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Abstract

Web spam denotes the manipulation of web pages with the rsi@etito raise their position
in search engine rankings. Since a better position in thkimge directly and positively affects
the number of visits to a site, attackers use different teghes to boost their pages to higher
ranks. In the best case, web spam pages are a nuisance thideprodeserved advertisement
revenues to the page owners. In the worst case, these pages fbreat to Internet users by
hosting malicious content and launching drive-by attadj@irsst unsuspecting victims. When
successful, these drive-by attacks then install malwarthewictims’ machines.

In this paper, we introduce an approach to detect web spaaspaghe list of results that are
returned by a search engine. In afirst step, we determinenghertance of different page features
to the ranking in search engine results. Based on this irdtiom, we develop a classification
technique that uses important features to successfulingissh spam sites from legitimate en-
tries. By removing spam sites from the results, more sla@aswaailable to links that point to pages
with useful content. Additionally, and more importantlyetthreat posed by malicious web sites
can be mitigated, reducing the risk for users to get infebiedhalicious code that spreads via
drive-by attacks.

1 Introduction

Search engines are designed to help users find relevantiafimn on the Internet. Typically, a user
submits a query (i.e., a set of keywords) to a search enginiehwthen returns a list of links to pages
that are most relevant to this query. To determine the nmeet-ant pages, a search engine selects a
set of candidate pages that contain some or all of the quemstand calculatesage score for each
page. Finally, a list of pages, sorted by their score, isnei to the user.

This score is calculated from properties of the candidatepaso-called features. Unfortunately,
details on the exact algorithms that calculate these rgnkittues are kept secret by search engine
companies, since this information directly influences thality of the search results. Only general
information is made available. For example, in 2007, Goetdéned to take more than 200 features
into account for the ranking value [8].

The way in which pages are ranked directly influences thefggges that are visited frequently
by the search engine users. The higher a page is ranked, teelikady it is to be visited [3]. This
makes search engines an attractive target for everybodyaimtmto attract a large number of visitors
to her site. There are three categories of web sites thafibdirectly from high rankings in search
engine results. First, sites that sell products or servicetheir context, more visitors imply more po-
tential customers. The second category contains siteat@dinanced through advertisement. These



sites aim to rank high for any query. The reason is that theydtgplay their advertisements to each
visitor, and, in turn, charge the advertiser. The third, amabt dangerous, category of sites that aim
to attract many visitors by ranking high in search resulessiies that distribute malicious software.
Such sites typically contain code that exploits web browsémerabilities to silently install malicious
software on the visitor's computer. Once infected, thecattacan steal sensitive information (such
as passwords, financial information, or web-banking cridish, misuse the user’s bandwidth to join
a denial of service attack, or send spam. The threat of dnyveewnloads (i.e., automatically down-
loading and installing software without the user’s consenthe result of a mere visit to a web page)
and distribution of malicious software via web sites hasbee a significant security problem. Web
sites that host drive-by downloads are either createdysfilelthe purpose of distributing malicious
software or existing pages that are hacked and modified mple, by inserting anf r ane tag
into the page that loads malicious content). Provos et @).14] observe that such attacks can quickly
reach a large number of potential victims, as at least 1.3&8 sarch queries directed to the Google
search engine contain results that link to malicious palgleseover, the pull-based infection scheme
circumvents barriers (such as web proxies or NAT devices) pinotect from push-based malware
infection schemes (such as traditional, exploit-basedngdr As a result, the manipulation of search
engine results is an attractive technique for attacketsailhato attract victims to their malicious sites
and spread malware via drive-by attacks [16].

Search engine optimization (SEO) companies offer theiesgige to help clients improve the
rank for a given site through a mixture of techniques, whiah be classified as being acceptable or
malicious. Acceptable techniques refer to approachesirtaiove the content or the presentation
of a page to the benefit of users. Malicious techniques, orotther hand, do not benefit the user
but aim to mislead the search engine’s ranking algorithne falat that bad sites can be pushed into
undeserved, higher ranks via malicious SEO techniques leeithe problem ofveb spam.

