Varanus: An Infrastructure for Programmable
Hardware Monitoring Units

Leila Delshadtehrani, Jonathan Appavoo, Manual Egele, and Ajay Joshi

Boston University

{delshad, jappavoo, megele, joshi}@bu.edu

Abstract—The information collected from hardware perfor-
mance counters in a typical processor is commonly employed
for power management, thermal management, and malware
detection. However, these counters cannot be programmed at the
hardware level for monitoring complex events. To address this
shortcoming, we propose the implementation of programmable
hardware monitors and explore the scope of their programma-
bility by discussing some of their practical applications.

I. INTRODUCTION

Hardware performance counters are special counters avail-
able in a processor for profiling the hardware usage of a
program. Each processor provides a fixed number of hardware
performance counters. Each of these individual hardware coun-
ters can be configured for monitoring different events from
a pre-defined pool of “raw” events. Several software tools
such as VTune [8]], Processor Trace (PT) [4], and PERF [2]]
are available for accessing hardware performance counters.
Researchers utilize the extracted profiles from these counters
for power management [7]], thermal management [6] and
malware detection [3]. However, it should be noted that the
available events might not always satisfy the user’s requirement
and at the same time the user cannot build a new or complex
event based on his/her specific requirements. For example,
counting the number of call and ret instructions or matching
their corresponding addresses is not possible using hardware
performance counters.

When a hardware performance counter reaches its upper
limit, it will either overflow or generate a performance monitor
interrupt. However, hardware performance counters do not
allow a user to trigger an action when a specific counter
reaches a pre-defined threshold without considerably chang-
ing the execution of the underlying application or incurring
considerable performance overhead.

As an alternative, for monitoring and profiling a system
at hardware-level system designers exploit full system sim-
ulation environments. For example, SimOS [9]] provides an
environment for studying the full system through monitoring
low-level hardware events and triggering high-level software
actions. Consequently, system designers have access to flexible
hardware monitors that can be mapped to higher-level software
concepts at simulation-level. This flexible access empowers
system designers to profile and evaluate the software interac-
tion with the underlying hardware. Despite all the advantages
of full system simulators, we need to run applications on real
hardware. For an actual system, the available event monitoring
tools at hardware-level do not provide the flexible monitoring
facilities similar to the existing ones in full system simulators.

To provide flexibility in building events and taking actions
with low performance and power overheads for a real system,
we propose the implementation of programmable hardware

Schuyler Eldridge
IBM Research
schuyler.eldridge @ibm.com

monitors. The main goal of these programmable monitors is to
enable operating system and overlaying software to track com-
plex events (which can be programmed) at a fine granularity
and then take appropriate action. The most notable aspect of
our programmable hardware monitors is that a user can build
and monitor increasingly more complex events by monitoring
simple events. As an example, the user can monitor function
calls and taken branches by tracking call/ret instructions and
indirect/direct jump instructions, respectively. Then, the user
can monitor a complex event such as the control flow of the
program by keeping track of all the monitored function calls
and taken branches.

Our programmable hardware monitors are developed on
an infrastructure named Varanuﬂ In this paper, we develop
and implement one programmable hardware monitor, called
Komodcﬂ using the Varanus. The user can program Komodo
for monitoring different events and employ it in diverse appli-
cations.

II. PROGRAMMABLE HARDWARE MONITORS

In this section, we describe the architectural implemen-
tation of Varanus as well as our programmable hardware
monitor, present the software interface for accessing Komodo
and discuss a potential application for employing Komodo.

A. Hardware implementation

We have implemented the Varanus infrastructure as an
accelerator that works with the Rocket microprocessor [1].
Rocket is an in-order core based on the RISC-V Instruction
Set Architecture (ISA) [[I1]. As depicted in Figure [I] Varanus
communicates with the Rocket microprocessor through the
Rocket Custom Coprocessor (RoCC) interface. RoCC is an
interface that facilitates decoupled communication (based on
handshaking protocol) between a Rocket processor and the
attached accelerators/coprocessors [1]. We have modified the
RoCC interface by adding a bundle called “commit log’ﬂ for
communication with Varanus. Figure [2| depicts the information
carried in the form of commit log. This information is collected
from the write back stage of the pipeline in Rocket and routed
to all of the Komodo monitoring units.

Komodo is capable of monitoring and taking actions based
on events defined by the user. To be specific, Komodo monitors
a programmable predicate specified by the user. The predicate
is a Boolean logic evaluated based on a set of programmable
matching conditions. Whenever the predicate evaluates to true,

Varanus is the common genus among the family of “monitor” lizards.

>The Komodo monitor belongs to the monitor lizard family.

3Commit log is a log of committed instructions and their writeback values
provided in the Rocket microprocessor. We modify and exploit this log
according to our monitoring requirements.

Modified ¢ ¢
Rocket RoCC | Komodo | |Komodo| |Komodo
Unit 1] [Unit 2 Unit n
Varanus
Fig. 1. Varanus infrastructure and Komodo monitoring units.
| pc_src | pc_dst | inst | addr | data |

Fig. 2. Commit log entries. pc_src specifies the current PC value while pc_dst
determines the next PC value. The current instruction, i.e., the Instruction
Register, is stored in inst. addr is the memory address/destination register
accessed in the current instruction and data is the corresponding data value
stored in that address/register. inst is a 32-bit value while all the other entries
of the commit log are 64-bit values.

