can use Local_1,
Local_2, and Local_3 registers for ALU operations.

A.3 Arithmetic and Logic Unit (ALU)
We include a small ALU in PHMon to support a variety of actions.
The ALU operations are restricted inside PHMon; however, these
operations can be combined with other PHMon’s actions (i.e., mem-
ory operations and interrupts) to provide the user with the capability
to influence the process’ execution. The input and output arguments
of our ALU (including In1, In2, Fn, and Out) are programmable.
The Fn argument determines the ALU function out of the following
10 different operations: Addition, Subtraction, Logical Shift
Left, Logical Shift Right, Set Less Than, Set Equal, AND,
OR, XOR, and NOP.

A.4 Control Unit (CU)
The CU handles all the tasks related to performing actions. Our CU
consists of a small FSM with three states: ready, wait, and busy.
Depending on the current state of the CU, it performs one or more of
the following tasks: dequeue a match packet from the Match Queue,
update the Local Register File, receive the next action description,
and perform an action. Once all of the listed actions are performed,
the CFU notifies the CU. In this case, the CU enters the ready state,
repeating all of the described tasks for the next element stored in the
Match Queue.

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Introduction
	Related work
	Custom Hardware for Monitoring
	Flexible Hardware Monitors (FHMons)
	Generic Monitoring Hardware Extensions

	Threat Model and Assumptions
	PHMon
	PHMon: Architecture
	Trace Unit (TU)
	Match Units (MUs)
	Action Unit (AU)

	PHMon: Software Interface
	PHMon: OS Support
	Per Process OS Support
	Interrupt Handling OS Support

	Use Cases
	Shadow Stack
	Hardware-Accelerated Fuzzing
	Preventing Information Leakage
	Watchpoints and Accelerated Debugger

	Evaluation
	Experimental Setup
	Functionality Validation and Performance Results
	Power and Area Results

	Discussion and Future Work
	Architecture Aspect
	Security Aspect
	Application Aspect

	Conclusion
	Appendix
	Config Units (CFUs)
	Local Register File
	Arithmetic and Logic Unit (ALU)
	Control Unit (CU)