Gyongyi and Garcia-Molina [9] define web spam as every dedite human action that is meant
to improve a site’s ranking without changing the site’s tuadue. Search engines need to adapt
their ranking algorithms continuously to mitigate the effef spamming techniques on their results.
For example, when the Google search engine was launchadyrigly relied on the PageRank [2]
algorithm to determine the ranking of a page where the rapkojgortional to the number of incoming
links. Unfortunately, this led to the problem of link farmeda“Google Bombs,” where enormous
numbers of automatically created forum posts and blog camgnweere used to promote an attacker’s
target page by linking to it.

Clearly, web spam is undesirable, because it degrades #d#yqgof search results and draws
users to malicious sites. Although search engines invaghdisant amount of money and effort into
fighting this problem, checking the results of search ergfoe popular search terms demonstrates
that the problem still exists. In this work, we aim to postqess results returned by a search engine
to identify entries that link to spam pages. To this end, w& 8tudy the importance of different
features for the ranking of a page. In some sense, we attemgtdrse-engineer the “secret” ranking
algorithm of a search engine to understand better whatrfesatire important. Based on this analysis,
we attempt to build a classifier that inspects these featoraentify indications that a page is web
spam. When such a page is identified, we can remove it frometrels results.

The two main contributions of this paper are the following:

e We conducted comprehensive experiments to understandféetseof different features on
search engine rankings.



e We developed a system that allows us to reduce spam entoiesdearch engine results by
post-processing them. This protects users from visitittgeespam pages or, more importantly,
malicious sites that attempt to distribute malware.

The remainder of this paper is organized as follows. Se@iprovides a brief overview of our
overall approach. In Section 3, we discuss our experimattblped us understand how the ranking
is calculated by major search engines. Section 4 descrilbesystem for detecting web spam in
search engine results and examines its effectivenessio®écpresents related work, and Section 6
briefly concludes.

2 Overview

In this section, we first provide an overview of our approactdtermine the features that are impor-
tant for the ranking algorithm. Then, we describe how we hieimformation to develop a technique
that allows us to identify web spam pages in search engindtses

2.1 Inferring Important Features

Unfortunately, search engine companies keep their rarddggrithms and the features that are used
to determine the relevance of a page secret. However, tolbéabnderstand which features might
be abused by spammers and malware authors to push their, pagese detailed understanding of
the page ranking techniques is necessary. Thus, the gda dif$t step of our work is to determine
the features of a web page that have the most-pronouncednioftion the ranking of this page.

A feature is a property of a web page, such as the number of [wlinting to other pages, the
number of words in the text, or the presence of keywords iritleetag. To infer the importance of
the individual features, we perform “black-box testing”safarch engines. More precisely, we create
a set of different test pages with different combinationgeatures and observe their rankings. This
allows us to deduce which features have a positive effechemanking and which contribute only a
little.

2.2 Removing Spam from Search Engine Results

Based on the results of the previous step, we developed ensyhat aims to remove spam entries
from search engine results. To this end, we examine thetsehalt are returned by a search engine
and attempt to detect links that point to web spam pages.iJ higlassification problem; every page
in the result set needs to be classified as either spam ormospaperform this classification, we
have to determine those features that are indicators of spanthis, we leverage the findings from
the first step.

Based on the features that are indicative of spam and a thbli@ing set, we construct a C4.5
decision tree. A decision tree is useful because of itstimtuinsight into which features are important
to the classification. Using this classifier, we can then klike results from the search engine and
remove those links that point to spam pages. The result improvement of search quality and fewer
visits to malicious pages.



3 Feature Inference

In this section, we introduce in detail our techniques teiirimportant features. First, we discuss
which features we selected. Then, we describe how thesgdésadre used to prepare a set of (related,
but different) pages. Finally, we report on the rankingg thajor search engines produced for these
pages and the conclusions that we could draw about the ianmmtof each feature.