Komodo takes action by activating a “doorbell’ﬂ and executing
an action function defined by the user. In Section we will
explain about configuring the predicate in more detail.

In addition to this, the user can define a threshold for the
number of observed matches (or partial matches) before taking
an action. As a simple example, the user can monitor a specific
function call. In this case, the user should program Komodo
by specifying a full match for the pc_dst entry and a partial
match for the inst entry of the commit log (we only need to
match the opcode part of the inst).

As depicted in Figure [1} our hardware implementation sup-
ports more than one Komodo monitoring unit. Each Komodo
monitoring unit acts as a separate comparator unit and has a
unique identification number called “Komodo Unit Number”.
The maximum number of Komodo monitoring units is a design
knob.

B. Software interface for accessing Komodo

We provide a set of functions for configuring the Komodo
monitoring units and communicating with them. For example,
komodo_enable and komodo_disable functions will enable and
disable, respectively, a specific Komodo unit. Similarly, the
user configures the matching pattern of a specific Komodo
unit using the Komodo Unit Number and a matching input.
The matching input defines the matching conditions for each
of the commit log entries. The matching condition consists of
matching and masking bits. The predicate is a match with the
matching value (for the bits that are not masked based on the
masking value) on the contents of a single commit log entry.
For example, the matching input for the ret instruction on the
inst entity of the commit log can be set as following:

match_input.match_value. inst = 0x00008067;
match_input.mask_value. inst = 0x00000000;

This indicates that the predicate for inst evaluates to true when
the current instruction is an exact match with the value of ret
instruction (0x0008067 according to the RISC-V ISA). For all
the other entries of the commit log (pc_src, pc_dst, addr, and
data), the masking value should be set to ‘Oxffffffff’, because
regardless of the values of these entries we will match all the
ret instructions. Note that similar to full matches, the user can
define a partial match using the matching and masking values.

4Doorbell is a dormant process waiting to be activated when its programmed
condition becomes true.

C. Potential Usage of Komodo .
Detecting Reéturn Oriented Programming (ROP) at-

tacks [10] is a practical application for Komodo. ROP is a
code reuse attack based on gaining the control of the stack
and directing the control of the program to a pre-existing
gadget. A gadget is a short sequence of instructions ending
with ret instruction. One gadget only performs part of the
desired functionality of the attacker; however, chaining several
gadgets may allow the attacker to perform Turing-complete
computation.

Recently, Intel has released a control flow enforcement
technology [S]] to protect against ROP attacks. In particular,
Intel has implemented a shadow stack in hardware for the
x86/64 architecture. A shadow stack is a second stack, which
is used exclusively for monitoring the control flow of the
program. The software implementation of a shadow stack
incurs considerable performance overhead while its hardware
implementation mitigates this overhead. We can employ Ko-
modo monitor for implementing a hardware structure similar
to that of shadow stack for protecting against ROP attacks. To
this end, the user should program Komodo for monitoring call
and ret instructions and match the pc_dst of each ret instruction
with pc_src of its corresponding call. When a mismatch
between these two values is monitored, Komodo takes action
by activating a doorbell and interrupting the execution of the
program. Note that we can implement a shadow stack by
programming Komodo in a specific way instead of adding
specific hardware only for this purpose.

ITI. CONCLUSION

In this work, we proposed Varanus as a common infrastruc-
ture for implementing programmable hardware monitors and
discussed the implementation of an example programmable
hardware monitor, called Komodo, on this infrastructure. The
main advantage of our programmable hardware monitor is
that the user can program it to monitor substantially complex
events. We discussed one potential usage of the Komodo
monitor, where it can be programmed to behave like a shadow
stack to detect ROP attacks.

REFERENCES

[1] K. Asanovi, R. Avizienis et al., “The rocket chip generator,” 2016.

[2] A. C. de Melo, “The new linux ‘perf’ tools,” in Slides from Linux
Kongress, vol. 18, 2010.

[3] J. Demme, M. Maycock et al., “On the feasibility of online malware
detection with performance counters,” in ACM SIGARCH Computer
Architecture News, vol. 41, no. 3, 2013, pp. 559-570.

[4] Intel, “Intel® 64 and IA-32 architectures software developer’s manual,
volume 3C,” December 2016.

, “Control-flow enforcement technology preview,” June 2016, Re-

vision 1.0.

(5]

[6] A. Kumar, L. Shang ef al., “Hybdtm: a coordinated hardware-software
approach for dynamic thermal management,” in Proc. DAC, 2006, pp.
548-553.

[71 M. Moeng and R. Melhem, “Applying statistical machine learning to
multicore voltage & frequency scaling,” in Proc. CF. ACM, 2010, pp.
277-286.

[8] J. Reinders, VTune performance analyzer essentials. Intel Press, 2005.

[9] M. Rosenblum, E. Bugnion ef al., “Using the simos machine simulator
to study complex computer systems,” ACM TOMACS, vol. 7, no. 1, pp.
78-103, 1997.

[10] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proc. CCS, 2007, pp.
552-561.

[11] A. Waterman, Y. Lee et al., “The risc-v instruction set manual,” 2014.

	Introduction
	Programmable Hardware Monitors
	Hardware implementation -1ex
	Software interface for accessing Komodo -1ex
	Potential Usage of Komodo -1ex

	Conclusion
	References