3.1 Feature Selection

As mentioned previously, we first aim to “reverse engine&g tanking algorithm of a search en-
gine to determine those features that are relevant for mgnkBased on reports from different SEO

Keyword(s) in title tag
Keyword(s) in body section
Keyword(s) in H1 tag

External links to high quality sites
External links to low quality sites
Number of inbound links

Anchor text of inbound links contains keyword(s)
Amount of indexable text
Keyword(s) in URL file path
Keyword(s) in URL domain name
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Table 1: Feature set used for inferring important features.

vendors [17] and study of related work [1, 5], we chose tesymmeably important page features (see
Table 1). We focused on features that can be directly infle@iby us. The rationale is that only from
the exact knowledge of the values of each feature, one camdiete their importance. Additionally,
the feature value should remain unchanged during the wixglerinent. This can only be ensured
for features under direct control.

When considering features, we first examined differenttlona on the page where a search
term can be stored. Content-based features, such as bitldy;,dr headings-tags are considered
since these typically provide a good indicator for the infation that can be found on that page.
Additionally, we also take link-based features into acddigimce search engines are known to rely
on linking information). Usually, the number of incominglis pointing to a page (i.e., tha-link
feature) cannot be influenced directly. However, by renmgitl9 volunteers willing to host pages
linking to our experiments, we were able to fully controlstiféature as well.

Together with features that are not directly related to thge’s content (e.g., keyword in domain
name), we believe to have covered a wide selection of feafupen which search engines can draw
information to calculate the rankings.

We are aware of the fact that search engines also take tehgspects into account when com-
puting their rankings (e.g., how does a page or its link cewotve over time). However, we decided
against adding time-dependent features to our featureesate this would have made the experi-
ment significantly more complex. Also, since all pages ardifiedd and made available at the same
time, this should not influence our results.



3.2 Preparation of Pages

Once the features were selected, the next step was to crémtgeaset of test pages, each with a
different combination and different values of these festurFor these test pages, we had to select
a combination of search terms (a query) for which no seargmenwvould produce any search re-
sults prior to our experiment (i.e., only pages that are phour experiment are part of the results).
We arbitrarily chose “gerridae plasmatron” as the key pitasoptimize the pages férRemember,
the goal is to estimate the influence of page features to thiémg algorithms and not to determine
whether our experiment pages outperform (in terms of seamgine response position) existing le-
gitimate sites.

Using this search phrase, we prepared the test pages foxperiment. To this end, we first
created a reference page consisting of information abauidge and plasmatrons compiled from
different sources. In a second step, this reference pageo@msd 90 times. To evade duplicate
detection by search engines (where duplicate pages areveeinfimm the results), each of these 90
pages was obfuscated by substituting many words in a maméarsto [10]. Subsequent dupli-
cate detection by the search engines (presumably basetieoartd headline tag) required a more
aggressive obfuscation scheme where title texts and meadivhere randomized as well.

For features whose possible values exceed the booleansv@leg present or absent), such as
keyword frequencies, we selected representative valatirespond to one of the following four
classes.

e The feature is not present at all.

e The feature is present mormal quantities.
e The feature is present ievated quantities.
e The feature is present gpam quantities.

That is, a feature with a large domain (i.e., set of possilalleies) can assume four different
values in our experiment. Of course, there is no generaltoutiefine a precise frequency for which
a feature can be considered to be normal, elevated, or sgaus, We manually examined legitimate
and spam pages and extracted average, empirical freqadncithe different values. For example,
for the frequencies of the keyword in the body text, a 1% kegwcequency is used as a baseline,
4% is regarded elevated, and 10% is considered to be spam.

Since only 90 domains were available, we had to select aseptative subset of the 16,392
possible feature combinations. Moreover, to mitigate aepasarement inaccuracies, we decided to
do all experiments triple-redundant. That is, we chose aetubf 30 feature combinations, where
each combination forms an experiment group that considisreé identical instances that share the
same feature values. For these 30 experiment groups, wdedetd select the feature values in a
way to represent different, common cases. The regular saséegitimate site, which is represented
by the reference page. For this page, all feature valuesgeim thenormal class. Other cases
include keyword stuffing in different page locations (etmdly, title, headlines), or differing amounts
of incoming and outgoing links. The full list of the creategeriments can be found in Appendix B.

1Gerridae is the Latin expression for water strider, plasomeis a special form of an ion source.



3.3 Execution of Experiments and Results

Once the 30 experiment groups (i.e., 90 pages) were crehmdwere deployed to 90 freshly regis-
tered domains, served by four different hosting providérdditionally, some domains were hosted
on our department web server. This was done to prevent amyopeereputation of a long-lived
domain to influence the rankings, and hence, our results.

Once the sites were deployed, we began to take hourly snapshihe search engine results for
the query “gerridae plasmatron.” To keep the results copgiae we queried the search engines for
results of the english web (i.e., turning off any languagect&on support). In addition, we also took
snapshots of results to queries consisting of the indivitkrans of the key phrase. Since all major
search engines had results for the single query terms dgefplasmatron) before our experiment
started, we gained valuable insights into how our sitesoperfin comparison to already existing,
mostly legitimate sites.

Our experiment was carried out between December 2007 andn\2808. During 86 days, we
submitted 2,312 queries to Google and 1,700 queries to thedfaearch engine. Interestingly, we
observed that rankings usually do not remain stable ovemgeloperiod of time. In fact, the longest
period of a stable ranking for all test pages was only 68 hfmrr&oogle and 143 hours for Yahoo!.
Also, we observed that Google refuses to index pages whakdipahe URL) contained more than
five directories. This excluded some of our test pages franglhiadexed for the first couple of weeks.

One would expect that instances within the same experinmmenipgoccupy very close positions
in the search engine results. Unfortunately, this is nobgwhe case. While there were identical
instances that ranked at successive or close positionsg, Wee also some experiment groups whose
instances were significantly apart. We suspect that mosteskt cases are due to duplicate detection
(where search engines still recognized too many simigrigimong these instances).

At the time of writing, querying Google for “gerridae plastman” resulted in 92 hits. Including
omitted results, 330 hits are returned. Yahoo! returns 82 \ithout and 297 hits including the
omitted results. Microsoft Live search returns only 28 gagsince Microsoft Live search seemed
slower in indexing our test pages, we report our results farlysoogle and Yahoo!.

Note that the Google and Yahoo! results consist of more tiBagl@nents. The reason for this is
that the result sets also contain some sites of the volustedrich frequently contain the query terms
in anchor texts pointing to the test sites.

For Google, searching for “gerridae” yields approximat&$;000 results. Our test pages con-
stantly managed to occupy five of the top ten slots with thbdsgranking page at position three. Six
was the highest position observed for the “plasmatron” yuer

For Yahoo!, we observed that for both keywords pages of opemments managed to rank at
position one and stay there for about two weeks.

3.4 Extraction of Important Features

Because of the varying rankings, we determined a page’si@osiy averaging its positions over the

last six weeks of the experiment. We decided for the last €rks, since the initial phase of our

experiment contains the inaccuracies that were introddcedto duplicate detection. Also, it took

some time before most pages were included in the index. Wenedxs that when we issued the same
query to Google and Yahoo!, they produced different rar&king@his indicates that the employed

algorithms weight features apparently differently. Thws, extracted different feature weights for

Google and Yahoo! as described below.



Knowing the combinations of all feature values for a pagend observing its positiopos(k)
in the rankings, our goal is now to assign an (optimal) wetgtgach feature that best captures this
feature’s importance to the ranking algorithm. As a firspstee define a functiorscore. This
function takes as input a set of weights and feature valuésamputes a score-ore(k) for a page
k.

score(k) = Z fFow;

n ...number of features
w; € [—1,1] ... weight of feature
fFe€0,1...presence of featurn test page:

This calculation is repeated for all test pages (of coursimgithe same weights). Once all scores
are calculated, the set of test pages is sorted by their.sthigallows us to assign a predicted ranking
rank(k) to each page. Subsequently, distances between the predactking and the real position
are calculated for all test pages. When the sum of thesendetareaches the minimum, the weights
are optimal. This translates to the following objectivedtion of a linear programming problem (LP):

min : Z ak|pos(k) — rank(k)|
k=1

Note that we added the factark) = m — pos(k) to the LP, which allows higher-ranking test
pages to exert a larger influence on the feature weightss(the number of test pages). This is to
reflect that the exact position of a lower-ranking page flaitgs often significantly, and we aim to
reduce the influence of these “random” fluctuations on theutation of the weights. Solving this
LP with the Simplex algorithm results in weights for all fegds that, over all pages, minimize the
distance between the predicted rank and the actual pasition

For Google, we found that the number of search terms in tleeaitd the text body of the doc-
ument had the strongest, positive influence on the rankirigo,Ahe number of outgoing links was
important. On the other hand, the fact that the keywords areqj the file path had only a small
influence. This is also true for the anchor text of inboun&din

For Yahoo!, the features were quite different. For examttie,fact that a keyword appears in
the title has less influence and even decreases with an sgcddhe frequency. Yahoo! also (and
somewhat surprisingly) puts significantly more weight othitbe number of incoming and outgoing
links than Google. On the other hand, the number of times kegsvappear in the text have no
noticeable, positive effect.

As a last step, we examine the quality of our predicted ragkinlo this end, we calculate the
distance between the predicted position and the actualiggo$or each experiment group. More
precisely, Figure 1 shows, for each experiment group, tbiewdce between the actual and predicted
positions, taking the closest match for all three pagesc¢h gaoup.

Considering the Google results, 78 experiment pages of gérement groups were listed in the
rankings. The missing experiment groups are those whosesgeaye a directory hierarchy level of
five, and thus, were not indexed by the search engine spitlersking at the distance, we observe
that we can predict the position for six groups (23%) withitistance of two, and for eleven groups
(42%) with a distance of five or less (over a range of 78 passlioFor Yahoo!, when comparing the
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Figure 1: Differences when comparing predicted values adtfual ranking positions.

experiment groups with the rankings, 21 groups appear imgbgts. Three (14%) of these groups
are predicted within a distance of two, while eight (38%)within a distance of five or less positions
to the observed rank (over a range of 63 positions).

At a first glance, our predictions do not appear very precldewever, especially for Yahoo!,
almost all predictions are reasonably close to the actglltsee Also, even though our predictions
are not perfectly accurate, they typically reflect the gahtend. Thus, we can conclude that our
general assessment of the importance of a feature is coafgaiugh the precise weight value might
be different. Also, we only consider a linear ranking fuantiwhile the actual ranking algorithms are
likely more sophisticated.

4 Reducing Spam from Search Engine Results

In this section, we present the details of our prototypeesydio detect web spam entries in search
engine results. The general idea behind this system is tonashine learning techniques to gener-
ate a classification model (a classifier) that is able tordisiish between legitimate and spam sites
by examining a page’s features. The following section firsspnts the details on how the system
operates. Then, the evaluation section describes our sptauttidn effectiveness.

4.1 Detecting Web Spam in Search Engine Results

During the previous feature inference step, we determihedféatures that are most important to
search engine ranking algorithms. Assuming an attackealsardearn this information, this suggests
that the attacker will focus on those features that have th& pronounced influence on the rankings.
This motivates our approach in developing a classifier tiginguishes spam and non-spam pages
according to these features.

The classifier presented in this section is developed forGhegle search engine. Thus, we
include those features that are most relevant for Googldisasissed in the previous section. These
are the number of keywords in the title, body, and domain nameddition, we consider linking
information. While counting the outgoing links of a pagerigial, the number of incoming links is
not easily determinable. The information of how many irkdirpoint to a page is not made available
by search engines. This is the reason why we have to estihet®tresponding features with the help



of | i nk: queries. Google and Yahoo! support queries in the foriiofk: www. exanpl e. com
resulting in a list of pages that link tawv. exanpl e. com The drawback is that neither the Google
nor the Yahoo! results contain all pages that link to the igaepage. Thus, these numbers are only
an approximation of the real number of links pointing to a.sit

On the other hand, we can introduce additional informatmurees that were not available to us
before. For example, the PageRank value (as reported bydbgl&toolbar) was added to the feature
set. This value could not be used for the experiment becdubke mfrequent updates (roughly every
three months) and its violation of the requirement that weamntrol each feature directly.

Classifier. To build a classifier for web pages, we first require a labelathing set. Another set
of data is required to verify the resulting model and evalitt performance. To create these sets,
12 queries were submitted to the Google search engine (pfkirmpopular search terms, extracted
from Google’s list of popular queries, called Zeitgeist)[#or every query, the first 50 results were
manually classified as legitimate or spam/malicious. Ddiog links to non-HTML content (e.qg.,
PDF or PPT files) resulted in a training data set consisting9&f sites (194 legitimate, 101 spam).
The test data set had 252 pages (193 legitimate, 59 spam).

All result pages were downloaded and fed into feature etdradhat parse the HTML source
code and return the value (i.e., the frequency) of the featnder consideration. If the query consists
of multiple terms, query dependent feature extractorsrtdgigher values if the full query matches
the analyzed feature. The rationale behind this is that glesineading tag that contains the whole
guery indicates a better match than multiple, individuadieg tags, each containing one of the query
terms. Feature extractors that follow this approach aré&edawrith an (X) in the following list, which
enumerates all the features that we consider:

e Title: the number of query terms from HTML t | e tag (X)
e Body: the number of query terms in the HTMilody section (X)

e Domain name:the number of query terms in the domain name part of the URL
(e.g, wwwagerridae-plasmatron.com/index.php)

e Filepath: the number of query terms in the path of the URL
(e.g., www.example.orgérridae-plasmatron/index.php)

e Out-links: the total number of outbound links

e In-links - Google: the number of inbound links reported by Goobienk: query

e In-links - Yahoo!: the number of inbound links reported by Yahdd!nk: query

e PageRank site:the Google PageRank value for the URL as reported by the @aoglbar

e PageRank domain: the Google PageRank value for the domain as reported by tlogl&o
toolbar

e Tfreq: the frequency of query terms appearing on the page (numhmgresfy terms / number
of words on page)



Using the labeled training data as a basis, we run the J48ithigoto generate a decision tree.
J48 is an implementation of the C4.5 decision tree [15] dlgar in the Weka toolkit [20]. We
chose a decision tree as the classifier as it intuitivelyegssthe importance of the involved features
(i.e., the closer to the root a feature appears in the treemibre important it is). The J48 decision
tree generated for our training data set is shown in AppeAdiXhis tree consists of 21 nodes, 11
of which are leafs. Five features were selected by the dlgorto be useful as distinction criteria
between spam and legitimate sites. Additionally, Wekautates for every leaf a confidence factor,
indicating how accurate this classification is.

The most important feature is related to the presence ofdhecks terms on the page (i.e., the
guery term frequency- 0). Other important features are the domain name, the fite tfaé number
of in-links as reported by Yahoo!, and the PageRank valubefiven site as reported by the Google
toolbar.

4.2 Evaluation

This section evaluates the ability of our decision tree tedeunwanted (spam, malicious) pages in
search engine results. The fact that we want to improve thdtssby removing spam sites demands
a low false positive rate. False positives are legitimatsghat are removed from the results because
they are misclassified as spam. Itis clearly desirable te hdsw number of these misclassifications,
since false positives influence the quality of the searchlt®i a negative way. False negatives on
the other hand, do not have an immediate negative effect @rsdhrch results. If a spam site is
misclassified as legitimate, it ends up as part of the seaqkits. Since we are only post-processing
search engine results, the site was there in the first plauas, Talse negatives indicate inaccuracies
in our classification model, but do not influence the qualitthe original search results negatively.

Evaluating the J48 decision tree with our test data settgesukthe confusion matrix as shown
in Table 2. The classifier has a false positive rate of 10.8ébaafalse negative rate of 64.4%. The
detection rate (true positives) is 35.6%.

A%

Classified as Spam Classified as Legitimatg
Spam 21 38
Legitimate 20 173

Table 2: Confusion matrix of the J48 decision tree

Detecting 35% of the unwanted sites is good, but the falsiiymsate of 11% might be too high.
To lower the false positive rate, we decided to take the cenfid factor into account that is provided
for each leaf in the decision tree. By using this confidenctofaas a threshold (i.e., a site is only
classified as spam when the confidence factor is above therctim®shold), we can tune the system
in a way that it produces less false positives, at the costopérfalse negatives. For example, by using
a confidence value of 0.88, the classifier has a false negatieef 81.4%. However, it produces no
false positives for our test set. The true positive rate Witk threshold value is 18.6%, indicating
that the system still detects about every fifth spam/maliigage in the search results.

While a detection rate of 18% is not perfect and allows forrompment, it clearly lowers the
amount of unwanted pages in the results. Taking into coradid@ that most users only pay attention
to the top 10 or top 20 results of a search query, these 18%eaupao two empty slots in the top 10
rankings that can accommodate potentially interestingpagstead.
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5 Related Work

In recent years, considerable effort was dedicated to ttextien and mitigation of web spam. In [9],
the authors present different techniques to fool searcinenmgnking algorithms. Boosting tech-
nigues, such as link farms, are used to push pages to undddggher ranks in search engine results.
Hiding or cloaking techniques are used to trick search esgghy serving different content to the
search engine spiders and human users.

One of the most prominent boosting techniques are link faamg multiple researchers have pre-
sented techniques for detecting them. For example, Wu ané@®a[22] propose an algorithm that
generates a graph of alink farm from an initial seed and wates badness values through this graph.
This information can then be used with common, link-basedire algorithms, such as PageRank
or HITS. The same authors also present their findings on irigaknd redirection techniques [21].
Ntoulas et al. [12] present a technique of detecting spareghay content analysis. This work only
takes query independent features into account, while Sstoa¢ [18] also use query dependent in-
formation. A system to detect cloaking pages is proposedhmstigpilla and Chickering in [4]. For
this, a given URL is downloaded twice, providing differersien agent strings for each download. If
the pages are (significantly) different, the page uses tigakchniques.

Wang et al. [19] follow the money in advertising schemes angpse a five-layer, double-funnel
model to explain the relations that exist between advestiaad sites that employ web spam tech-
niques. Fetterly et al. [6] present a series of measurentemtgluate the effectiveness in web spam
detection. A quantitative study of forum spamming was presby Niu et al. [11]

The work that is closest to our attempt in inferring the imipnce of different web page features
is [1]. In that paper, Bifet et al. attempt to infer the im@orte of page features for the ranking
algorithm by analyzing the results for different querieey extract feature vectors for each page
and try to model the ranking function by using support veatachines. Since their work is based on
already existing pages, they do not have control over ceféatures (e.g., in-link properties). In [5],
Evans performs a statistical analysis of the effect thatagefactors have on the ranking of pages.
While he includes factors, such as the listing of pages indwedztories and a site’s PageRank value,
Evans only focuses on query independent values while niaggeall other factors.

6 Conclusions

Search engines are a target for attackers that aim to disgribalicious content on their websites or
earn undeserved (advertising) revenue. This observataiivated our work to create a classifier that
is able to identify and remove unwanted entries from seagshlts. As a first step, we required to
understand which features are important for the rank of & p@ge reason is that these features are
most likely the ones that an attacker will tamper with. Teemimportant features, we conducted an
experiment in which we monitored, for almost three monthe,ranking of pages with 30 different
combinations of feature values. Then, we computed the weifghn the features that would best
predict the actual, observed rankings. Those featuresthéiighest weights are considered to be
the most important for the search engine ranking algoritBased on the features determined in the
first step and a labeled training set, we generated a clagsifi#8 decision tree). This decision tree
was then evaluated on a test data set. The initial evaluatsumted in 35% detection rate and 11%
false positives. By taking into account the confidence \&hiethe decision tree and introducing a
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cutoff value, the false positives could be lowered to zervthds rate, almost one out of five spam
pages can be detected, improving the results of searchemngithout removing any valid results.
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Appendix A: J48 Decision Tree

0*
<=0 >0 >1
<=2 >2

Figure 2: Generated J48 decision tree.
The node labels correspond to the feature extractors list8dction 4.1
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Appendix B: List of Experiments

Since instances within an experiment group share the saahedevalues, only the experiment groups
are listed here.

Table 3: List of experiment groups.

Column 2 references the features in Table 1 and captureistlod &pplied features for this
experiment group. The lack of a feature in the descriptiamotks that the feature is not used for this
experiment, the prefix (+) indicates that a feature is agpheslevated quantities, where ($) means
the feature is present in spam quantities. The third colmandescription of the case that this

experiment group reflects.

14

No. | Feature Combination Description

1 1,2,3,4,7,9 Baseline

2 1,2,3,7,%9 Baseline with much text

3 1,2,3,$6,7,%9 Baseline with much text and many links to low quality sites
4 1,+2,3,7,9 Elevated use of keywords BODY

5 1,$2,3,7,9 Keyword spamming oBODY

6 +1,2,3,7,9 Elevated use of keywords in tfld TLE

7 $1,2,3,7,9 Keyword spamming of | TLE

8 1,2,3,$4,7,9,10 Keyword spamming of the URL

9 $1,$2,$3,$4,$5,7,9 Spam all on site

10 | $1,$2,$3,$4,$5,$7,9 Spam all

11 | $1,$2,$3,$4,$5,$7,$9 | Spam all with much text

12 | 1,2,3,4,5,7,9 Include links to high quality pages

13 | 1,2,3,4,+5,7,9 Include more links to high quality pages

14 | 1,2,3,4,$5,7,9 Include many links to high quality pages

15 | 1,2,3,4,6,7,9 Include links to low quality pages

16 | 1,2,3,4,+6,7,9 Include more links to low quality pages

17 | 1,2,3,4,$6,7,9 Include many links to low quality pages

18 | 1,2,3,4,7,8,9 In-links with keywords in anchor text

19 | 1,2,3,4,7,9 In-links without keywords in anchor text

20 | 1,2,3,4,+7,8,9 Elevated amount of in-links with keywords in anchor text
21 | 1,2,3,4,+7,9 Elevated amount of in-links without keywords in anchor text
22 | 1,2,3,4,%$7,8,9 Spam amount of in-links with keywords in anchor text
23 | 1,2,3,4,%7,9 Spam amount of in-links without keywords in anchor text
24 | 1,2,3,$4,7,9 URL keyword spam without domain name

25 |1,2,3,4,7,9,10 Baseline with keyword in domain name

26 | $1,$2,$3,%4,%$5,$7,$9, 10Spam all with keyword in domain name

27 |1,2,3,4,7,8,9 In-links with keywords and keywords in file name

28 |1,2,3,4,7,9 In-links without keywords and keywords in file name

29 | 1,2,3,4,7,8,9,10 In-links with keywords and keywords in domain name
30 | 1,2,3,4,7,9,10 In-links without keywords and keywords in domain hame



